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Person Re-identification by saliency Learning
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Abstract—Human eyes can recognize person identities based on small salient regions, i.e. person saliency is distinctive and reliable
in pedestrian matching across disjoint camera views. However, such valuable information is often hidden when computing similarities
of pedestrian images with existing approaches. Inspired by our user study result of human perception on person saliency, we propose
a novel perspective for person re-identification based on learning person saliency and matching saliency distribution. The proposed
saliency learning and matching framework consists of four steps: (1) To handle misalignment caused by drastic viewpoint change
and pose variations, we apply adjacency constrained patch matching to build dense correspondence between image pairs. (2) We
propose two alternative methods, i.e. K-Nearest Neighbors and One-class SVM, to estimate a saliency score for each image patch,
through which distinctive features stand out without using identity labels in the training procedure. (3) saliency matching is proposed
based on patch matching. Matching patches with inconsistent saliency brings penalty, and images of the same identity are recognized
by minimizing the saliency matching cost. (4) Furthermore, saliency matching is tightly integrated with patch matching in a unified
structural RankSVM learning framework. The effectiveness of our approach is validated on the four public datasets. Our approach
outperforms the state-of-the-art person re-identification methods on all these datasets.

Index Terms—Person re-identification, person saliency, patch matching, video surveillance.
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1 INTRODUCTION

Person re-identification [7], [17], [58] is to match pedestri-
ans observed from non-overlapping camera views based
on image appearance. It has important applications
in video surveillance such as human retrieval, human
tracking, and activity analysis. It saves a lot of human
efforts on exhaustively searching for a person from large
amounts of images and videos. Nevertheless, person
re-identification is a very challenging task. A person
observed in different camera views undergoes significant
variations on viewpoints, poses, and illumination, which
make intra-personal variations even larger than inter-
personal variations. Image blurring, background clutters
and occlusions also cause additional difficulties.

Variations of viewpoints and poses commonly exist
in person re-identification, and cause misalignment be-
tween images. In Figure 1, the lower right region of (p1a)
is a red bag, while a leg appears in this region in (p1b);
the central region of (p3a) is an arm, while it becomes a
backpack in (p3b). Most existing methods [14], [36], [50],
[53], [69] match pedestrian images by first computing
the difference of feature vectors and then the similarities
based on such difference vectors, which is problematic
due to the spatial misalignment. In our work, patch
matching is employed to handle misalignment, and it
is integrated with saliency matching to improve the
discriminative power and robustness to spatial variation.

Salient regions in pedestrian images provide valuable
information in identification. However, if they are small
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Fig. 1. Salient region could be a body part or a carrying
accessory. Some salient regions of pedestrians are highlighted
with yellow dashed boundaries.

in size, saliency information is often overwhelmed by
other features when computing similarities of images.
In this paper, saliency means regions with attributes that
1) make a person distinctive against potential distractors,
and 2) are reliable in finding the same person across
camera views. In many cases, humans can easily recog-
nize matched pedestrian pairs because they have distinct
features. For example, in Figure 1, person p1 takes a
red bag, p2 dresses bright white skirt, p3 takes a blue
bag, and p4 carries a red folder in arm. These features
are discriminative in distinguishing one person from
others. Intuitively, if a body part is salient in one camera
view, it usually remains salient in another camera view.
Therefore, saliency also has view invariance.

Salient regions are not limited to body parts (such as
clothes and trousers), but also include accessories (such
as baggage, folders and umbrellas as shown in Figure
1), which are often considered as outliers and removed
in existing approaches. Our computation of saliency is
based on the comparison with images from a large scale
reference dataset rather than a small group of persons.
Therefore, it is quite stable in most circumstances.

We observe that images of the same person captured
from different camera views have some invariance prop-
erty in vertical direction on their spatial distributions of
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Fig. 2. Illustration of saliency matching with examples. Saliency
map of each pedestrian image is shown. Best viewed in color.

saliency, like pair (a1, a2) in Figure 2. Since the person in
image (a1) shows saliency in her dress while others (a3)-
(a6) are salient in blouses, they can be well distinguished
simply from the spatial distributions of saliency. There-
fore, not only the visual features from salient regions
are discriminative, the spatial distributions of person
saliency also provide useful information in person re-
identification. Such information can be encoded into
patch matching. If two patches from two images of the
same person are matched, they are expected to have
similar saliency values; otherwise such matching brings
penalty on saliency matching. In the second row in
Figure 2, the query image (b1) shows a similar saliency
distribution as those of gallery images. In this case,
visual similarity needs to be considered. This motivates
us to relate saliency matching penalty to the visual
similarity of two matched patches.

2 OUR APPROACH

Although saliency plays an important role in person
re-identification, it has not been well explored in lit-
erature. In this paper, a novel framework of person
saliency learning and matching is proposed for person
re-identification. Our major contributions can be sum-
marized from the following aspects.

We propose a way of estimating what is salient to
humans. It is estimated from the number of trials that
a human subject recognizes a query image from a can-
didate pool only based on a local region. It shows that
most pedestrian images can be matched by humans from
local salient regions without looking at whole images.
The saliency estimated from user study is compared
with the result of our saliency computation model. Com-
pared with general image saliency detection methods
[8], [16], our proposed saliency computation has much
stronger correlation with human perception in person
re-identification.

A computation model is proposed to estimate the
probabilistic saliency map. Different from general image
saliency detection methods, it is specially designed for
person re-identification, and has the following proper-
ties. 1) It is robust to changes of viewpoints, poses and
articulation. 2) Distinct patches are considered as salient

only when they are matched and distinct in both camera
views. 3) person saliency itself is a useful descriptor for
pedestrian matching. For example, a person only with
salient upper body and a person only with salient lower
body must be different identities.

We formulate person re-identification as a saliency
matching problem. Dense correspondences between
patches are established by patch matching based on
visual similarity, and matching patches with inconsistent
saliency brings cost. Images of the same person are
recognized by minimizing the saliency matching cost,
which depends on both locations and visual similarity
of matched patches.

Saliency matching and patch matching are tightly
integrated into a unified structural RankSVM frame-
work. Structural RankSVM has good training efficiency
given a large number of rank constraints in person
re-identification. Our approach transforms the original
high-dimensional visual feature space to a 80 times
lower dimensional saliency feature space to further im-
prove training efficiency and also avoid overfitting.

3 RELATED WORKS

Existing works on person re-identification mainly focus
on two aspects: 1) features and representations, and 2)
distance metric. A review can be found in [17].

3.1 Features and Representations
A lot of research efforts [5], [12], [13], [15], [45]–[47], [59],
[62], [65], [66], [68], [70] have been devoted to exploiting
discriminative features in person re-identification. Wang
et al. [59] proposed shape and appearance context to
model the spatial distributions of appearance relative
to body parts in order to extract discriminative features
robust to misalignment. Farenzena et al. [15] proposed
the Symmetry-Driven Accumulation of Local Features
(SDALF) by exploiting the symmetry property in pedes-
trian images to handle view variation. Bak et al. [5], Xu
et al. [62] and Cheng et al. [12], [13] applied human part
models and pictorial structures to cope with pose vari-
ations by establishing the spatial correspondence. Wei
et al. [60] proposed a cascade ranking model to utilize
human gait information. Ma et al. [45]–[47] developed
the BiCov descriptor based on the Gabor filters and
the covariance descriptor to handle illumination change
and background variation. Zheng et al. [68], [70] used
the contextual visual cues from surrounding people to
enrich human signatures. Information on salient regions
exploited in our work can be integrated with many
of these feature designs by putting more weights on
features from salient regions.

