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Abstract. Automatic face sketch synthesis has important applications
in law enforcement and digital entertainment. Although great progress
has been made in recent years, previous methods only work under well
controlled conditions and often fail when there are variations of lighting
and pose. In this paper, we propose a robust algorithm for synthesizing
a face sketch from a face photo taken under a different lighting condi-
tion and in a different pose than the training set. It synthesizes local
sketch patches using a multiscale Markov Random Field (MRF) model.
The robustness to lighting and pose variations is achieved in three steps.
Firstly, shape priors specific to facial components are introduced to re-
duce artifacts and distortions caused by variations of lighting and pose.
Secondly, new patch descriptors and metrics which are more robust to
lighting variations are used to find candidates of sketch patches given
a photo patch. Lastly, a smoothing term measuring both intensity com-
patibility and gradient compatibility is used to match neighboring sketch
patches on the MRF network more effectively. The proposed approach
significantly improves the performance of the state-of-the-art method.
Its effectiveness is shown through experiments on the CUHK face sketch
database and celebrity photos collected from the web.

1 Introduction

Automatic face sketch synthesis has drawn a great deal of attention in recent
years [1][2][3][4][5] due to its applications in law enforcement and digital enter-
tainment. For example, in law enforcement, it is useful to develop a system to
search photos from police mug-shot databases using a sketch drawing when the
photo of a suspect is not available. By transferring face photos to sketches, inter-
modality face recognition is made possible [2]. In the movie industry, artists can
save a great amount of time on drawing cartoon faces with the assistance of an
automatic sketch synthesis system. Such a system also provides an easy tool for
people to personalize their identities in the digital world, such as through the
MSN avatar.

Computer-based face sketch synthesis is different from line drawing gen-
eration [7][8]. Line drawings without texture are less expressive than sketches
with both contours and shading textures. Popular sketch synthesis methods are
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Fig. 1. Examples of synthesized sketches from web face photos. (a) Test photos; (b)
Sketches synthesized by [5]; (c) Sketches synthesized by [5] with luminance remapping
[6]; (d) Sketches synthesized by our method. Note that luminance remapping refers
to zero-mean unit-variance normalization of the luminance channel of all photos in
our implementation. This simple technique was found to be better than non-smooth
mappings in image style transformation, such as histogram matching/equalization [6].
The results are best viewed on screen.

mostly example-based, which generates a sketch with rich textures from an in-
put face photo based on a set of training face photo-sketch pairs [1][3][4][5].
These approaches can synthesize sketches of different styles by choosing training
sets of different styles. Tang and Wang [1] proposed to apply the eigentrans-
form globally to synthesize a sketch from a photo. However, such a global linear
model does not work well if the hair region is included, as the hair styles vary
significantly among different people. To overcome this limitation, Liu et al. [3]
proposed patch-based reconstruction. The drawback of this approach is that the
patches are synthesized independently, ignoring their spatial relationships, such
that some face structures cannot be well synthesized. In addition, face sketch
synthesis through linear combinations of training sketch patches causes the blur-
ring effect.

Following this line of work, a state-of-the-art approach using a multiscale
Markov random field (MRF) model has been proposed recently [5] and achieved
good performance under well controlled conditions (i.e. the testing face photo
has to be taken in the frontal pose and under a similar lighting condition as the
training set). This approach has some attractive features: (1) it can well syn-
thesize complicated face structures, such as hair, which are difficult for previous
methods [1]; (2) it significantly reduces artifacts, such as the blurring and alias-
ing effects, which commonly exist in the results of previous methods [1][3]. In
spite of the great improvement compared with previous methods, this approach
often fails if the testing face photo is taken in a different pose or under a dif-
ferent lighting condition (even if the lighting change is not dramatic) than the
training set. Some examples are shown in Fig. 1. Due to the variations of lighting
and pose, on the synthesized sketches by [5] some face structures are lost, some



Lighting and Pose Robust Face Sketch Synthesis 3

MRF OptimizationInput Photo
Training Set:Photo-Sketch Pairs Preprocessing Output SketchLocal EvidencePhoto to Sketch Patch MatchingPhoto to Photo Patch Matching

Neighboring CompatibilityIntensity CompatibilityGradient Compatibility
Prior InformationShape Prior

Fig. 2. Illustration of our framework.

dark regions are synthesized as hair, and there are a great deal of distortions
and artifacts. This is also a serious problem not addressed by other approaches
[1][3][4]. It limits their applications to real-world problems.

