#### Activity Analysis Using Topic Models

Xiaogang Wang Department of Electronic Engineering The Chinese University of Hong Kong

November 07, 2011



# Outline

#### Introduction

- Topic Models
- Activity analysis in sparse scenes
  - Based on trajectories
  - Single camera view
  - Multiple camera views
- Activity analysis in crowded scenes
  - Based on tracklets
  - Based on local motions
- Activity analysis in near fields







#### Sparse scenes in a single camera view

✓ Objects can be detected and tracked
 ✓ Trajectories of objects are used for activity analysis
 ✓ Cluster trajectories into different activity categories
 ✓ Detect abnormal trajectories



Activity 1

Activity 2

Activity 3

#### Sparse scenes in multiple camera views

Objects can be detected and tracked in each of the camera views
 It is challenging to track objects across camera views
 The topology of camera views may be arbitrary and unknown
 Cluster trajectories observed in different camera views without tracking objects across camera views and without knowing the topology of camera views



Tracklets

Local motions

#### **Crowded Scenes**

- $\checkmark$  It is challenging to detect and track objects in crowded environments
- $\checkmark$  Many different types of activities happen simultaneously in crowded scenes
- Learn the models of activities from tracklets (highly fragmented trajectories) or local motions (optical flows)



From Niebles et al. BMVC'06

#### **Near Fields**

- ✓ In far fields, objects are small in size and their activities are mainly distinguished by their positions and velocities
- ✓ In near fields, objects are in larger sizes, and more features such as shape, appearance and motions can be used for activity analysis
- $\checkmark$  Use space-time interest points as features for activity analysis

# Why topic models?

- Unsupervised
  - Save labeling effort
  - Suitable for processing large scale datasets
  - Easy to transfer across different scenes
- Topic models are hierarchical Bayesian models
  - Model complex activities in a principled way
    - Jointly model simple activities and complex activities at different hierarchical levels
  - Add priors to hierarchical Bayesian models
    - Dynamically update the models of activities over time
    - Learn the models of activities across camera views

# Why topic models?

- Can be extended to nonparametric Bayesian models
  - Automatically learn the number of activity categories driven by data
- Model the co-occurrence of motion features
  - Co-occurrence of motion features widely exists in many types of activities
  - No other strong constraints on the distributions of activity models
  - Can be well applied to different scenes and different types of activities

# Outline

• Introduction

## • Topic Models

- Activity analysis in sparse scenes
  - Based on trajectories
  - Single camera view
  - Multiple camera views
- Activity analysis in crowded scenes
  - Based on tracklets
  - Based on local motions
- Activity analysis in near fields

#### **Topic models**

| "Arts"  | "Budgets"  | "Children" | "Education" |
|---------|------------|------------|-------------|
| "Arts"  | "Budgets"  | "Children" | "Education" |
| NEW     | MILLION    | CHILDREN   | SCHOOL      |
| FILM    | TAX        | WOMEN      | STUDENTS    |
| SHOW    | PROGRAM    | PEOPLE     | SCHOOLS     |
| MUSIC   | BUDGET     | CHILD      | EDUCATION   |
| MOVIE   | BILLION    | YEARS      | TEACHERS    |
| PLAY    | FEDERAL    | FAMILIES   | HIGH        |
| MUSICAL | YEAR       | WORK       | PUBLIC      |
| BEST    | SPENDING   | PARENTS    | TEACHER     |
| ACTOR   | NEW        | SAYS       | BENNETT     |
| FIRST   | STATE      | FAMILY     | MANIGAT     |
| YORK    | PLAN       | WELFARE    | NAMPHY      |
| OPERA   | MONEY      | MEN        | STATE       |
| THEATER | PROGRAMS   | PERCENT    | PRESIDENT   |
| ACTRESS | GOVERNMENT | CARE       | ELEMENTARY  |
| LOVE    | CONGRESS   | LIFE       | HAITI       |

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which the word is putatively generated.

From Blei, Journal of Machine Learning Research, 2003



# Applying topic models to activity analysis

- Features = ?
- Words = ?
- Documents = ?
- Topics = ?
- How to extend the models by adding priors which capture the spatial and temporal information?