Features vary in their usefulness in person matching,
and some works have been done on feature selection and
importance learning. Gray et al. [19] used AdaBoost to se-
lect features. Schwartz [54] assigned weights to features
with Partial Least Squares (PLS). Liu et al. [41] developed
an unsupervised approach to learn bottom-up feature
importance, and adaptively weight features. Instead of
globally weighting features across all the pedestrian
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images, our approach adaptively weights features based
on individual person pairs to be matched, since different
persons have different salient regions.

Visual features suffer from a range of variations across
camera views. Feature transforms are learned to im-
prove the invariance to cross-view transforms. Prosser
et al. [52] learned the Cumulative Brightness Transfer
Function to handle color transforms. Avraham et al. [3],
[4] learned both implicit and explicit transforms of vi-
sual features. Martinel et al. [48] modeled the feature
transforms by classifying feasible and infeasible warp
functions. Li et al. [35] proposed a cross-view projective
dictionary learning approach to learn view-invariant fea-
tures. Rather than learning feature transforms for spe-
cific camera view settings, our approach flexibly handles
the cross-view variations by performing a constrained
patch matching technique, which can be generalize to
any disjoint camera-view transition. Recently, a similar
work [72] employed patch matching to handle proposed
partial person re-identification problem.

Some works explored higher level features [30]–[32],
[43], [56], [67] to assist person re-identification. Vaquero
et al. [56] first introduced mid-level facial attributes
in human recognition. Layne et al. [30], [31] proposed
15 human attributes for person re-identification. Song
et al. [43] used human attributes to match persons with
Bayesian decision. Shi et al. [55] learned semantic rep-
resentation by transferring attribute information from
fashion photography datasets. Li et al. [37] and Ahmed
et al. [2] designed deep convolutional neural networks
to learn deep features. Saliency distribution can also be
considered as one kind of high-level features.

3.2 Rank and Metric Learning
Given a query image, an image of the same person
is expected to have a high rank on the candidate list
after matching. Prosser et al. [53] formulated person re-
identification as a ranking problem, and learned global
feature weights with RankSVM. Wu et al. [61] intro-
duced rank-loss optimization to improve accuracy in re-
identification. Loy et al. [44] exploited unlabeled gallery
data to propagate labels to query instances with a man-
ifold ranking model. Liu et al. [42] presented a man-in-
loop method to allow users to quickly refine ranking
result. In this paper, we employ structural RankSVM
[26], which considers ranking difference.

Many research works [14], [21], [22], [28], [36], [38],
[41], [50], [51], [69] focused on optimizing distance met-
rics for matching persons. Zheng et al. [69] learned the
metric by maximizing the likelihood of true matches
to have a smaller distance than that of a wrongly
matched pair. Dikmen et al. [14] proposed to learn a
Mahalanobis distance that is optimal for k-nearest neigh-
bor classification by using a maximum margin formu-
lation. Mignon and Jurie [50] learned a joint projection
for dimension reduction, satisfying distance constraints
added by image pairs. Li et al. [38] proposed to learn a
decision function for matching, which jointly models a
distance metric and a locally adaptive thresholding rule.
Pedagadi et al. [51] employed Local Fisher Discriminant

Analysis to learn a distance metric. Zheng et al. [71]
proposed a transfered local relative distance compari-
son model to mine and transfer information from the
open-world non-target pedestrian images. Liao et al. [39]
learned a discriminative subspace and a distance metric
by cross-view quadratic discriminant analysis. The above
learned metrics are based on subtraction of misaligned
feature vectors, which causes significant information loss
and errors. Our approach handles feature misalignment
through patch matching.

3.3 Person saliency vs. General Image saliency
General image saliency has been well studied [16],
[23], [24], [27], [34], [64]. In the context of person re-
identification, person saliency is different from general
image saliency in the way of drawing visual atten-
tion. With the aim to improve the performance of re-
identification, person saliency is considered as visual
patterns that distinguish a person from others, while
general saliency draws visual attention within a single
image to capture salient foreground objects from back-
ground.

4 METHOD OVERVIEW
The diagram of the proposed saliency learning and
matching framework is shown in Figure 3. Section 5
conducts a user study to estimate person saliency based
on human perception in the person re-identification task.
We investigate the discriminative power of different
body regions in identifying a target person from a gallery
set. The saliency of each local region of a query image
is quantitatively estimated by measuring the averaged
number of trials that human labelers find the target
person only based on that region of the query image.
An illustration is shown in Figure 3 (a). The red and
green bounding boxes indicate incorrect and correct
targets chosen by the labeler from the gallery. The red
skirt has higher saliency and causes fewer failure trials
compared with the arm. Our result shows that subjects
can recognize a query person only based on a small
salient part without looking at the whole image. Salient
regions vary on different persons.

An unsupervised approach for saliency learning is
proposed in Section 6 and illustrated in Figure 3 (b).
With constrained patch matching, each patch finds its
matched neighbors from a reference set of training im-
ages. K-Nearest Neighbor and One-Class SVM models
are employed to learn a saliency measure suitable for
person re-identification. Our experimental results show
both qualitative and quantitative evaluation of the cor-
relation between the learned saliency and human per-
ception. With obtained person saliency, matching image
pairs can be performed in unsupervised and supervised
ways as described in Section 6. For the unsupervised
manner, saliency is used to weight patch matching simi-
larity and penalize inconsistence of saliency distribution
across camera views, as shown by the blue lines in Figure
3 (c). For the supervised manner, person matching is
formulated as a saliency matching problem, which con-
siders four types of saliency matching cases, as shown
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Fig. 3. Diagram of our novel framework of person saliency learning and matching for person re-identification.

Fig. 4. Interface of user study to obtain person saliency.

in the table in Figure 3 (c). The matching cost is a linear
function of patch matching similarities, which is learned
with Structural RankSVM. The learned saliency match-
ing function is used to measure similarities between
images.

5 SALIENCY FROM HUMAN PERCEPTION
We define person saliency in the context of person re-
identification and estimate it by user study.

Given an image, we apply superpixel segmentation
[1], and then manually merge superpixels that are coher-
ent in appearance. Superpixels with different semantic
meanings are not merged. For example, hair and jacket
may share similar appearance, but they are treated as
two parts. Only foreground superpixels are considered.
Note that applying superpixel segmentation and manual
merging are only for user study. Later in our proposed
saliency learning approach, the saliency region is auto-
matically estimated.

A segmented body part is randomly selected and pre-
sented to a labeler. Labelers are asked to perform part-
based re-identification task. Each part is shown multiple
times to different labelers. The user study results are
combined into a saliency value. In Figure 4, a body
part from a query image is revealed (on the left) at its
original spatial location in the image while other parts
are masked, and a list of 32 images randomly sampled

from the gallery set are also shown (on the right) to the
labeler. The true target (observed in a different camera
view from the query image) is among the sampled
images, but the order is randomly shuffled. In each trial,
the labeler is asked to select the most likely image from
the list based on visual perception. The labeler is allowed
to select for multiple times until the correct match is
found. In Figure 4, the red bounding boxes indicate
wrong selection and the green one indicates the correct
match found in the end. A part is considered as salient
if labelers try fewer times to found the target.

Denote the i-th revealed part by pi. Then the saliency
value of the revealed part is estimated as

score(pi) = exp(−
m2
pi

σ2
avg

) exp(−
s2
pi

σ2
std

). (1)

mpi and spi are the average and standard deviation
of number of trials over all the labelers. σavg and σstd
are bandwidth parameters. For the first term, smaller
mean number of trials indicate the revealed body part
is helpful to find the target person, and should have
a higher saliency score. Larger mean number of trials
lead to lower saliency score. In the second term, a
large standard deviation of number of trials means the
revealed body part cannot consistently help users to
identify target person. The larger the standard deviation,
smaller the second term is. Thus, they are combined.