In face recognition studies, some preprocessing techniques such as histogram
equalization, and features such as Local Binary Patterns (LBP) [9], were used to
effectively recognize face photos under lighting variations. In the area of nonpho-
torealistic rendering, luminance remapping was introduced to normalize lighting
variations [6]. However, experiments show that simply borrowing these tech-
niques is not effective in face sketch synthesis. See examples in Fig. 1.

In this paper, we address this challenge: given a limited set of photo-sketch
pairs with frontal faces and normal lighting conditions, how to synthesize face
sketches for photos with faces in different poses (in the range of [−45o+45o]) and
under different lighting conditions. We adopt the multiscale MRF model whose
effectiveness has been shown in face sketch synthesis [5] and many low-level vision
problems [10]. In order to achieve the robustness to variations of lighting and
pose, some important improvements are made in the design of the MRF model
as summarized in Fig. 2. Firstly, a new term of shape priors specific to face
components are introduced in our MRF model. It effectively reduces distortions
and artifacts and restores lost structures as shown in Fig. 1. Secondly, patch
descriptors and metrics which are more robust to lighting variations are used
to find candidates of sketch patches given a photo patch. In addition to photo-
to-photo patch matching, which was commonly used in previous approaches
[3][5], our “local evidence” term also includes photo-to-sketch patch matching,
which improves the matching accuracy with the existence of lighting and pose
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variations. Lastly, a smoothing term involving both intensity compatibility and
gradient compatibility is used to match neighboring sketch patches on the MRF
network more effectively.

The effectiveness of our approach is evaluated on the CUHK face sketch
database which includes face photos with different lightings and poses. We also
test on face photos of Chinese celebrities downloaded from the web. The exper-
imental results show that our approach significantly improves the performance
of face sketch synthesis compared with the state-of-the-art method [5] when the
testing photo includes lighting or pose variations.

2 Lighting and Pose Robust Face Sketch Synthesis

In this section, we present our algorithm for face sketch synthesis. For ease of
understanding, we use the single-scale MRF model in the presentation, instead
of the two-scale MRF model in our implementation4.

2.1 Overview of the Method

A graphical illustration of the MRF model is shown in Fig. 3. A test photo is
divided into N overlapping patches with equal spacing. Then a MRF network
is built. Each test photo patch xp

i is a node on the network. Our goal is to
estimate the status yi = (yp

i , ys
i ), which is a pair of photo patch and sketch

patch found in the training set, for each xp
i . Photos and sketches in the training

set are geometrically aligned. yp
i is a photo patch and ys

i is its corresponding
sketch patch. If patches i and j are neighbors on the test photo, nodes yi and yj

are connected by an edge, which enforces a compatibility constraint. The sketch
of the test photo is synthesized by stitching the estimated sketch patches {ys

i }.
Based on the MRF model, our energy function is defined in the following form,

E({yi}N
i=1) =

N∑

i=1

EL(xp
i , yi) +

N∑

i=1

EPi(yi) +
∑

(i,j)∈Ξ

EC(ys
i , y

s
j ), (1)

where Ξ is the set of pairs of neighboring patches, EL(xp
i , yi) is the local evidence

function (Subsection 2.2), EPi(yi) is the shape prior function (Subsection 2.3),
and EC(ys

i , y
s
j ) is the neighboring compatibility function (Subsection 2.4). The

shape prior function is specific to face components, which means that different
location indicated by i has different EPi. The above MRF optimization problem
can be solved by belief propagation [10] [11].