# Outline

- Introduction
- Topic Models
- Activity analysis in sparse scenes
  - Based on trajectories
  - Single camera view
  - Multiple camera views
- Activity analysis in crowded scenes
  - Based on tracklets
  - Based on local motions
- Activity analysis in near fields

#### Activity analysis in sparse scenes

- Features = positions and velocities of points on trajectories
- Words = points on trajectories
- Documents = trajectories
- Topics = semantic regions (intersections of paths commonly taken by objects)
- Identity co-occurrence : two feature values are observed on the same trajectory and they are related to the same object



X. Wang, K. Ma, G. Ng, and E. Grimson, "Trajectory Analysis and Semantic Region Modeling Using A Nonparametric Bayesian Model," CVPR'08

#### **Two-level parametric topic model**

16





Related to the nested HDP [Rodriguez et al. 2006], Transformed HDP [Sudderth et. al IJCV'07], HDP [Teh JASA'04]

#### **Cluster trajectories and learn models of paths**



40,453 trajectories for our experiments

#### Models of semantic regions





#### **Clusters of trajectories**



# **Outlier trajectories** Top 1-20 Top 41-60 Top 61-80 Top 81-100 Top 21-40

#### **Dynamic Dual-HDP**

22





Models are dynamically updated
The information of data before *t* is included in φ<sup>t-1</sup><sub>k</sub> and β<sup>t-1</sup><sub>0</sub>

X. Wang, K. Ma, G. Ng, and E. Grimson, "Trajectory Analysis and Semantic Region Modeling Using Nonparametric Bayesian Models," IJCV'11

#### Dynamic models of semantic regions in a parking lot



2am-3am May 15



2am-3am May 16



2am-3am May 15



2am-3am May 16



7am-8am May 15



7am-8am May 16



7am-8am May 15



7am-8am May 16



1pm-2pm May 15



1pm-2pm May 16



1pm-2pm May 15



1pm-2pm May 16



7pm-8pm May 15



7pm-8pm May 16



7pm-8pm May 15



7pm-8pm May 16

## Cluster trajectories in multiple camera views

- Correspondence free: doesn't track object across camera views
- No camera calibration
- Unsupervised
- The topology of camera views is unknown and arbitrary (overlapping or non-overlapping)
- Add smoothness prior according to the temporal cooccurrence of trajectories observed in different camera views



Topology of camera views



Four camera views

Trajectories observed in four camera views



X. Wang, K. Tieu, and E. Grimson, "Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views," *TPAMI'10*.

#### Model

- Codebook is the concatenation of the local codebooks of all the camera views. Feature value is (*camera\_id*, *location*, *moving\_direction*).
- A semantic region has a joint distribution in all camera views.
- If two trajectories are connected by an edge on the network, there is a smoothness constraint on their distribution over semantic regions.



An example to describe the high level picture of our model

#### Models of paths and clusters of trajectories



Camera 1



Camera 3





Activity 1



Activity 2



Activity 3



Activity 3

Topology





Camera 3

27



Camera 2

Camera 4

Camera 4

Topology



Activity 1

![](_page_26_Picture_26.jpeg)

Activity 2

# Outline

- Introduction
- Topic Models
- Activity analysis in sparse scenes
  - Based on trajectories
  - Single camera view
  - Multiple camera view
- Activity analysis in crowded scenes
  - Based on tracklets
  - Based on local motions
- Activity analysis in near fields

## Learning the models of activities from tracklets

- Tracklets: fragments of trajectories obtained by weak trackers. They are short and very noisy.
- Trajectories extracted from the videos of the New York Grand Central Station: 95% trajectories are highly fragmented

![](_page_28_Picture_3.jpeg)

# Clustering results using topic models

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

## Random field topic model

- MRF models the dependency between tracklets based on their spatial and temporal consistency and velocity similarity
- Model the sources and sinks

B. Zhou, X. Wang, and X. Tang, "Random Field Topic for Semantic Region Analysis," *CVPR* 2011.

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_1.jpeg)

#### Learned Models of Paths

![](_page_32_Figure_1.jpeg)

#### Learned Models of Paths

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

#### Activity Analysis Based on Moving Pixels

![](_page_34_Picture_1.jpeg)

X. Wang, X. Ma, and E. Grimson, "Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models," *TPAMI'09*.

#### Activity Analysis Based on Moving Pixels

- Features = positions and velocities of moving pixels
- Words = moving pixels
- Documents = short video clips
- Topics = **atomic activities**
- **Temporal co-occurrence**: if two feature values are related to the same atomic activities, they often co-occur in the same video clips and have strong temporal correlation

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

Moving pixels in a short video clip

Spatial distribution of an atomic activity

# High level picture of our approach

Motion Features (a)

Atomic activities modeled as distributions over the feature codebook (b)

