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Abstract—Crowd understanding has drawn increasing attention
from the computer vision community, and its progress is driven
by the availability of public crowd datasets. In this paper, we
contribute a large-scale benchmark dataset collected from the
Shanghai 2010 World Expo. It includes 2630 annotated video
sequences captured by 245 surveillance cameras, far larger
than any public dataset. It covers a large number of different
scenes and is suitable for evaluating the performance of crowd
segmentation and estimation of crowd density, collectiveness,
and cohesiveness, all of which are universal properties of crowd
systems. In total, 53 637 crowd segments are manually annotated
with the three crowd properties. This dataset is released to the
public to advance research on crowd understanding. The large-
scale annotated dataset enables using data-driven approaches for
crowd understanding. In this paper, a data-driven approach is
proposed as a baseline of crowd segmentation and estimation
of crowd properties for the proposed dataset. Novel global and
local crowd features are designed to retrieve similar training
scenes and to match spatio-temporal crowd patches so that the
labels of the training scenes can be accurately transferred to the
query image. Extensive experiments demonstrate that the proposed
method outperforms state-of-the-art approaches for crowd
understanding.

Index Terms—Crowd features, crowd scene understanding,
data-driven methods, large-scale benchmark.

I. INTRODUCTION

CROWD understanding is an interdisciplinary topic and
has been studied in physics [10], [25], [61], biology [52],
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[66], sociology [8], [36], [49], and psychology [6], [45] for
a long time. In multimedia and computer vision community,
a number of works contribute to action recognition [7], [28],
event detection [47], [62] and behavior analysis [56] for the
individuals or small groups in videos. Due to severe occlusion
and perspective distortion, crowd understanding is a challeng-
ing topic and draws increasing attention because of the large
demands on crowd video surveillance, which is especially im-
portant for metropolis security. Current works mainly focus on
crowd segmentation [2], [12], crowd counting [11], [14], [15],
[26], [42], crowd tracking [1], [3], [27], [53], [55], [72], and
crowd behavior analysis [32], [33], [38], [41], [43], [46], [57],
[58], [64], [69]–[71].

The progress of crowd understanding was mainly driven by
the available public crowd datasets. Most of the above men-
tioned works [11], [12], [14], [15], [38], [41], [42], [64], [69]
on crowd understanding are scene-specific, i.e., crowd under-
standing models learned from a particular scene can only be
applied to the same scene. For example, the crowd counting
approaches [11], [12], [14], [15], [42] require manually anno-
tating some frames from the target scenes for training. In crowd
behavior analysis [24], [33], [38], [41], [43], [46], [64], [69],
behavior models trained for a target scene cannot generalize
to other scenes. Therefore, the datasets proposed in [11], [15],
[38], [64], [69] only contain one or two scenes.

Scientific studies [10], [13], [48] show that different crowd
systems share the same underlying principles and can be char-
acterized by a set of universal properties. Automatically under-
standing such general crowd properties across different scenes
from videos not only has important applications, such as crowd
video retrieval and crowd event detection, but also benefits sci-
entific studies [9], [66] in other areas.

The learned crowd models are expected to generalize to new
scenes not in the training set. Some research efforts [57], [70]
have been made recently in this direction. Progress relies heav-
ily on the availability of large-scale crowd datasets that include
a large variety of scenes and video sequences. Existing crowd
datasets do not provide enough variation. The largest one [70]
(which actually combines other major crowd datasets) only con-
tains 62 scenes. Because of security issues, only a small number
of crowd videos by surveillance cameras are publicly available.
The videos in [70] are mainly collected from the INTERNET.
They are not of bird’s-eye view and are therefore not suitable
for crowd understanding. It provides only annotations of col-
lectiveness at video-sequence level. Other multi-scene crowd
datasets [2], [55] even do not provide ground-truth annotations.
Benchmark datasets have become a bottleneck for the research
on cross-scene crowd understanding.
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Fig. 1. Examples of four types of scenes from the WorldExpo‘10 dataset.
Crowd regions are manually labeled with polygons of different density levels
(high = red, medium = yellow, low = green).

The first contribution of this paper is that we contribute a
large-scale benchmark dataset1 for crowd understanding. It in-
cludes 2630 annotated video sequences captured by 245 surveil-
lance cameras, all from Shanghai 2010 WorldExpo.2 Since all
the cameras have disjoint bird’s-eye views, they cover a large
variety of scenes and the videos are especially suitable for cross-
scene surveillance studies. Example scenes are shown in Figs. 1
and 2. We propose four challenges for this dataset: crowd seg-
mentation, and estimation of crowd density, collectiveness and
cohesiveness.