A MRF model was also used in [5], however, with several major differences
with ours. It has no shape prior function which is effective in sketch synthesis. Its
local evidence function only computes the sum of the squared differences (SSD)
between xp

i and yp
i and is sensitive to lighting variations. Our local evidence

4 We do find that the two-scale MRF model performs better. The details of multiscale
MRF can be found in [5]. However, it is not the focus of this paper.
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Fig. 3. Illustration of the MRF model for face sketch synthesis.

function uses new patch descriptors which are more robust to lighting variations.
Our method includes not only photo-to-photo patch matching (between xp

i and
yp

i ) but also photo-to-sketch patch matching (between xp
i and ys

i ) to improve
the robustness. The neighboring compatibility function in [5] is to minimize SSD
between neighboring estimated sketch patches (ys

i and ys
j ) in their overlapping

region, while ours also minimizes the difference of gradient distributions. Details
will be explained in the following subsections.

2.2 Local Evidence

The goal of the local evidence function is to find a sketch patch ys
i in the training

set best matching the photo patch xp
i in test. However, since photos and sketches

are in different modalities, it is unreliable to directly match them. So the training
photo patch yp

i corresponding to a training sketch patch ys
i is involved. It is

assumed that if yp
i is similar to xp

i , it is likely for ys
i to be a good estimation of

the sketch patch to be synthesized. We propose to match a testing photo patch
with training photo patches and also with training sketch patches simultaneously,
i.e. we define the local evidence function as the weighted sum of squared intra-
modality distance d2

L1 and squared inter-modality distance d2
L2,

EL(xp
i , yi) = d2

L1(x
p
i , y

p
i ) + λL2d

2
L2(x

p
i , y

s
i ), (2)

where λL2 is the weight to balance different terms in the energy function E and
it is chosen as 2 in our experiments.

Photo-to-Photo Patch Matching A straightforward choice of EL is the Eu-
clidean distance between xp

i and yp
i as used in [5]. However, it does not perform

well when the lighting condition varies. Noticing that most of the sketch con-
tours correspond to edges in the photo, we use a difference-of-Gaussians (DoG)
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(a) (b) (c) (a) (b) (c)

Fig. 4. Compare the results with/without DoG filtering under a normal lighting
condition. (a) Test photos which are under the same lighting as the training set.
(b)Synthesized sketch by the method in [5] without DoG filtering. (c) Synthesized
sketches by our method with DoG filtering. To evaluate the effectiveness of DoG fil-
tering, other parts, such as shape priors and photo-to-sketch patch matching, in our
framework are not used in these examples.

filter to process each photo, i.e. convolving each photo with the difference of
two Gaussian kernels with standard deviations σ0 and σ1, and normalize all
pixel values to zero-mean and unit-variance. In our experiments, we find that
(σ0, σ1) = (0, 4) or (1, 4) performs the best. DoG filtering has two advantages.
First, it can detect and enhance the edges, and thus the synthesized sketch has
better facial details. As shown in Fig. 4, even for normal lighting, the DoG fil-
tering can improve facial details. Second, subtracting low-frequency component
reduces the effect of lighting variations, e.g. shading effects. The example in
Fig. 6 shows that DoG filtering improves synthesized facial details, especially
on the nose and the eyebrows, when there are lighting variations. Luminance
remapping [6], which normalizes the distribution of pixel values in an image to
zero-mean and unit-variance, is commonly used for lighting normalization. How-
ever, its improvement is limited in this application. An example is shown in Fig.
5. After luminance remapping, the distributions of pixel values in two photos
taken under different lighting conditions still do not match. On the contrary,
their distributions after DoG filtering match well. In some cases, photo-to-photo
patch matching is not enough and the mismatching problem, such as the hair
and profile regions shown in Fig. 6 (c), still exists. Thus, photo-to-sketch patch
matching is introduced.