The user study is conducted on 524 body parts of
100 images from camera view A of the VIPeR dataset
[18]. Some examples of the saliency maps obtained by
user study are shown in Figure 5. In order to investi-
gate whether salient regions exist in pedestrian images,
Figure 6 (left) shows the histogram on the numbers of
trials used to find the targets only based on the most
salient parts on query images. It shows that more than
half of the pedestrians can be recognized, if the labelers
only observe the most salient part of a query image. As
comparison, Figure 6 (right) plots the histogram on the
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Fig. 5. Examples of saliency obtained from user study. Each
body part obtains a saliency value. Saliency map is overlaid on
the gray-level image. The original color image is on the left.
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Fig. 6. Statistics on saliency user study. Left: Histogram on the
numbers of trials used to find the targets only based on the most
salient parts on query images. Right: Histogram on the numbers
of trials for all the parts.

numbers of trials for all the parts. It shows that most
other body parts are not salient enough. The correlation
between the user study saliency and that obtained with
the proposed computation model will be validated in
experiments in Section 8.

6 PERSON SALIENCY LEARNING

Groundtruth person saliency costs large amount of hu-
man labors, and it usually becomes different in changed
camera settings. Thus, we propose to automatically learn
person saliency in an unsupervised manner. Dense cor-
respondence between images is first built with patch
matching, and two alternative approaches (K-nearest
neighbor and One-Class SVM) are proposed to estimate
person saliency without using identity labels or user
study saliency.

6.1 Feature Extraction
Each image is densely divided into a grid M × N of
overlapping local patches, and each patch is represented
by a feature vector concatenating color histograms and
SIFT features computed around its local region.
Dense Color Histogram. A color histogram in LAB color
space is extracted from each patch. LAB color histograms
are computed on multiple downsampled scales and L2
normalized.
Dense SIFT. To handle viewpoint and illumination
change, SIFT descriptor is used as complementary to
color histograms. We divide each patch into 4 × 4 cells,
quantize the orientations of local gradients into 8 bins,
and obtain a 4 × 4 × 8 = 128 dimentional SIFT feature
vector, which is also L2 normalized.

In our experiment, scales of pedestrian images range
from 128 × 48 to 160 × 60. Patches of size 10× 10 pixels
are sampled on a dense grid with a step size 4. 32-bin
color histograms are computed in each LAB channels,
and in each channel, 3 levels of downsampling are used
with scaling factors 0.5, 0.75 and 1. SIFT features are also
extracted in 3 color channels and thus produces a 128×3
feature vector for each patch. In a summary, each patch
is finally represented with a discriminative descriptor
vector of length 32 × 3 × 3 + 128 × 3 = 672. We denote
the combined Color-SIFT feature vector as DenseFeats.

6.2 Dense Correspondence
To deal with misalignment, we build dense correspon-
dence between images by adjacency constrained search.
DenseFeats features of a pedestrian image is repre-
sented as XA,u = {xA,upi | pi = 1 . . . ,MN}, where (A, u)
denotes the u-th image in camera A, pi denotes the
position of the patch in this image, and xA,upi is the dense
Color-SIFT feature vector of the patch. A natural baseline
is to compute image similarity with concatenated patch
features,

simDenseFeats(X
A,u, XB,v) =

∑
pi

s(xA,upi ,xB,vpi ), (2)

where

s(xA,upi ,xB,vpi ) = exp(−
d(xA,upi ,xB,vpi )2

2σ2
), (3)

is the similarity between two patch features, d(·) is the
Euclidean distance, and σ is a bandwidth parameter.

Adjacency Searching. simDenseFeats does not consider
misalignment. We propose adjacency constrained search-
ing to allow flexible matching among patches in image
pairs. When the patches are matched with those from
another image, patches in the same row have the same
search set, denoted as

S(xA,upi , XB,v) = {xB,vp̂i
| Iy(p̂i) = Iy(pi)}, (4)

where Iy(pi) indicate the row index of position pi.
S(xA,um,n, X

B,v) restricts the search set in XB,v within the
Iy(pi)-th row. However, bounding boxes produced by a
human detector are not always well aligned, and also
uncontrolled human pose variations exist. We relax the
horizontal constraint to have a larger search range:

Ŝ(xA,upi , XB,v) = {xB,vp̂i
| Iy(p̂i) ∈ N (Iy(pi))}, (5)

where

N (Iy(pi)) =
{

max
(
0, Iy(pi)− l

)
, . . . ,

Iy(pi), . . . ,min
(
Iy(pi) + l,M

)}
, (6)

and l defines the size of the relaxed adjacent vertical
space. Less relaxed search space cannot well tolerate
the spatial variation while more relaxed search space
increases the chance of matching different body parts.
l = 2 is chosen in our setting.

We perform the nearest neighbor search for each xA,upi

in its search set Ŝ(xA,upi , XB,v) in XB,v,

p′i = argmin
p̂i

d(xA,upi ,xB,vp̂i
), (7)

s.t. xB,vp̂i
∈ Ŝ(xA,upi , XB,v),
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Thus, dense correspondences Pu,v = {(pi, p′i)} between
patches in image XA,u and XB,v are obtained by the
adjacency searching. We denote the method of only
using patch matching without saliency information as
PatMatch, and the image similarity is expressed as

simPatMatch(XA,u, XB,v) =
∑

(pi,p
′
i)∈P

u,v

s(xA,upi ,xB,v
p′i

), (8)

where s(xA,upi ,xB,vp′i
) is defined in Eq. (3).

To estimate person saliency, we randomly sample Nr
images from the training set as a reference set R without
using the identity labels. For each patch xA,upi , a nearest
neighbor is found in every reference image, and these
nearest neighbors are collected to build a reference patch
set Xref (xA,upi ) for each patch,

Xref (xA,upi ) = {xB,vp′i
| XB,v ∈ R, (pi, p

′
i) ∈ Pu,v}. (9)

The reference set uses training images in different cam-
era because the learned saliency serves for person re-
identification, which is to match pedestrians across dif-
ferent camera views. Using reference images in different
camera fits such cross-view setting. We use the reference
patch set as opposed to all patches because saliency
measures the ability of a patch to distinguish identities
rather than different patches from the same person. A
salient query patch could have many similar patches in
one reference image if the corresponding salient region
is large, and if all these similar patches are used in
computing saliency in Eq. (10), then this salient query
patch will have a low saliency score. So we constrain
that one reference image can only contribute one patch.

6.3 Unsupervised saliency Learning
6.3.1 K-Nearest Neighbor (KNN) saliency
Byers et al. [9] found the KNN distances can be used for
clutter removal. Since person saliency detection shares a
similar goal as abnormality detection, which also mea-
sures how unusual a data sample is. KNN should also
be viable in finding person saliency. By searching for
the K-nearest neighbors of a test patch in the set of
matched patches obtained with dense correspondence,
KNN is adapted to the re-identification problem. The
saliency score of the test patch is computed with the
KNN distance.

