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Abstract

We propose a novel nonparametric Bayesian model,
Dual Hierarchical Dirichlet Processes (Dual-HDP), for
trajectory analysis and semantic region modeling in surveil-
lance settings, in an unsupervised way. In our approach,
trajectories are treated as documents and observations of
an object on a trajectory are treated as words in a doc-
ument. Trajectories are clustered into different activities.
Abnormal trajectories are detected as samples with low
likelihoods. The semantic regions, which are intersections
of paths commonly taken by objects, related to activities
in the scene are also modeled. Dual-HDP advances the
existing Hierarchical Dirichlet Processes (HDP) language
model. HDP only clusters co-occurring words from docu-
ments into topics and automatically decides the number of
topics. Dual-HDP co-clusters both words and documents.
It learns both the numbers of word topics and document
clusters from data. Under our problem settings, HDP only
clusters observations of objects, while Dual-HDP clusters
both observations and trajectories. Experiments are eval-
uated on two data sets, radar tracks collected from a mar-
itime port and visual tracks collected from a parking lot.

1. Introduction

Activity analysis has always been one of the foci of re-
search in surveillance. Over the past decade significant
work has been reported on this topic. Although some ap-
proaches [18, 10, 14] modeled activities by directly extract-
ing motion and appearance features from the videos without
relying on tracking, most approaches [11, 2, 8, 16, 15, 17]
assumed that objects and/or their constituents were first de-
tected and tracked throughout the scene and activities were
modeled as sequences of movements of objects. Through
tracking, an activity executed by a single object can be sepa-
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Figure 1. Trajectories in the our two data sets. (a) Radar tracks
collected from a port. (b) The background image of a parking lot.
(c) Tracks collected from a parking lot scene (only 4, 404 out of
40, 453 tracks are shown here).

rated from other co-occurring activities, and features related
to the activity can be integrated as a track. In many far-field
surveillance settings, the captured videos are of low resolu-
tion and poor quality or even no videos are available (e.g.
in some maritime surveillance, only radar signals are avail-
able). In these scenarios, it is difficult to compute more
complicated features, such as gestures, local motions, or
appearance of objects within the tracks. Usually only po-
sitions of objects are recorded along the tracks, which are
called trajectories. Although quite simple, the information
encoded by trajectories can distinguish many different ac-
tivity patterns, especially in far-field settings. The goal of
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this work is to model activities by trajectory analysis: clus-
tering trajectories into different activities, detecting abnor-
mal trajectories, and modeling semantic regions.

We propose a framework using a nonparametric
Bayesian model, Dual Hierarchical Dirichlet Processes
(Dual-HDP), for trajectory analysis. Dual-HDP advances
the existing Hierarchical Dirichlet Processes (HDP) [12]
language model. HDP is a nonparametric Bayesian model.
It clusters words often co-occurring in the same documents
into one topic and automatically decides the number of top-
ics. Wang et al. [14], proposed an HDP mixture model to
co-cluster both words and documents. However, it required
one to manually specify the number of document clusters.
Our Dual-HDP also co-clusters words and documents, but
it automatically decides the numbers of both word topics
and document clusters. Under our framework, trajectories
are treated as documents and the observations (positions and
moving directions of objects) on the trajectories are treated
as words. Topics model the semantic regions, which are
intersections of paths commonly taken by objects, in the
scene, and trajectories are clustered into different activities.

We evaluate our approach on two data sets (see Figure 1):
577 radar tracks collected from a port in maritime surveil-
lance and 45, 453 video tracks collected from a parking lot
scene. In maritime surveillance, trajectory analysis is a nat-
ural way to analyze activities especially when only radar
signals are available. Without expert knowledge, it is very
difficult for humans to discover transportation structures on
the sea, such as shipping fairways, since the appearance of
the scene does not help. The tracks from the parking lot
scene are obtained from far-field videos recorded by a fixed
camera. We use the Stauffer-Grimson tracker [11] to obtain
tracks in this data set.