Photo-to-Sketch Patch Matching The intra-modality distance between photo
patches does not always work for selecting a good sketch patch. Similar photo
patches under the Euclidean distance may correspond to very different sketch
patches. Interestingly, people have the ability to directly match photos with
sketches. Inspired by this, we propose to use inter-modality distance between
testing photo patches and training sketch patches to enhance the selection abil-
ity. As the visual appearances of photo and sketch patches are different, it is
difficult to directly match them. However, there exists some similarity of gra-
dient orientations between a photo and its sketch. We choose to use the dense
SIFT descriptor [12] from the family of histogram-of-orientations descriptors.
Our strategy is to assign each patch a dense SIFT descriptor, and use the Eu-
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Fig. 5. Examples of DoG filtering with (σ0, σ1) = (0, 4). Photo A is from the training
set taken under the normal lighting condition, and Photo B is from the testing set
taken under a different lighting condition. The pixel values of DoG filtered photos are
scaled to [0, 1] for visualization. (a) Histograms of pixel values of the two photos after
luminance remapping. They do not match well. (b) Histograms of pixel values of the
two photos after DoG filtering and normalization. They match well.

clidean distance between SIFT descriptors of photo patches and sketch patches
as the inter-modality distance. To capture structures in large scales, we extract
the descriptors in larger regions than patches. For each patch, we extract a region
of size 36× 36 centered at the center of the patch (the size of patch is 10× 10),
and divide it into 4 × 4 spatial bins of the same size. 8 orientations bins are
evenly spaced over 0◦-360◦. The vote of a pixel to the histogram is weighted by
its gradient magnitude and a Gaussian window with parameter σ = 6 centered
at the center of the patch. So the descriptor is 128 dimensional. The descriptor
is normalized by its L2 − norm, clipped by a threshold 0.2 and renormalized
as reported in [12]. The synthesis result with photo-to-sketch patch matching is
shown in Fig. 6 (d). It restores the hair and partial profile lost in Fig. 6 (c).

2.3 Shape Prior

Face images are a special class of images with well regularized structures. Thus
shape priors on different face components can be used to effectively improve the
synthesis performance. The loss of some face structures, especially the face pro-
file, is a common problem for the patch-based sketch synthesis methods without
referring to global structures. When this happens, the contours of some face
components are replaced by blank regions. This problem becomes much more
serious when there are variations of lighting and pose. See examples in Fig. 1.
However, it can be effectively alleviated by using the prior information on differ-
ent face components to guide the selection of sketch patches. In our approach,
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(a) (b) (c) (d) (e) (f)

Fig. 6. Sequential illustration of the roles of each part in our framework. (a) Test photo
under a different lighting condition than the training set; (b) Sketch by the method
in [5] with luminance remapping as preprocessing [6]; (c) Sketch by our method with
P2P+IC; (d) Sketch by our method with P2P+P2S+IC; (e) Sketch by our method with
P2P+P2S+prior+IC; (f) Sketch by our method with P2P+P2S+prior+IC+GC. P2P,
P2S, prior, IC and GC represent photo-to-photo patch matching, photo-to-sketch patch
matching, shape priors, intensity compatibility and gradient compatibility, respectively.
The results are best viewed on screen.

a state-of-the-art face alignment algorithm [13] is first utilized to detect some
predefined landmarks on both the training sketches and the testing photo. The
chosen landmarks locate in regions where loss of structures often happens, es-
pecially on the face profile. Shape priors are imposed to these regions but not
in other regions. If a landmark f falls into patch i on the test photo, a prior
distribution is computed via kernel density estimation,

EPi(yi) = λP ln

[
1√

2πNt

Nt∑

k=1

exp

(
− (β(ys

i )− βk,f )2

h2
f

)]
. (3)

Nt is the number of sketches in the training set. β(ys
i ) is some statistic on the

sketch patch ys
i . βk,f is the statistic on a sketch patch centered at landmark f

in sketch image k. hf is the bandwidth of landmark f and is set as three times
of the standard deviation of {βk,f}. The weight λP = 0.01 is to normalize the
metric scale of the shape prior term and the performance of our algorithm is
robust to λP in a fairly large range.