> Global behaviors modeled as distributions over atomic activities (c)

![](_page_36_Picture_4.jpeg)

![](_page_37_Figure_0.jpeg)

#### Learned atomic activities from a traffic scene

![](_page_38_Picture_1.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Figure_1.jpeg)

#### Global behavior I: green light for south/north traffic

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

vehicles northbound

![](_page_41_Picture_5.jpeg)

vehicles incoming northbound

![](_page_41_Picture_7.jpeg)

vehicles northbound

![](_page_41_Picture_9.jpeg)

vehicles incoming southbound

![](_page_41_Picture_11.jpeg)

vehicles southbound

![](_page_41_Picture_13.jpeg)

vehicles outgoing eastbound

![](_page_41_Picture_15.jpeg)

#### Global behavior II: green light for east/west traffic

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Picture_3.jpeg)

vehicles outgoing southbound

![](_page_42_Picture_5.jpeg)

pedestrians westbound

![](_page_42_Picture_7.jpeg)

vehicles outgoing westbound

![](_page_42_Picture_9.jpeg)

vehicles outgoing eastbound

![](_page_42_Picture_11.jpeg)

vehicles incoming westbound

![](_page_42_Picture_13.jpeg)

vehicles incoming eastbound

#### Global behavior III: left turn signal for east/west traffic

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_3.jpeg)

vehicles turning left eastbound

![](_page_43_Picture_5.jpeg)

vehicles incoming eastbound

![](_page_43_Picture_7.jpeg)

vehicles outgoing northbound

![](_page_43_Picture_9.jpeg)

vehicles outgoing eastbound

![](_page_43_Picture_11.jpeg)

vehicles outgoing northbound

![](_page_43_Picture_13.jpeg)

vehicles stopping southbound

![](_page_43_Picture_15.jpeg)

#### Global behavior IV: walk sign

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

#### pedestrians westbound

![](_page_44_Picture_4.jpeg)

vehicles stopping

![](_page_44_Picture_6.jpeg)

pedestrians outgoing eastbound

![](_page_44_Picture_8.jpeg)

vehicles stopping

![](_page_44_Picture_10.jpeg)

pedestrians incoming eastbound

![](_page_44_Picture_12.jpeg)

pedestrians westbound

![](_page_44_Picture_14.jpeg)

![](_page_44_Picture_15.jpeg)

#### **Global behavior V: northbound right turns**

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

vehicles incoming northbound

![](_page_45_Picture_5.jpeg)

vehicles outgoing eastbound

![](_page_45_Picture_7.jpeg)

#### **Temporal video segmentation**

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

green light for east/west traffic

green light for south/north traffic

left turn signal for east/west traffic

![](_page_46_Picture_6.jpeg)

walk sign

northbound right turns

# Abnormality detection results

![](_page_47_Picture_1.jpeg)

Top four abnormal video clips

#### **Interaction query**

![](_page_48_Figure_1.jpeg)

## Top four retrieved jay-walking examples

![](_page_49_Picture_1.jpeg)

#### More works

- Modeling the temporal dependencies of global behaviors and atomic activities (Hospedales et al. ICCV'09)
- Modeling the temporal duration of atomic activities (Varadarajan et al. BMVC'10, Emonet et al. ECCV'11)
- Modeling the temporal variations of the atomic activities and global behaviors over time (Faruquie, BMVC'09)
- Weakly supervised topic model for rare (abormal) and subtle behavior detection (Hospedales, et al. TPAMI'11)

# Outline

- Introduction
- Topic Models
- Activity analysis in sparse scenes
  - Based on trajectories
  - Single camera view
  - Multiple camera view
- Activity analysis in crowded scenes
  - Based on tracklets
  - Based on local motions
- Activity analysis in near fields

### Activity analysis in near fields

- Features = visual descriptors of space-time interest points
- Words = **space-time interest points**
- Documents = video sequences
- Topics = **actions**

![](_page_52_Picture_5.jpeg)

![](_page_52_Picture_6.jpeg)

# **Conclusions and Discussions**

- Topic models capture the co-occurrence of features and can be applied activity analysis under different contexts
- They are extendable by adding different types of priors
  - Dynamically update the models of activities
  - Activity analysis across multiple camera views
- How to better capture the spatial and temporal relationships of "words" and "documents"?
- How to apply topic models to very large camera networks?
- How to jointly solve low-level object detection/tracking and high-level activity modeling under the hierarchical Bayesian model?

# Thank you!