The distance between xA,upi and its k-th nearest neigh-
bor in Xref (xA,upi ) is used as the saliency score:

scoreknn(xA,upi ) = dk(Xref (xA,upi )), (10)

where dk denotes the distance of the k-th nearest
neighbor. Salient patches only find a limited number
(k = αkNr) of visually similar neighbors, and then
scoreknn(xA,ppi ) is expected to be large. 0 < αk < 1 is
a proportion parameter reflecting our expectation on the
statistical distribution of salient patches.
Choosing k. The goal of saliency detection for person
re-identification is to identify parts with unique appear-
ance. We set αk = 0.5 with an empirical assumption
that a patch is considered to have unique appearance
such that more than half of the people in the reference

set do not share similar patches with it. Nr reference
images are randomly sampled from training set in our
experiments. Enlarging the reference dataset will not
deteriorate saliency detection, because saliency is de-
fined in the statistical sense. It is robust as long as the
distribution of the reference dataset well reflects the test
scenario.
6.3.2 One-Class SVM saliency
One-class SVM [20] has been widely used for outlier
detection. The basic idea is to use a hypersphere to
describe data in the feature space and put most of
the data into the hypersphere. It is formulated as an
objective function:

min
R∈R,ξ∈Rl,c∈F

R2 +
1

vl

∑
i

ξi, (11)

s.t.‖Φ(xi)− c‖2 ≤ R2 + ξi, ∀i ∈ {1, ...l} : ξi ≥ 0,

where Φ(xi) is the multi-dimensional feature vector of i-
th training sample, l is the number of training samples,
R and c are the radius and center of the hypersphere
learned by One-Class SVM, and v ∈ [0, 1] is a trade-off
hyperparameter. The goal is to keep the hypersphere as
small as possible and include most of the training data.
It can be solved in a dual form by QP optimization [11].
The decision function is:

f(x) = R2 − ‖Φ(x)− c‖2, (12)

‖Φ(x)− c‖2 = k(x,x)− 2
∑
i

αik(xi,x) +
∑
i,j

αiαjk(xi,xj),

where αi and αj are the parameters for each constraint
in the dual problem. We use the radius basis function
(RBF) K(x,y) = exp{−‖x − y‖2/2σ2} as kernel to deal
with high-dimensional, non-linear, and multi-mode dis-
tributions. As shown in [11], the decision function f(x)
of kernel One-class SVM can well capture the density
and modality of the feature distribution. Saliency score
is defined in terms of kernel One-class SVM decision
function:

scoreocsvm(xA,upi ) = d(xA,upi ,x∗), (13)
x∗ = argmax

x∈Xref (x
A,u
pi

)

f(x),

where x∗ is the patch with the highest density (we say
density center). Then the ocsvm score is the distance
between the current patch and the density center, and
this is reasonable because it describe how far away from
the majority (density center). Our experiments show
very similar results in person re-identification with both
saliency detection methods. scoreocsvm performs slightly
better than scoreknn in some circumstances. The proba-
bility of xA,um,n being a salient patch is

p(lA,upi = 1 | xA,upi ) = 1− exp(−scoreopt(xA,upi )2/σ2
0), (14)

where opt ∈ {knn, ocsvm}. The person saliency learning
is summarized in Algorithm 1.

7 SALIENCY MATCHING
One of our main contributions is to match human images
based on their saliency probability maps. It is based on
our observation that people in different camera views
show consistency in saliency probability maps, as shown



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2544310, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Algorithm 1 Person saliency learning.

Input: image XA,u and a reference image set R =
{XB,v, v = 1, . . . , Nr}

Output: saliency probability map p(lA,upi = 1 | xA,upi )
1: for each patch xA,upi ∈ X do
2: compute Xref (xA,upi ) with Eq. (9)
3: compute scoreopt(xA,upi ), opt ∈ {knn, ocsvm} with

Eq. (10) or Eq. (13)
4: compute p(lA,upi = 1 | xA,upi ) with Eq. (14)
5: end for

in Figure 2. Since matching is applied to arbitrary image
pairs, we omit the image index in notation for concise
clarity, i.e. change XA,u to XA, XB,v to XB , xA,um,n

to xApi and xB,vi,j to xBp′i
. pi is the patch index in image

XA and p′i is the corresponding matched patch index
in image XB produced by dense correspondence. We
denote the dense correspondence between XA and XB

as P = {(pi, p′i)}i=1,...,MN .

7.1 Saliency Weighted Matching
A saliency weighted matching scheme is designed to
incorporate saliency information. We denote this method
as saliency guided dense correspondence (SDC), as il-
lustrated in Figure 3(c1), and the similarity between two
images is computed as

simSDCopt =
∑

(pi,p
′
i)∈P

scoreopt(xApi) · s(x
A
pi ,x

B
p′i

) · scoreopt(xBp′i)

αsdc + |scoreopt(xApi)− scoreopt(xBp′i
)|

,

(15)

where αsdc is a parameter representing a base penalty.
Intuitively, large saliency scores in both matched patches
are expected to enhance the similarity score of matched
patches. In another aspect, images of the same person
would be more likely to have similar saliency distri-
butions than those of different persons, so the differ-
ence in saliency score can be used as a penalty to the
similarity score. We set αsdc = 1 in experiments. The
matching weights are inversely proportional to αsdc +
|scoreopt(xApi)− scoreopt(xBp′i)|. If saliency scores of a pair
of patches are not consistent, the matching weights will
be low. The weights are manually designed without
using identity information. In next section, we address
how the weights of saliency matching can be learned in
a supervised approach with identity labels.

7.2 Unified saliency Matching
Previous saliency scores have continuous values, which
can be understood as the probability of a patch being
salient or non-salient. From this point of view, we can
regard patch saliency as binary hidden variables. To for-
mulate the person re-identification as a saliency match-
ing problem in a probabilistic way, we introduce hidden
variables LA = {lApi | l

A
pi ∈ {0, 1}}pi , L

B = {lBpi | l
B
pi ∈

{0, 1}}pi to consider four different saliency matching
cases separately, i.e. salient/salient (lApi = 1, lBp′i

= 1),
salient/non-salient (lApi = 1, lBp′i

= 0), non-salient/salient
(lApi = 0, lBp′i

= 1), and non-sailient/non-salient (lApi =

0, lBp′i
= 0). LA, LB do not need to be inferred, and they

are marginalized later in Eq. (18). The saliency matching
score in Eq. (19) can be computed from continuous
saliency probabilities, estimated in Algorithm 1.

If all the saliency labels are known, we can perform
person matching by computing the saliency matching
score, and each matching case should contribute to the
matching score fz differently,

fz(X
A, XB , LA, LB ;P,Z) = (16)∑
(pi,p

′
i)∈P

{
zpi,1l

A
pi l

B
p′i

+ zpi,2l
A
pi(1− l

B
p′i

)

+ zpi,3(1− lApi)l
B
p′i

+ zpi,4(1− lApi)(1− l
B
p′i

)
}
,

where Z = {zpi,k}i=1,...,MN, k=1,2,3,4 are the matching
scores for four different saliency matching results. For
example, if a salient patch is matched with a non-salient
patch, its contribution could be negative. zpi,k is not a
constant for all the patch pairs. Instead, it is modeled
as a linear function of visual similarity of patch pairs.
It depends on the spatial location pi. For example, the
score of matching patches on the background should
be different than those on legs. zpi,k also depends on
the visual similarity between patches xApi and patch
xBp′i

. Instead of directly using the Euclidean distance
d(xApi ,x

B
p′i

), we convert it to similarity as in Eq. (3)
to reduce the side effect in summation of very large
distances in incorrect matching, caused by misalignment,
occlusion, or background clutters.

Therefore, we define the matching score zpi,k as a
linear function of the similarity as follows,

zpi,k = αpi,k · s(xApi ,x
B
p′i

) + βpi,k. (17)

Thus Eq. (16) considers both saliency matching and
visual similarity. Note that zpi,k are not parameters.
αpi,k and βpi,k are weighting parameters, which are
independent on image pairs. Once learned, αpi,k and
βpi,k are used in testing for any pairs without re-learning.