We test several kinds of patch statistics, such as mean gradient magnitude,
variance of pixel values, proportion of edge pixels, and find that mean gradient
magnitude performs the best and it is chosen as β(·). It can well solve the problem
of losing structures, as shown in Fig. 6 (e).

2.4 Neighboring Compatibility

The goal of the neighboring compatibility function is to make the neighboring
estimated sketch patches smooth and thus to reduce the artifacts on the synthe-
sized sketch. In our model it is defined as

EC(yi, yj) = λICd2
IC(ys

i , y
s
j ) + λGCd2

GC(ys
i , y

s
j ), (4)

where the intensity compatibility term d2
IC is the SSD in the overlapping region

between two neighboring sketch patches ys
i and ys

j , and the gradient compat-
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ibility term d2
GC is the squared Euclidean distance between the dense SIFT

descriptors of ys
i and ys

j . The intensity compatibility term is for the smooth-
ness of the output sketch. However, only using this term tends to lose some face
structures since two blank regions in neighbors have high intensity compatibility.
Thus, we further add the gradient compatibility constraint, which requires that
the neighboring patches have similar gradient orientations. The use of gradient
compatibility can further alleviate the structural loss, an example of which is
given in Fig.s 6 (e) and (f) (the region in the red box). We set the weights
λIC = 1 and λGC = 0.1.

2.5 Implementation Details

All the photos and sketches are translated, rotated, and scaled such that the two
eye centers of all the face images are at fixed position. We crop the images to
250× 200 and the two eye center positions are (75, 125) and (125, 125). All color
images are converted to grayscale images for sketch synthesis.

– Preprocessing on Test Photos. Empirically, when lighting is near frontal,
our algorithm can work well without the preprocessing step. However, for
side light, we need to use Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [14] for preprocessing.5 We use the setting that the desired
histogram shape is Rayleigh distribution (parameter α = 0.7).

– Candidate Selection. In order to save computational cost, a step of candi-
date selection as suggested in [10] is used before optimizing the MRF model.
For each test photo patch xp

i , top K (K = 20) photo-sketch pairs with the
smallest energy of EL(xp

i , yi) + EPi(yi) are selected from the training set
as candidates. In order to take the advantage of face structures, candidates
are searched within a 25 × 25 local region around patch i instead of in the
entire images. The final estimation yi on node i is selected as one of the K
candiates through joint optimization of all the nodes on the MRF network.

– Two-scale MRF. We use two-scale MRF with the same setting as in [5].
Patch sizes at the two layers are 10 × 10 and 20 × 20, respectively. MAP
estimate is used in the belief propagation algorithm [10].

– Stitching Sketch Patches. To avoid blurring effect, we use a minimum
error boundary cut between two overlapping patches on their overlapped
pixels as what is usually done for texture synthesis [15].

3 Experimental Results

We conduct experiments on the CUHK database [5] commonly used in face
sketch synthesis research, and a set of celebrity face photos from the web. In all
the experiments, 88 persons from the CUHK database are selected for training,
5 CLAHE improves the method in [5] little and deteriorates its performance in some

cases. So we choose to report their results without the preprocessing.
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(a) (b) (c) (d)

Fig. 7. Representative results on the baseline set. (a) Test photo; (b) Sketch drawn by
the artist while viewing the normal lighting photo; (c) Sketch by the method in [5]; (d)
Sketch by our method. The results are best viewed on screen.

and each person has a face photo in a frontal pose under a normal lighting con-
dition, and a sketch drawn by an artist while viewing this photo. In the first
experiment, 100 other persons are selected for testing. We have three data sets:
the baseline set, the lighting variation set, and the pose variation set. The base-
line set includes 100 face photos taken in a frontal pose under the same lighting
condition as the training set. The lighting variation data set includes three pho-
tos with faces in a frontal pose with three different lightings (dark frontal/dark
left/dark right) for each person. And the pose variation set includes two pho-
tos with faces in left and right poses (with 45 degrees) under a normal lighting
condition for each person. In the second experiment, some face photos of Chi-
nese celebrities with uncontrolled lighting conditions and poses are downloaded
from the web.6 All photos are with a neutral expression. Parameters are fixed
throughout the experiments. It takes about 2 minutes to synthesize a sketch
running our MATLAB implementation on a computer with 3.20 GHz CPU. Due
to the paper length, only a limited number of examples are shown in this paper.