Crowd segmentation is the first step towards understanding
crowds, because it answers the question of where the crowds
are. Crowd counting, tracking, and behavior analysis are mainly
based on the results of crowd segmentation, which itself also
has important applications such as crowd trespassing detection.
Density is a well known property of crowds and is related to
other crowd properties such as collectiveness and cohesiveness
[66]. Density estimation is of interest to security and traffic
management, where highly dense crowds may lead to congestion
or even disasters. Collectiveness is the degree of individuals in
crowds acting with the same goal and was first studied in [70]
from the perspective of computer vision. Collective behaviors
widely exist in various crowd systems [8], [13], [66], [69], and
have many potential applications [70]. Cohesiveness is another
important property of crowd systems, in which some individuals
move in groups and are bonded by force because of their special
relationships. It measures the stability of local geometric and
topological structures of crowd groups. Although it has been
widely studied in crowd psychology [6], [18], it has not yet
been addressed as a vision problem.

To accurately evaluate the methods that aim to solve the pro-
posed four challenges, the WorldExpo’10 dataset is manually

1[Online]. Available: http://www.ee.cuhk.edu.hk/∼xgwang/crowdexpo.html
2Since most exhibition pavilions have been deconstructed, and no video

corresponding to those pavilions still in use is included, the data is approved to
be released for academic purposes.

annotated at the region level. There are a total of 53 637 crowd
segments with polygon boundaries, each of which was labeled
with all the three crowd properties. Its annotations are much
more comprehensive than any existing dataset. For example,
the current largest one, CUHK dataset [70], only contains 413
videos with 413 annotations (because its annotations are at video
level), while ours has 160 911 annotations. A detailed compari-
son with existing datasets is shown inTable I. Other researchers
can propose new challenges and add new annotations to the
WorldExpo’10 dataset. It would significantly advance the re-
search of crowd understanding.

The second contribution is to propose a data-driven approach
as a baseline of crowd segmentation and estimation of crowd
properties for the proposed dataset. This is the first time to
propose a unified approach that solves all the four crowd un-
derstanding challenges. As a generic solution, it has the poten-
tial of being applied to estimating other crowd properties. The
large-scale annotated training data makes using data-driven ap-
proaches possible. Similar to [40], [60], no training procedure
is required for our proposed data-driven method. The proposed
method transfers the required information (such as density, col-
lectiveness and cohesiveness) from the labeled training videos
to the query via image matching. Our framework contains the
following three steps: 1) retrieving candidate scenes similar to
the query clip based on the proposed global crowd feature; 2)
extracting multi-scale patches from the query and computing
the proposed local crowd feature for each patch; 3) for each
query patch, retrieving its nearest-neighboring patches from the
candidate scenes and transferring the crowd properties from
the nearest neighbors. The multiscale Markov Random Field
(MRF) is utilized to enforce the smoothness of the resulting
segmentation and property maps.

However, the general features widely used for scene under-
standing and texture description are not effective to describe
crowd. Therefore, unlike other data-driven methods, new global
crowd features (GCF) and local crowd features are proposed
in our method. The proposed features are more effective than
widely used generic features (such as GIST [51], HOG3D [31]
and HOGHOF [35]) in the applications of crowd understand-
ing. A new global crowd feature is proposed to retrieve similar
crowd scenes for each input video clip. We train a series of mid-
level filters as the crowd filters to generate filtering response
maps for the input video clip. The global crowd feature of the
input is then generated as the concatenation of the response
maps. A new local crowd feature is proposed to compare sim-
ilarities of spatio-temporal crowd patches. It combines eight
types of features to characterize crowd appearance and motion.
The combination weights of the eight features are automatically
learned with relevance feedback such that the weighted features
well match human perception on crowds.

The remainder of this paper is organized as follows. The
existing works related to crowd understanding are reviewed
and discussed in Section II. The details of our dataset, in-
cluding annotation and evaluation protocols are introduced in
Section III. Section IV presents our proposed data-driven ap-
proach for crowd understanding, the global crowd feature and
the local crowd feature. In Section V, comprehensive experi-
ments have been conducted to show the effectiveness of our
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Fig. 2. Examples of four types of scenes from our dataset: road (first row), queue (second row), square (third row), and mixed (last row).

TABLE I
COMPARISON OF DIFFERENT CROWD DATASETS

UCF [2] Data-driven [55] CUHK [70] Flickr [26] PETS [21] WorldExpo’10

Source internet internet internet internet surveillance surveillance

# of scenes 38 35 62 50 8 245
# of videos 38 35 413 50 Images 40 2,630
Resolution 480 × 360 480 × 360 various various 720 × 576 720 × 576
Annotation type n/a n/a video-level frame-level frame-level region-level
# of annotation 0 0 50 50 4000 160, 911
Task segmentation tracking collectiveness counting counting segmentation, density,

collectiveness, cohesiveness

Videos or images in the CUHK [70] and Flickr [26] datasets do not have uniform resolutions.

approach and compare it with state-of-the-art methods. Finally,
the future works are discussed in Section VI and conclusion is
drawn in Section VII.