Since the saliency labels lApi and lBp′i
in Eq. (16) are hid-

den variables, they can be marginalized by computing
the expectation of the saliency matching score as

f∗(XA, XB ;P,Z)

=
∑

LA,LB

fz(X
A, XB , LA, LB ;P,Z)p(LA, LB |XA, XB)

=
∑

(pi,p
′
i)∈P

4∑
k=1

[
αpi,k · s(x

A
pi ,x

B
p′i

) + βpi,k
]
cpi,k(xApi ,x

B
p′i

), (18)

where parameters αpi,k weight both visual similarities
s(xApi ,x

B
p′i

) and saliency similarities cpi,k(xApi ,x
B
p′i

), pa-
rameters βpi,k weight only saliency similarities. Besides
visual similarity, saliency similarity itself is also useful
in re-identification. For example, even if visual similarity
is low (i.e. s(xApi ,x

B
p′i

) ≈ 0), but matched patches are
salient. Then βpi,k · cpi,k(xApi ,x

B
p′i

) is large and provides
evidence of the same identitiy. That is why Figure 2
and the fifth paragraph of Section 1 show that even
without considering visual similarity, the spatial distri-
bution of saliency itself has some power on matching
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identity. cpi,k(xApi ,x
B
p′i

) depends on saliency probabilities
P (lApi = 1 | xApi) and P (lBp′i

= 1 | xBp′i) given in Eq. (14),

cpi,k(xApi ,x
B
p′i

) (19)

=


p(lApi = 1 | xApi) · p(l

B
p′i

= 1 | xBp′i), k = 1,
p(lApi = 1 | xApi) · p(l

B
p′i

= 0 | xBp′i), k = 2,
p(lApi = 0 | xApi) · p(l

B
p′i

= 1 | xBp′i), k = 3,
p(lApi = 0 | xApi) · p(l

B
p′i

= 0 | xBp′i), k = 4.

To better formulate this learning problem, we extract out
all the weighting parameters in Eq. (18) as w, and have

f∗(XA, XB ;P,Z) = wTΦ(XA, XB ;P ) (20)

=
∑

(pi,p′i)∈P

wT
piφ(xApi ,x

B
p′i

),

where

Φ(XA, XB ;P ) = [φ(xAp1 ,x
B
p′1

)T, . . . , φ(xApMN
,xBp′MN

)T]T,

w = [wp1 , . . . ,wpMN
]T,

wpi = [{αpi,k}k=1,2,3,4, {βpi,k}k=1,2,3,4]. (21)

Φ(XA, XB ;P ) is the feature map describing the match-
ing between XA and XB . For each patch pi, the matching
feature φ(xApi ,x

B
p′i

) is an eight dimensional vector:

φ(xApi ,x
B
p′i

) = (22)

s(xApi ,x
B
p′i

) · p(lApi = 1 | xApi) · p(l
B
p′i

= 1 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 1 | xApi) · p(l
B
p′i

= 0 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 0 | xApi) · p(l
B
p′i

= 1 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 0 | xApi) · p(l
B
p′i

= 0 | xBp′i)
p(lApi = 1 | xApi) · p(l

B
p′i

= 1 | xBp′i)
p(lApi = 1 | xApi) · p(l

B
p′i

= 0 | xBp′i)
p(lApi = 0 | xApi) · p(l

B
p′i

= 1 | xBp′i)
p(lApi = 0 | xApi) · p(l

B
p′i

= 0 | xBp′i)


.

As shown in Eq. (22), the pairwise feature map
Φ(XA, XB ;P ) combines the saliency probability map
with appearance matching similarities. There are three
advantages of matching with person saliency : (1) the
person saliency probability distribution is more invariant
than other features in different camera views; (2) because
the saliency probability map is built based on dense cor-
respondence, it inherits the property of tolerating spatial
variation; and (3) it can be weighted by visual similarity
to improve the performance of person re-identification.
We will present the details in following sections by
formulating the person re-identification problem with
Φ(XA, XB ;P ) in the structural RankSVM framework.

7.3 Ranking by Partial Order
We cast person re-identification as a ranking problem for
supervised training. The ranking problem will be solved
by finding an optimal partial order, mathematically de-
fined in Eq. (23)(24)(27). Given a dataset of pedestrian
images, DA = {XA,u, idA,u}Uu=1 from camera view A
and DB = {XB,v, idB,v}Vv=1 from camera view B, where
XA,u is the u-th image, idA,u is its identity label, and U
is the total number of images in DA. Similar notations

apply for variables of camera view B. Each image XA,u

has its relevant images (same identity) and irrelevant
images (different identities) in dataset DB . Our goal is
to learn the weight parameters w that order relevant
gallery images before irrelevant ones. For the image
XA,u, we rank the relevant images before irrelevant ones,
but no information of the orders within relevant images
or irrelevant ones is provided. The partial order yA,u is
denoted as,

yA,u = {yA,uv,v′}, yA,uv,v′ =

{
+1 XB,v ≺ XB,v′ ,
−1 XB,v � XB,v′ ,

(23)

where XB,v ≺ XB,v′ (XB,v � XB,v′ ) represents that
XB,v is ranked before (after) XB,v′ in partial order yA,u.

The partial order feature [25], [49] is appropriate for
our goal and can encode the difference between relevant
pairs and irrelevant pairs with only partial orders. The
partial order feature for image XA,u is formulated as,

Ψpo(X
A,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1) =∑∑

XB,v∈S+

XA,u

XB,v′∈S−
XA,u

yA,uv,v′
Φ(XA,u, XB,v;Pu,v)− Φ(XA,u, XB,v′ ;Pu,v

′
)

|S+
XA,u | · |S−XA,u |

,

(24)
S+
XA,u = {XB,v | idB,v = idA,u}, (25)

S−
XA,u = {XB,v | idB,v 6= idA,u}, (26)

where {Pu,v}Vv=1 are the dense correspondences between
image XA,u and every gallery image XB,v, S+

XA,u is
relevant image set of XA,u, S−

XA,u is irrelevant image
set, Φ(XA,u, XB,v;Pu,v) is the feature map defined in
Eq. (21), and the difference vector of two feature maps
Φ(XA,u, XB,v;Pu,v) − Φ(XA,u, XB,v′ ;Pu,v

′
) is added if

XB,v ≺ XB,v′ or subtracted otherwise.
A partial order may correspond to multiple rankings.

Our task is to find a good ranking satisfying the optimal
partial order yA,u∗ that maximizes the following score
function,

yA,u∗ = argmax
yA,u∈YA,u

wTΨpo(X
A,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1),

(27)

where YA,u is the space consisting of all the pos-
sible partial orders. As discussed in [25], [63], good
ranking can be obtained by sorting gallery images by
{wTΦ(XA,u, XB,v;Pu,v)}v in a descending order. The
remaining problem is how to learn w. With an optimized
w∗, we denote the unified saliency matching similarity
as

simSalMatchopt(X
A, XB) = wT

∗Φ(XA, XB ;P ), (28)

where opt ∈ {knn, ocsvm}.