2. Related Work
Most of the existing trajectory analysis approaches clus-

ter trajectories and detect abnormal trajectories by defin-
ing the pairwise similarities between trajectories. The pro-
posed trajectory similarities or distances include Euclidean
distance [3], Hausdorff distance and its variations [4, 15],
and Dynamic Time Warping (DTW) [6]. These similarity-
based approaches have several drawbacks. First, there is no
global probabilistic framework to model activities happen-
ing in the scene. They have an ad hoc nature especially on
the definitions of distance measures. Abnormal trajectories
are usually detected as those with larger distance to other
trajectories. This abnormality detection lacks a probabilis-
tic explanation. Second, they do not provide a solution to
the number of clusters. They require that the cluster num-
ber is known in advance. Third, they measure the spatial
distance between observations on two trajectories. How-
ever, spatial distance does not reflect the statistical nature
of activities. For example, vehicles moving on two side by

side lanes may be close in space, but their trajectories rep-
resent different activities. Spatial distance is also sensitive
to projective distortion. Fourth, calculating the similarities
between all pairs of samples is computationally inefficient,
with a complexity of O(N2) in both time and space, where
N is the number of trajectories.

Trajectory clustering is also related to the problem of
modeling semantic regions in the scene. The knowledge of
the structures of the scene (e.g. roads, paths, entry and exit
points) can help not only the high-level description of activ-
ities [15], but also low-level tracking and classification [5].
It takes a lot of effort to manually input these structures.
They cannot be reliably detected based on the appearance
of the scene either. In some cases, e.g. detecting shipping
fairways on the sea, there is no appearance cue available at
all. It is of interest to detect these structures by trajectory
analysis. Usually paths are detected by modeling the spatial
extents of trajectory clusters [2, 8, 15]. Semantic regions are
detected as intersections of paths [8]. Entry and exit points
are detected at the ends of paths [15].

Our framework differs from previous approaches:

• Different from prior similarity-based clustering ap-
proaches, it clusters trajectories using a generative
model. There is a natural probabilistic explanation for
the detection of abnormal trajectories.

• Previous approaches first clustered trajectories into ac-
tivities and then segmented semantic regions. Our ap-
proach simultaneously learns activities and semantic
regions, which are jointly modeled in Dual-HDP.

• Using Dirichlet Processes, the number of activity cat-
egories and semantic regions are automatically learnt
from data instead of requiring manual definition.

• Instead of using a spatial distance measure uniformly
over the scene, it models the spatial distributions of
activities. It separates activity-related structures close
in space. It is more robust to projective distortion.

• The space complexity of our algorithm is O(N) in-
stead of O(N2) in the number of trajectories.

3. Modeling Trajectories
We treat a trajectory as a document and the observa-

tions on the trajectory as words. The positions and moving
directions of observations are computed as features which
are quantized according to a codebook. The codebook uni-
formly quantizes the space of the scene into small cells and
the velocity of objects into several directions. A trajectory
is modeled as a bag of quantized observations without tem-
poral order. In language processing, some topic models,
such as HDP, cluster co-occurring words into one topic.



Figure 2. An example to explain the modeling of semantic regions
and activities. See details in text.

Each topic has a multinomial distribution over the code-
book. A document is modeled as a mixture of topics and
documents share topics. If some words, such as “professor”
and “education”, often but not necessarily always occur in
the same documents, a topic related to “education” will be
learnt and its multinomial distribution has large weights on
these words. When these models are used to model trajec-
tories, topics reveal semantic regions shared by trajectories,
i.e. many trajectories pass through one semantic region with
common directions of motion. Semantic regions are inter-
sections of paths. Two paths may partially share one se-
mantic region. A semantic region is modeled as a multi-
nomial distribution over the space of the scene and moving
directions. If two trajectories pass through the same set of
semantic regions, they belong to the same activity. In our
Dual-HDP model, each activity cluster has a prior distribu-
tion over topics (semantic regions). It is learnt in an unsu-
pervised way. All the trajectories clustered into the same
activity share the same prior distribution. Using Dirichlet
Processes, Dual-HDP can learn the number of semantic re-
gions and the number of activities from data.

In Figure 2, an example is shown to explain the model-
ing. There are three semantic regions (indicated by different
colors) which form two paths. Both trajectories A and C
pass through regions 1 and 2, so they are clustered into the
same activity. Trajectory B passes through regions 1 and 3,
so it is clustered into a different activity.

With the “bag-of-words” assumption, our approach does
model the first order temporal information among observa-
tions since the codebook encodes the moving directions. It
can distinguish some activities related to temporal features.
For example, if objects visit several regions in opposite tem-
poral order, they must pass through the same region in op-
posite directions. In our model, that region splits into two
topics because of the velocity difference. So these two ac-
tivities can be distinguished by our model, since they have
different topics.