6 The CUHK database cannot be used as a training set for photos of people from
other ethnic groups, partially due to the human perception.

Table 1. Rank-1 (Rank-10) recognition rates using whitened PCA [16]. The whitened
PCA model is trained on the 100 sketches drawn by the artist while viewing the baseline
set. It performs better than standard PCA without whitening on all the tasks. The
reduced number of dimension is 99, and it is the best for all the tasks.

Testing set [5] [5] with LBP [5] with HE [5] with LR Ours

Baseline 96% (100%) - - - 99% (100%)
Front Light 58% (87%) 58% (87%) 70% (95%) 75% (96%) 84% (96%)
Side Lights 23.5% (56%) 25.5% (75.5%) 38% (80.5%) 41.5% (78.5%) 71% (87.5%)
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3.1 Lighting and Pose Variations

We first investigate the effect of lighting and pose variations separately on the
CUHK database. A preliminary test is on the baseline set. Our algorithm per-
forms as well as the method in [5]. On some photos, our algorithm can produce
even better face sketches as shown in Fig. 7. To give a quantitative evaluation of
the performance, we test the rank-1 and rank-10 recognition rates when a query
sketch synthesized from a test photo is used to match the sketches drawn by
the artist. The results are shown in Table 1.7 Our algorithm slightly beats the
previous method by 3%.

Lighting Although the previous method performs well on the normal lighting
set, their performance degrades dramatically when the lighting changes. Our
method performs consistently well under different lighting conditions. To make a
fair comparison, we also report the results of [5] with several popular illumination
normalization methods, including histogram equalization (HE) and luminance
remapping (LR) [6], and with LBP [9], an illumination invariant feature.

On the recognition rate, our method beats all the others, as shown in Table 1.
The method in [5] performs very poorly without any preprocessing. LR and HE
improve the method in [5], but LBP improves little. LR performs better than HE
and LBP. As hair and background are included in face photos, previous illumi-
nation normalization methods, such as HE, do not perform well. By converting a
patch to its LBP feature, information to distinguish different components, which
is important for sketch synthesis, may be lost and thus mismatching often oc-
curs. In addition, we find that dark side lighting conditions are more difficult
than dark frontal lighting, and under dark side lightings, our method beats all
the others by a large amount on the rank-1 recognition rate.

On the visual quality, LR improves the method in [5], but as shown in Fig.s 8
and 9, the facial details and profile are still much worse than those given by our
method. Under dark frontal lighting, their results usually have incorrect blank
regions and noisy details. Under dark side lightings, the preprocessing helps only
a little as it processes the photos globally. See the failed results shown in Fig. 9.

Pose To test the robustness of our method to pose variations, we use the pose
set with the similar lighting condition as the training set. As shown in Fig. 10,
our method performs better than the method in [5].8 With pose variations, the
major problem of the results by [5] is to lose some structures especially on the
profile. This problem can be efficiently alleviated by the shape priors, photo-to-
sketch patch matching and gradient compatibility designed in our model.

7 Recognition rates cannot completely reflect the viual quality of synthesized sketches.
It is used as an indirect measurement to evaluate the performance of sketch synthesis
since no other proper quantitative evaluation methods are available.