7.4 Structural RankSVM Training
We employ structural SVM to learn the weighting pa-
rameters w. Different than many previous SVM-based
approaches [10], [53] doing optimization over pairwise
differences, structural SVM optimizes over ranking dif-
ferences and can incorporate non-linear multivariate loss
functions into global optimization in SVM training.
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Objective function. Our goal is to learn a linear model
and the training is based on n-slack structural SVM [26].
The objective function is as follows,

min
w,ξ

1

2
‖w‖2 + C

U∑
u=1

ξu, (29)

s.t . wTδΨpo(X
A,u,yA,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

≥ ∆(yA,u, ŷA,u)− ξu,
∀ŷA,u ∈ YA,u�yA,u, ξu ≥ 0, for u = 1, . . . , U,

where δΨpo is defined as

δΨpo(X
A,u,yA,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

= Ψpo(X
A,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

−Ψpo(X
A,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1), (30)

w is the weight vector, C is a parameter to balance
between margin and training error, yA,u is a correct par-
tial order that ranks all correct matches before incorrect
matches, and ŷA,u is an incorrect partial order that vio-
lates some of the pairwise relations, e.g. a correct match is
ranked after an incorrect match in ŷA,u. The constraints
in Eq. (29) force the discriminant score of correct partial
order yA,u to be larger than that of incorrect one ŷA,u

by a margin, which is determined by a loss function
∆(yA,u, ŷA,u) and a slack variable ξu.

AUC loss function. Many loss functions can be ap-
plied in structural SVM. In person re-identification, we
choose the ROC Area loss, which is also known as
Area Under Curve (AUC) loss. It is computed from the
number of swapped pairs,

Nswap = {(v, v′) : XB,v ≺ XB,v′ and (31)

wTΦ(XA,u, XB,v;Pu,v) < wTΦ(XA,u, XB,v′ ;Pu,v
′
)},

i.e. the number of pairs of samples that are not ranked
in a correct order. In the case of partial order ranking,
the loss function is

∆(yA,u, ŷA,u) = |Nswap|/|S+
XA,u | · |S−XA,u |, (32)

=
∑
v,v′

(1− ŷA,uv,v′)/(2 · |S
+
XA,u | · |S−XA,u |),

which is a non-linear, and multivariate function. We note
that there are an exponential number of constraints in Eq.
(29) due to the huge dimensionality of YA,u. Joachims
et al. [26] showed that the problem could be efficiently
solved by a cutting plane algorithm. In our problem,
the discriminative model is learned by the structural
RankSVM algorithm, and the weight vector w in our
model means how important it is for each term in
Eq. (22). In Eq. (22), {αpi,k}k=1,2,3,4 correspond to the
first four terms based on saliency matching with visual
similarity, and {βpi,k}k=1,2,3,4 correspond to the last four
terms only depending on saliency matching.

We visualize the learning result of w in Figure 7, and
find that the first four terms in Eq. (22) are heavily
weighted in the central part of human body which
implies the importance of saliency matching based on
visual similarity. {βpi,k}k=1,2 are not relevant to visual
similarity and they correspond to the two cases when
lApi = 1, i.e. the patches on the query images are salient.

Fig. 7. We take the absolute value of the learned weight
vector w, and reshape it to a 2-dimensional importance map for
different spatial locations. Eight importance maps correspond to
{αpi,k}k=1,2,3,4 and {βpi,k}k=1,2,3,4 in Eq. (18).

It is observed that their weighting maps are highlighted
on the upper body, which matches to our observation
that salient patches usually appear on the upper body.
{βpi,k}k=3,4 are not relevant to visual similarity either,
but they correspond to the cases when lApi = 0, i.e. the
patches on the query images are not salient. We find
that their weights are very low on the whole maps. It
means that non-salient patches on query images have
little effect on person re-identification if the contribution
of visual similarity is not considered.

7.5 Combination with existing approaches
Our approach is complementary to existing approaches.
In order to combine existing approaches with the match-
ing score in Eq. (20), the distance between two images
can be computed as follows:

disteSalMatchopt(X
A, XB) =

∑
i

µi · disti(XA, XB)

−µSal · simSalMatchopt
(XA, XB) (33)

where µi(> 0) is the weight for the ith similarity mea-
sure, µSal(> 0) the weight for unified saliency matching
similarity. disti corresponds to the dissimilarity mea-
sures using wHSV and MSCR in [15] or LADF [38]. In
the experiment, {µi} are chosen the same as in [15], [38].
µSal is fixed as 1. The testing procedures are summarized
in Algorithm 2.

Algorithm 2 Testing procedures of our approach.

Input: probe images {XA,u}u, gallery images {XB,v}v ,
and learned structural SVM weights w∗.

Output: matching similarities sim(XA,u, XB,v) or dis-
tances dist(XA,u, XB,v)

1: extract feature for each local patch in an image, as
described in Section 6.1.

2: build dense correspondences by adjacency search
with Eq. (7).

3: compute saliency probability for each patch p(lA,upi =
1 | xA,upi ) and p(lB,vpi = 1 | xB,vpi ) following the
Algorithm 1.

4: compute matching similarities / distances with one
of components in our approach, including Eq. (2),
Eq. (8), Eq. (15), Eq. (28), or Eq. (33).
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Fig. 8. Correlation between automatically estimated saliency by
different approaches (Itti [24], Hou [23], our KNN model and our
One-Class SVM (OCSVM) model) and estimation from human
perception. (a) Scatter plot of correlations over 100 images. (b)
Average correlations.

8 EXPERIMENTAL RESULTS
We evaluated our approach on four public datasets, i.e. VIPeR
[18], CUHK01 [36], i-LIDS [68], and 3DPeS [6]. All these
public datasets are very challenging datasets for person re-
identification because they contain significant variations on
viewpoints, poses, and illuminations, and their images are
with occlusions and background clutters. Qualitative results of
saliency learning were shown, and quantitative results were re-
ported in standard Cumulated Matching Characteristics (CMC)
curves [59].

8.1 Evaluation Protocol
Our experiments followed the evaluation protocol in [19] for
the VIPeR and CUHK01 datasets, and the protocol in [69] for
the i-LIDS and 3DPeS datasets. We randomly partitioned the
dataset into two even parts, 50% for training (donoted by Dtrn)
and 50% for testing (denoted by Dtst). Images from one view
were used as probe and those from another view as gallery.
Each probe image was matched with every image in gallery,
and the rank of correct match was obtained. We computed the
expectation of correct match at rank k as rank-k matching rate,
and the cumulated values of matching rate at all ranks was
recorded as one-trial CMC result. 10 trials of evaluation were
conducted to achieve stable statistics, and the expectation was
reported.

For training the structural SVM, all images with identity
labels in Dtrn were used. For person saliency learning, 100
images in both camera views were randomly sampled from
Dtrn as our reference set. In fact, there was overlap in image
data for training the structural SVM and person saliency
learning, because both tasks aimed to learn statistics of the
testing camera view setting, and Dtrn was a good training
set to approximate the testing data. Only 100 images from
Dtrn were used in person saliency learning to reduce the com-
putational cost in saliency estimation, and our experimental
results showed the reference set is large enough to obtain good
estimation.

8.2 Evaluation on saliency Learning
We investigated the correlation between the person saliency
estimated from human perception through user study and that
automatically estimated by computation models. The compu-
tation models included those design for general image saliency
(such as Itti [24] and Hou [23]) and our KNN and One-Class
SVM (OCSVM) models specially desgined for person saliency.
We computed the mean saliency score of each body part, and
the Pearson correlation between the automatically estimated
saliency and estimation from human perception. Results were
shown , the scatter map in Figure 8(a) showed our learned
saliency (KNN and OCSVM) had high positive correlations
with human perception over the 100 images in user study,

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Fig. 9. Examples of estimated saliency map (only body parts
are shown). (a) Groundtruth saliency for all parts are shown in
column (a). Many parts have low saliency scores (in blue color),
but a person may have multiple salient parts, e.g. in column (a)
at bottom right. (b) Pedestrian images. (c) and (d) are general
image saliency estimated by Itti [24] and Hou [23]. (e) and (f)
are person saliency estimated by KNN and OCSVM. Number on
top of each saliency map indicates the correlation with person
saliency estimated from user study.