In Section 5 and 6, we will explain the HDP model pro-
posed by Teh et al. [12] and our Dual-HDP model, which is
actually used for trajectory analysis. We will describe them

as language models. However, remember that in our prob-
lem documents are trajectories, words are observations, and
topics are semantic regions. Clusters of trajectories (activi-
ties) are explicitly modeled in Dual-HDP but not in HDP.

4. Dirichlet Process
A Dirichlet Process (DP) [1] is a nonparametric distribu-

tion whose domain is a set of probability distributions. A
DP is defined by a concentration parameter α, which is a
positive scalar, and a base probability measure H (for ex-
ampleH is a Dirichlet distribution in our case). A probabil-
ity measure G randomly drawn from DP (α,H) is always
a discrete distribution and it can be obtained from a stick-
breaking reconstruction [9],

G =
∞∑
k=1

πkδφk
, (1)

where δφk
is a Dirac delta function centered at φk, φk

is a multinomial parameter vector sampled from Dirich-
let distribution H , φk ∼ H , and πk is a non-negative
scalar satisfying

∑∞
k=1 πk = 1, πk = π′k

∏k−1
l=1 (1 − π′l),

π′k ∼ Beta(1, α). G is often used as a prior for infinite mix-
ture models. When data points are sampled from G, there
is no limit to the number of distinct components which may
be generated. Given a set of data points θ1, . . . , θN sam-
pled from G, it turns out that the posterior of sampling a
new data point can be obtained by integrating out G,

θN+1|θ1, . . . , θN , α,H ∼
K∑
k=1

nk
N + α

δθ∗k +
α

N + α
H (2)

There are K distinct values {θ∗k}Kk=1 (identifying K com-
ponents) among the N data points. nk is the number of
points with value θ∗k. The new data point θN+1 can be as-
signed to one of the existing components or can sample a
new component from H . These properties make DP ideal
for modeling data clustering problems where the number of
mixture components is not well-defined in advance.

5. HDP
HDP proposed by Teh et al. [12] is a nonparametric hier-

archical Bayesian model used to cluster co-occurring words
in documents into topics (in our problem it clusters observa-
tions on the trajectories into semantic regions). The graphi-
cal model of HDP is shown in Figure 3. There are M doc-
uments (trajectories) in the corpus. Each document j has
Nj words (quantized observations of positions and mov-
ing directions of objects). In HDP, a prior distribution G0

over the whole corpus is sampled from a Dirichlet process,
G0 ∼ DP (γ,H). G0 =

∑∞
k=1 π0kδφk

. φk is the param-
eter of a topic, which is modeled as a multinomial distri-
bution over the codebook. φk is sampled from Dirichlet



Figure 3. The graphical model of HDP

prior H . All the words in the corpus will be sampled from
some topics {φk}. For each document j, a prior distribu-
tionGj over all the words in that document is sampled from
Dirichlet process, Gj ∼ DP (α,G0). Gj =

∑∞
k=1 πjkδφk

share the same components φk asG0, i.e. all the documents
share the same set of topics. For each word i in document
j, a topic θji, which is one of the φk’s, is sampled from
Gj . The word value wji is sampled from the topic θji,
wji ∼ Discrete(θji). The concentration parameters are
sampled from some gamma priors, γ ∼ Gamma(a1, b1),
α ∼ Gamma(a2, b2). In HDP, all the documents share
topics and the number of topics, i.e. the number of non-
zero elements of {πk} is learnt from data.

6. Dual-HDP
Unfortunately, HDP does not cluster documents (trajec-

tories in our problem). We propose a Dual-HDP model to
co-cluster both words and documents. A document is mod-
eled as a distribution over topics. Thus documents with sim-
ilar distributions over topics can be grouped into one clus-
ter. There are two hierarchical Dirichlet processes modeling
topics of words and clusters of documents. The graphical
model of Dual-HDP is shown in Figure 4.