8 As we do not have the sketches drawn by the artist for different poses, the recognition
rates are not tested.
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(a) (b) (c) (d) (e)

Fig. 8. Representative results on photos under the dark frontal lighting. (a) Test photo;
(b) Sketch drawn by the artist while viewing a normal lighting photo; (c) Sketch by
the method in [5]; (d) Sketch by the method in [5] with luminance remapping [6]; (e)
Sketch by our method. The results are best viewed on screen.

(a) (b) (c) (d) (e)

Fig. 9. Representative results of photos under dark side lightings. The notations (a)–(e)
are the same as Fig. 8. The results are best viewed on screen.
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(a) (b) (c) (a) (b) (c)

Fig. 10. Representative results of photos with pose variations. (a) Photo; (b) Sketch
by the method in [5]; (c) Sketch by our method. The results are best viewed on screen.

(a) (b) (c) (a) (b) (c)

Fig. 11. Results of Chinese celebrity photos. (a) Photo; (b) Sketch by the method in [5]
with luminance remapping [6]; (c) Sketch by our method. The results are best viewed
on screen.

3.2 Celebrity Faces from the Web

The robustness of our method is further tested on a challenging set of face
photos of Chinese celebrities with uncontrolled lighting and pose variations from
the web. They even have a variety of backgrounds. As shown in Fig. 11, the
method in [5] usually produces noisy facial details and distortions, due to the
uncontrolled lightings and the large variations of pose and face shape. However,
our method performs reasonably well.

4 Conclusion

We proposed a robust algorithm to synthesize face sketches from photos with
different lighting and poses. We introduce shape priors, robust patch matching,
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and new compatibility terms to improve the robustness of our method. Our
method is formulated using the multiscale MRF. It significantly outperforms the
state-of-the-art approach. In the future work, we would like to further investigate
face sketch synthesis with expression variations.

Acknowledgement

The authors would like to thank Dr. Wei Zhang for his generous help in experi-
ments.

References

1. Tang, X., Wang, X.: Face sketch synthesis and recognition. In: ICCV. (2003)
2. Tang, X., Wang, X.: Face sketch recognition. IEEE Trans. CSVT 14 (2004) 50–57
3. Liu, Q., Tang, X., Jin, H., Lu, H., Ma, S.: A nonlinear approach for face sketch

synthesis and recognition. In: CVPR. (2005)
4. Gao, X., Zhong, J., Li, J., Tian, C.: Face sketch synthesis algorithm based on

E-HMM and selective ensemble. IEEE Trans. CSVT 18 (2008) 487–496
5. Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans.

PAMI 31 (2009) 1955–1967
6. Hertzmann, A., Jacobs, C., Oliver, N., Curless, B., Salesin, D.: Image analogies.

In: SIGGRAPH. (2001)
7. Koshimizu, H., Tominaga, M., Fujiwara, T., Murakami, K.: On KANSEI facial

image processing for computerized facialcaricaturing system PICASSO. In: Proc.
IEEE Int’l Conf. on Systems, Man, and Cybernetics. (1999)

8. Freeman, W.T., Tenenbaum, J.B., Pasztor, E.C.: Learning style translation for
the lines of a drawing. ACM Trans. Graphics 22 (2003) 33–46

9. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns:
Application to face recognition. IEEE Trans. PAMI 28 (2006) 2037

10. Freeman, W., Pasztor, E., Carmichael, O.: Learning low-level vision. IJCV 40
(2000) 25–47

11. Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its
generalizations. Exploring artificial intelligence in the new millennium 8 (2003)
236–239

12. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60
(2004) 91–110

13. Liang, L., Xiao, R., Wen, F., Sun, J.: Face alignment via component-based dis-
criminative search. In: ECCV. (2008)

14. Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T.,
Romeny, B., Zimmerman, J., Zuiderveld, K.: Adaptive histogram equalization
and its variations. Computer Vision, Graphics, and Image Processing 39 (1987)
355–368

15. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:
SIGGRAPH. (2001)

16. Yang, J., Zhang, D., Yang, J.: Is ICA significantly better than PCA for face
recognition? In: ICCV. (2005)


