

THE CHINESE UNIVERSITY OF HONG KONG Department of Electronic Engineering

SEMINAR

Optoelectronic Applications of Colloidal and Hybrid Nanomaterials

By

Zhuoying Chen

Laboratoire de Physique et d'Etude des Matériaux (LPEM, UMR 8213) ESPCI Paris/CNRS/Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France

Date: 6 May, 2019 (Monday) Time: 3:30 p.m. Venue: Room 222 Ho Sin Hang Engineering Building

Abstract:

In this seminar, two topics on the optoelectronic applications of colloidal and hybrid nanomaterials will be presented: (1) The microscopic characterizations providing evidence on the upconversioninduced near-infrared light harvest in hybrid organo-lead halide perovskite solar cells. Photon upconversion represents a promising avenue to reduce the spectral mismatch losses limiting the efficiency of solar cells. Here the impact of inserting Yb³⁺/Er³⁺ co-doped KY₇F₂₂ upconversion nanoparticles (UCNPs) into the different interfaces of a solution-processed mixed-cation lead mixed-halide perovskite solar cell is studied in detail. The upconversion contribution is quantified by a light-beam induced current/fluorescence mapping technique. Such mapping experiments offer a detailed microscopic and spectroscopic picture allowing a correlation of the electrical and optical contribution of UCNPs together with the solar cell morphology. (2) A new type of short-wave infrared (SWIR) photodetectors. Photodetection in the SWIR spectrum is a challenging task achieved often by costly low-bandgap compound semiconductors involving highly toxic elements. Here an alternative low-cost approach which relies on the plasmonic-induced photothermal effect of solution-processed colloidal gold nanorods (Au NRs). A series of uniform solution-processed Au NRs of various aspect-ratios were prepared exhibiting a strong and well-defined longitudinal localized surface plasmon resonance maximum from 900 nm to 1.3 µm. Hybrid device structures were fabricated by applying colloidal Au NRs on the surface of either a commercially available thermistor or a series of morphology-optimized resistive platinum (Pt) microwires. The photoresponse characteristics of these devices will be presented together with a series of microscopic mapping experiments providing a direct correlation between Au NRs and the device zone where resistance change happens under a laser illumination modulated at different frequencies. These hybrid Au-NRs/Pt photodetectors, capable to perform fast conversion between photon, heat, and resistance change, represents a brand-new strategy for alternative low-cost SWIR photodetection.

ALL ARE WELCOME