In Dual-HDP, each document j is from one of the docu-
ment clusters. All the documents in cluster c have the same
prior distribution G̃c. G̃c =

∑∞
k=1 π̃ckδφ̃ck

is an infinite
mixture of topics. Since the number of document clusters is
not known in advance, we model the clusters of documents
as an infinite mixture,

Q =
∞∑
c=1

εcδG̃c
(3)

When a DP was first developed by Ferguson [1], the com-
ponents (such as φk in Eq 1) could only be scalars or vec-
tors. MacEachern [7] generalized this to Dependent Dirich-
let Process (DDP). In DDP, components could be stochastic
processes. In our model, the parameters {(π̃ck, φ̃ck)}∞k=1 of
G̃c can be treated as a stochastic process with index k. As
shown in Figure 4, Q is generated from DDP (µ, ρ,G0).

Figure 4. The graphical model of Dual-HDP

In Eq 3, εc = ε′c
∏c−1
l=1 (1 − ε′l), ε

′
c ∼ Beta(1, µ), G̃c ∼

DP (ρ,G0). As explained in Section 5, G0 ∼ DP (γ,H)
is the prior distribution over the whole corpus. {G̃c}∞c=1 all
have the same topics in G0. i.e. φ̃ck = φk. However they
have different mixtures {π̃ck} over these topics. Each doc-
ument j samples a probability measure G̃cj from Q as its
prior. Different documents may choose the same prior G̃c,
thus they form one cluster c. Then document j generates
its own probability measure Gj from Gj ∼ DP (α, G̃cj

)
where the base measure is provided by cluster cj instead of
the corpus priorG0 (as HDP did). The following generative
procedure is the same as HDP. Word i in document j sam-
ples its topic θji from Gj and samples its word value wji
from Discrete(θji). The concentration parameters are also
sampled from gamma priors.

Gibbs sampling is used to do inference in three steps.

1. Given the cluster assignment {cj} of documents, sam-
ple the word topic assignment {zji} (zji = k indicates
θji = φk), topic mixtures {π0k} and {π̃ck}. Given
{cj}, Dual-HDP is simplified as HDP, and thus the
sampling scheme proposed by Teh et al. [12] can be
used. They showed that {φk} and {πjk} can be inte-
grated out without being sampled.

2. Given {zji}, {π0k} and {π̃ck}, sample the cluster as-
signment cj of documents. cj can be assigned to one
of the existing document clusters or to a new cluster.
We use the Chinese restaurant franchise for sampling.
See details in [13].

3. Given other variables, sample the concentration pa-
rameters using the sampling scheme proposed in [12].

In order to detect abnormal documents (trajectories), we
need to compute the likelihood of document j given other
documents, p(wj |w−j), where wj = {wji}

Nj

i=1 is the set
words in document j and w−j represents the remaining
documents excluding j. It can be approximated using the
samples obtained during Gibbs sampling and a variational
method. See details in [13].
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Figure 5. Semantic regions at a maritime port learnt from the radar tracks. Distributions of the first 16 semantic regions over space and
moving directions are shown (for easier comparison, they are not shown in order). Colors represent different moving directions: → (red),
← (cyan), ↑ (magenta), and ↓ (blue). (a) Histogram of observations assigned to different semantic regions. (b) All of the radar tracks. (c)
Compare the 1st, 4th, 6th, 8th, and 15th semantic regions. (d) Compare the 7th, 11th, and 13th semantic regions (see details in text).

7. Results on radar tracks

There are 577 radar tracks in our maritime port data set.
They were acquired by multiple collaborating radars along
the shore and recorded the locations of ships on the sea. 23
semantic regions are discovered by our model. In Figure 5,
we display the distributions of the first 16 semantic regions
(sorted by the number of observations assigned to seman-
tic regions) over space and moving directions. As shown
in Figure 5, the 1st, 4th, 6th, 8th and 15th semantic regions
are five side by side shipping fairways, where ships move
in two opposite directions. For comparison, we segment
the five fairways using a threshold on the density, and over-
lay them in Figure 5 (c) in different colors, green (1st), red
(4th), black (6th), yellow (8th), and blue (15th). Since they

are so close in space, they cannot be separated using spatial
distance based trajectory clustering approaches. In Figure 5
(d), we compare the 7th, 11th, and 13th semantic regions
also by overlaying the segmented regions in red, green, and
black colors. This explains the fact that ships first move
along the 7th semantic region and then diverge along the
11th and 13th semantic regions.