(a) VIPeR dataset

(b) CUHK01 dataset
Fig. 10. Examples of saliency matching in our experiments.
It shows four types of saliency distributions: saliency in upper
body (in blue dashed box), saliency of taking bags (in green
dashed box), saliency of lower body (in orange dashed box),
and saliency of stripes on human body (in red dashed box). Best
viewed in color.

while general image saliency (Itti and Hou) exhibited slight
negative correlations. Figure 8(b) showed averaged correla-
tions. Some compared examples were shown in Figure 9. The
approaches for general image saliency detection could separate
body parts from background. However, the identified body
parts might not be effective on recognizing identities.

More interesting results of saliency estimation were shown
in Figure 10(a)(b) both on the VIPeR dataset and the CUHK01
dataset. Qualitative results showed our saliency learning ap-
proach could well approximate human perception and cap-
tured important salient regions on human body.

We also quantitatively compared the effectiveness of the
saliency estimated from user study and our computation mod-
els in person re-identification. We regarded the 100 images
(of 100 different persons) with saliency estimated from user
study as the probe set for evaluation, and images of the
corresponding identities in another camera view were included
as the gallery set. Saliency weighted matching was adopted
in testing competing saliency estimation methods, including
general image saliency (Itti and Hou), our learned person
saliency (SDC knn and SDC ocsvm), and saliency estimated
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(b) +LADF [38]
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40.00% XQDA
27.63% SalMatch_knn
43.35% eSalMatch_knn_3

(c) +XQDA [39]

Fig. 11. CMC curves of different ensemble approaches on the
VIPeR dataset combining our approach SalMatch knn with (a)
SDALF, (b) LADF, and (c) XQDA.

Denotation Description of component combination in test
DenseFeats Matching with concatenated patch features
PatMatch Use patch matching to handle misalignment
SDC knn Saliency weighted matching (KNN saliency)

SalMatch fix Unified saliency matching (averaged silhouette as saliency)
SalMatch knn Unified saliency matching (KNN saliency)

eSalMatch knn 1 Combine SalMatch knn with SDALF [15]
eSalMatch knn 2 Combine SalMatch knn with LADF [38]
eSalMatch knn 3 Combine SalMatch knn with XQDA [39]

SDC ocsvm Saliency weighted matching (OCSVM saliency)
SalMatch ocsvm Unified saliency matching (OCSVM saliency)

eSalMatch ocsvm 1 Combine SalMatch ocsvm with SDALF [15]
eSalMatch ocsvm 2 Combine SalMatch ocsvm with LADF [38]

TABLE 1
Description of all the test settings in components evaluation.
Refer to evaluation results in Figure 13(a) and Figure 14(a).

from user study (SDC gt). CMCs were reported in Figure 12(a).
Results showed that the our learned person saliency could well
approximate the saliency estimated from user study in person
re-identification, while general image saliency significantly
degraded the re-identification performance.

8.3 Component-wise Evaluation
The effectiveness of different components in our framework
was evaluated. Different settings of component combination
were described in Table 1 and their results were shown in
Figure 13(a) and Figure 14(a). DenseFeats in Eq. (2) performed
the worst since it directly matched misaligned patches. Pat-
Match in Eq. (8) performed better by handling misalignment.
SDC knn (SDC ocsvm) in Eq. (15) improved the performance
by incorporating the estimated KNN (One-class SVM) saliency
in patch matching. SalMatch knn (SalMatch ocsvm) in Eq. (28)
formulated person re-identification as saliency matching, and
learned matching weights in a supervised way. If we replaced
the KNN saliency in SalMatch knn by a fixed saliency map
obtained by averaging all the pedestrian silhouettes, denoted
by SalMatch fix in Table 1 of revised version, we found it had
worse matching rates than PatMatch, which did not utilize
saliency information at all, i.e. 19.21% vs. 20.76% at rank
1, and 37.5% vs. 41.77% at rank 5. The reason could be
that due to pose variation, some patches from human body
might be outside of the averaged silhouettes template and
their matching scores were weighted improperly. We com-
bined our approach with other methods, including SDALF,
LADF, and XQDA, and found it was complementary to each
of these methods, as shown in Figure 11. eSalMatch knn 1
(eSalMatch ocsvm 1) in Eq. (33) ensembled SDALF feature
matching scores in SalMatch knn (SalMatch ocsvm) matching
scores, and eSalMatch knn 2 (eSalMatch ocsvm 2) ensembled
LADF similarity measures. By combining with either of the two
methods, the fusion methods outperformed each component,
showing that our approach was complementary to other meth-
ods. One-class SVM saliency achieved slightly better than its
counterpart settings using KNN saliency.

8.4 Comparison with the state-of-the-art
Figure 13(b) showed significant improvement of SDC (unsu-
pervised) comparing with existing unsupervised methods, i.e.
SDALF [15], CPS [13], eBiCov [45], eLDFV [46], and Comb [29]

in the VIPeR dataset. For the CUHK01 dataset, we included the
DenseFeats, SDALF, and Comb in comparison, as shown in
Figure 14(b). In the evaluation of Comb, we used automatically
extracted silhouettes. Specifically, we applied human pose es-
timator to find human skeleton, and used a Gaussian kernel to
depict the silhouette. Among the methods in comparison, the
methods denoted with “method-DF” were implemented with
the source code provided by authors and using our features.
Histogram equalization was applied to these methods. For
other methods, their published results on public datasets were
directly used for comparison.

Figure 13(c) compared our supervised saliency matching
(SalMatch and eSalMatch) with several alternative super-
vised methods, including seven benchmarking distance metric
learning methods, i.e. PRDC [69], LMNN-R [14], KISSME [28],
LADF [38], PCCA [50], WFS [48], XQDA [39], attribute-based
PRDC (aPRDC) [41] and LF [51], a boosting approach (ELF)
[19], an ensemble of RankSVM (PRSVM) [53], and a sparse
ranking method (ISR) [40]. Also we compared with KISSME
and LFDA using our DenseFeats as baselines, which were
denoted by KISSME-DF and LFDA-DF. Our approach outper-
formed all these methods. They ignored the domain knowledge
on spatial variation caused by misalignment and poses as
mentioned in Section 3. Although aPRDC shared a similar
spirit as ours in finding unique and inherent appearance,
it weighted different types global features instead of local
patches. Its Rank-1 accuracy was only half of ours. ELF had
a low performance since it selected features in the original
feature space in which features of different classes were highly
correlated. RankSVM was similar to our method in formu-
lating person re-identification as ranking problem. Combined
approach eSalMatch was not evaluated in CUHK01 dataset
because the weights µi in Eq. (33) were not carefully tuned
for this dataset in SDALF method, and features of this dataset
were not available in combining method LADF [38]. Compared
with classical metric learning methods (CCA, LMNN, ITML,
KISSME, and LFDA) based on our DenseFeats features in
CUHK01 dataset, our approach also had generally superior
performance, as shown in Figure 14(c).

Also, as shown in Figure 12(b) our approach outperformed
other approaches at rank-1 matching rate on the i-LIDS dataset,
but did not obtain best performance after rank 5. This was
mainly because that images in the i-LIDS dataset present
frequent occlusion in lower body (people taking suitcases),
and there was no module in our approach handling heavy
occlusions. On the 3DPeS dataset, all images had very clean
background, and the main problem was the lighting varia-
tions. Histogram equalization could mostly handle the main
problem, and our approach outperformed other methods by a
large margin on this dataset in Figure 12(c).

In general, our approach had much better performance
because we adopted the discriminative saliency matching
strategy for pairwise matching, and the structural RankSVM
incorporated ranking loss in global optimization. This implied
the importance of exploiting person saliency matching and its
effectiveness in training structural RankSVM.

9 DISCUSSION
When salient region does not exist in image. If pedestrian
images have no salient regions (e.g. many pedestrians wear
similar uniforms), our saliency matching approach degenerates
to be patch matching in Eq. (8), which only depends on visual
similarity. However, it will not hurt the performance. Our
approach may also encounter difficulty when saliency regions
are occluded by other pedestrians or self-occluded due to
viewpoint change.
Salient / Non-salient Matching. The saliency label indicates
whether a patch is salient or not. Although, saliency is expected
to be invariant across camera views, such invariance is not
absolute. A salient patch may become non-salient in the other
camera view because of the change of lighting, viewpoint and
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Fig. 12. (a) CMC curves of saliency weighted matching (denoted by SDC) using different saliency on the VIPeR dataset; (b) CMC
curves of compared methods on the i-LIDS dataset; (c) CMC curves of compared methods on the 3DPeS dataset.
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Fig. 13. CMC curves on the VIPeR dataset. (a) Component-wise evaluation; (b) Comparison of unsupervised approaches; (c)
Comparison of supervised approaches.
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Fig. 14. CMC curves on the CUHK01 dataset. (a) Component-wise evaluation; (b) Comparison of unsupervised approaches; (c)
Comparison of supervised approaches.

pose change. There is no clear boundary between salient and
non-salient patches. In our approach, patch matching always
finds a nearest neighbor for each query patch based on visual
similarity from another image, even if they have different
saliency or these two images belong to different persons.
Therefore, a salient/non-salient match could provide evidence
that two images belonging to different identities. zpi,2 and
zpi,3 could be negative values. Figure 7 visualizes the absolute
values of αpi,k, βpi,k. The Appendix shows that βpi,2 = −βpi,1,
and βpi,3 = −βpi,4. So Eq. (16) allows a salient patch to be
matched with a non-salient patch. Since the reliability of such
match is lower, or it indicates different persons, zpi,2 and zpi,3
are expected to have lower values or even being negative.

Extension to Multi-shot Setting. In testing, our method can be
applied to multi-shot setting, since the match score computed
with our method can be easily applied to any multi-shot
setting. Our training stage can also be naturally applied to

multi-shot setting.
Evaluation on Auto-detected Pedestrian Images. In [37], when
our approach is evaluated on the CUHK03 dataset with pedes-
trian images automatically detected by DPM, and the perfor-
mance only drops 1.08% at rank-1 matching rate compared to
the result evaluated on manually cropped pedestrian images.

10 CONCLUSION AND FUTURE WORK
We propose a novel person saliency learning and matching
framework for person re-identification. Adjacency constrained
patch matching is applied to build dense correspondence be-
tween image pairs to handle misalignment caused by drastic
viewpoint change and pose variations. Then K-Nearest Neigh-
bor and One-class SVM approaches are proposed to estimate
saliency score for each image patch without using identity
labels. User study shows that the automatically estimated
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person saliency has good correlation with human perception.
It is more effective than general image saliency in person
re-identification. The estimated saliency can be incorporated
into patch matching in both the saliency weighted matching
scheme and the unified saliency matching framework, and
images of the same identity can be recognized by maximizing
the saliency matching score. Learning the weights in uni-
fied saliency matching framework is formulated as solving a
structural RankSVM problem. Experimental results valid the
effectiveness of our approach and show superior performances
on both the VIPeR and CUHK01 datasets.

The proposed framework can be extended by being in-
tegrated with other person re-identification approaches. For
example, DenseFeats used in this work can be replaced
by other more advanced descriptors of characterizing local
patches. Patch matching in our framework can be replaced
by more sophisticated feature matching techniques [33]. Since
saliency information is complementary to appearance, our
saliency matching result can be combined with the matching
results of existing approaches to boost their performance as
shown in Section 7.5.

11 APPENDIX
The learned weights by Structural RankSVM. Here we ex-
plain why the learned weights by structural RankSVM are
identical in βpi,1 and βpi,2, as shown in in Figure 7. The
structural SVM learning is based on the partial order feature
in Eq. (24), We find the numerator in Eq. (24) further de-
pends on the subtraction between saliency matching features
∆φ(xA,upi ,xB,v

p′i
,xB,v

′

p′′i
) = φ(xA,upi ,xB,v

p′i
)− φ(xA,upi ,xB,v

′

p′′i
)

Φ(XA,u, XB,v ;Pu,v)− Φ(XA,u, XB,v′ ;Pu,v
′
) =[

. . . ,
[
φ(xA,upi

,xB,v
p′i

)− φ(xA,upi
,xB,v

′

p′′i
)
]T
, . . .

]T
,

where Pu,v = {(pi, p′i)}i=1,...,MN are dense correspon-
dence between patches in matching XA,u and XB,v,
Pu,v

′
= {(pi, p′′i )}i=1,...,MN are dense correspondence

between patches in matching XA,u and XB,v′ , and the
saliency matching feature is defined in Eq. (22). Thus, we
have the fifth term in subtraction ∆φ(xA,upi ,xB,vp′i

,xB,v
′

p′′i
)

∆φ5(x
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and the sixth term
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We find the ∆φ5 and ∆φ6 are of the same value but
opposite signs, and they are the actual features used in
Structural SVM training. Weights βpi,1 and βpi,2 corre-
spond to the ∆φ5 and ∆φ6 in Ψpo. That is the reason
that the normalized weights in Figure 11 are identical in
the fifth and sixth terms, but please note that they are of
opposite signs.
Implementation settings. We use the Matlab interface of
SVMstruct [26], [57] to implement the structural RankSVM. All

Param. M N l σavg σstd σ αk v σ0 αsdc k Nr
Eq. 2 2 6 1 1 3 10 11 14 15 10 9
Val. 38 13 1 3 3 - 0.5 2 1 1 50 100

TABLE 2
Parameter settings. All parameters in our approach, associated

equations, and values in experiment are listed.

experiments are performed in Matlab 2012b on Windows x64
with 3.33 GHz Intel Xeon CPU, and 48 GB RAM. We show the
value settings for all the parameters in our approach in Table
2. These parameters are chosen empirically. Most of them were
chosen with reasonable values without being carefully tuned.
For example, σ0 and σsdc are set as 1. αk = 0.5 and k is decided
by αk ∗Nr , where Nr is the size of the reference set in Eq. (9).
So k is simply chosen as half of the reference set size. σ is set to
the average of patch disances in the training set. In One-class
SVM (Eq. (11)), c is automatically learned. These parameters
are kept the same across datasets.

REFERENCES

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk.
Slic superpixels compared to state-of-the-art superpixel methods.
IEEE Trans. on PAMI, 34:2274–2282, 2012.

[2] E. Ahmed, M. Jones, and T. Marks K. An improved deep learning
architecture for person re-identification. In CVPR, 2015.

[3] T. Avraham, I. Gurvich, M. Lindenbaum, and S. Markovitch.
Learning implicit transfer for person re-identification. In Work-
shops ECCV, pages 381–390. Springer, 2012.

[4] T. Avraham and M. Lindenbaum. Learning appearance transfer
for person re-identification. In Person Re-Identification, pages 231–
246. Springer, 2014.
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