Our approach groups trajectories into 16 clusters. In Fig-
ure 6, we plot the eight largest clusters and some smaller
clusters. Clusters 1, 4, 6 and 7 are close in space but occupy
different regions. Clusters 3 and 5 occupy the same region,
but ships in the two clusters moves in opposite directions.
Clusters 2 and 5 partially overlap in space. As shown in
Figure 5(d), ships first move along the same way and then
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Figure 6. Clusters of trajectories. Random colors are used to distinguish individual trajectories. For comparison the last two sub-figures
show some trajectory clusters of the result using Euclidean distance and spectral clustering [3].

(a) Top 1− 10

(b) Top 11− 20

Figure 7. Top 20 abnormal trajectories are plotted in different col-
ors. Other trajectories are plotted in cyan color.

diverge in different directions. For comparison, in the last
two sub-figures of Figure 6 we also show two clusters of
the result using Euclidean distance and spectral clustering
[3] and setting the number of clusters as 16. Some fine

structures of shipping fairways cannot be separated using a
spatial distance based clustering method. One of the advan-
tages of our approach is that it learns the number of clusters
from data. When spatial distance based clustering methods
are evaluated on this data set, choosing an improper clus-
ter number, say 8 or 25, the clustering performance signifi-
cantly deteriorates.

In Figure 7, we display the top 20 abnormal
trajectories based on their normalized log-likelihoods
log(p(wj |w−j))/Nj . There are two possible reasons for
the abnormality. (1) The trajectory does not fit any major
semantic regions. Many examples can be found in Figure 7.
(2) The trajectory fits more than one semantic region, but
the combination of the semantic regions is uncommon. The
red trajectory in Figure 7 (a), and the red and green trajec-
tories in Figure 7 (b) are such examples.

8. Results on tracks from a parking lot
There are N = 40, 453 trajectories in the parking lot

data set collected over one week. Figure 1 plots 4, 404 tra-
jectories from one day. Because of the large number of sam-
ples, similarity based clustering methods require both large
amounts of space (6GB) to store the 40, 453× 40, 453 sim-
ilarity matrix and high computational cost to compute the
similarities of around 800, 000, 000 pairs of trajectories. If
spectral clustering is used, it is quite challenging to compute
the eigenvectors of such a huge matrix. It is difficult for
them to work on this large data set. The space complexity
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Figure 8. Some semantic regions learnt from the parking lot data set. The meaning of colors is the same as Figure 5.

of our nonparametric Bayesian approach is O(N) instead
of O(N2). The time complexity of each Gibbs sampling
iteration is O(N). It is difficult to provide theoretical anal-
ysis on the convergence of Gibbs sampling. However, there
is some empirical observations by plotting the likelihoods
of data sets over Gibbs sampling iterations. On the smaller
radar data set, the likelihood curve converges after 1, 000
iterations. This takes around 1.5 minutes running on a com-
puter with 3GHz CPU. On the parking lot data set, which
is 70 times large than the radar data set in the number of
trajectories, the likelihood curve converges after 6, 000 iter-
ations. It takes around 6 hours. In our experiments, the time
complexity of our approach is much smaller that O(N2)

30 semantic regions and 22 clusters of trajectories are
learnt from this data set. Some of them are shown in Fig-
ure 8 and 9. The first and third semantic regions explain
vehicles entering and exiting the parking lot. Most other se-
mantic regions are related to pedestrian activities. Because
of opposite moving directions, some region splits into two
semantic regions, such as semantic regions 2 and 7, 9 and
12, 5 and 14. Similarly objects on trajectories (see Figure 9)
in clusters 2 and 3, 5 and 11 are moving in opposite direc-
tions. Many outlier trajectories are in small clusters, such
as clusters 20, 21 and 22. The top 100 abnormal trajectories
are shown in Figure 10. Some horizontal trajectories on the
grass field are detected as abnormalities. They were caused
by a worker shearing the grass, which happened only once.

9. Conclusion

We propose a nonparametric Bayesian framework to
cluster trajectories, learn the models of semantic regions,
and detect trajectories related to abnormal activities. Dif-
ferent from most of the existing spatial distance based tra-
jectory clustering approaches with ad hoc nature, we for-
mulate these problem in a transparent probabilistic way.
The number of semantic regions and clusters of trajectories
are learnt through the hierarchical Dirichlet processes. The
space complexity of our algorithm is O(N).
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