II. RELATED WORKS

Crowd datasets. A number of crowd datasets [2], [3], [11],
[15], [21], [33], [38], [43], [55], [64], [70] have been released in
recent years. They are designed for specific tasks. Since many
approaches are scene-specific, most of these datasets [3], [11],
[15], [33], [38], [43], [64] have one or two scenes, and cannot
be used to study generic crowd understanding. Courty et al.
[16] proposed the AGORASET dataset which contains eight
three-dimensional (3-D) synthetic scenes of walking pedestri-
ans. However, real-world surveillance videos are much more
challenging and realistic for research and evaluation. Table I
compares our proposed dataset to existing ones with more than
five scenes. Most of them are collected from the internet. The
crowd counting dataset [26] only contains 50 static images from
Flickr. The PETS [21] dataset was collected by eight cameras
with overlapping views on a campus. Both the above datasets
annotate the total number of persons in each image/frame. The
UCF [2] and data-driven [55] datasets do not provide any an-
notation. The CUHK dataset [70] provides collectiveness an-
notation for each video sequence. Since each video contains
multiple groups with different collective behaviors, it is more
accurate to annotate collectiveness of each crowd region as in

our dataset. None of the previous datasets provide annotations
on crowd segmentation, density, collectiveness and cohesive-
ness simultaneously.

Crowd segmentation. Crowd segmentation is an important
step for crowd counting, tracking and behavior analysis. It is
typically conducted through background subtraction [11], [12],
[14], [15], [34], optical flow estimation [2], [38], feature point
tracking [68], pedestrian detection [24], [54], [67], and SVM
classifier [4]. All these approaches have major limitations in
practice. For instance, some areas in the scene might be occupied
by crowds for long periods and the background is invisible. Fig. 3
shows example results of crowd segmentation by some above
mentioned approaches. Background subtraction does not work
well when it is difficult to model and update the background [see
Fig. 1(a)]. Background modeling generates a lot of false alarms
due to the changes of lightings, scene clutters, and nonhuman
foreground objects. Optical flow estimation and feature point
tracking do not work well when the crowds are stationary or
move slowly, or the video quality is low [see Fig. 1(b) and (c)].
These motion-based approaches do not utilize crowd textures
that can be used to distinguish other image regions. Appearance-
based pedestrian detectors perform poorly on extremely dense
crowds because of heavy occlusions and small pedestrian
sizes [see Fig. 1(d)]. In comparison, our data-driven approach
works on crowd patches and uses both appearance and motion
features.
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Fig. 3. Example results by different crowd segmentation methods. (a) Result by background subtraction used in [11]. (b) Result by optical flow. (c) Result by
feature point tracking with the KLT tracker [68]. (d) Result by pedestrian detection used in DPM [19]. (e) Result by our data-driven approach.

Crowd counting and density estimation. A number of works
[11], [14], [15], [26], [42] directly estimate the number of pedes-
trians in a whole image without detecting individual persons.
Most of them require annotating training frames of the tar-
get scene and rely on crowd segmentation. Meanwhile, several
methods [5], [22], [37] are proposed to estimate crowd density
based on pedestrian localization results. However, these meth-
ods are also scene-specific and not applicable to cross-scene
crowd understanding in large-scale surveillance applications.

Crowd behavior analysis. Many approaches [32], [33], [38],
[41], [43], [46], [64] for crowd behavior analysis learn motion
patterns for a target scene. They are not scene-independent and
do not capture universal properties of crowd behaviors. Zhou
et al. [69] measured the collectiveness using crowd manifolds
and compared it across different crowd scenes. Li et al. [39]
surveyed some state-of-the-art techniques on crowd behavior
analysis, including available features, existing models and eval-
uation protocols.

Data-driven approaches. Several works [40], [55], [60] were
proposed to solve pixel-wise or superpixel-wise classification
tasks via dense image matching. Such nonparametric and data-
driven approaches are suitable for large-scale data because they
do not need any training. They transfer the required informa-
tion from the training images to the query via dense image
matching. Liu et al. [40] proposed a nonparametric image pars-
ing method by recovering dense deformation fields between the
query and training images, and it can work with an arbitrary
set of labels. A simpler yet more effective nonparametric ap-
proach is proposed in [60], where the label transfer is achieved
by superpixel-level matching with local features. A data-driven
method is also adopted for crowd tracking in [55] to search for
similar behaviors among crowd motion patterns in other videos.
The key of these data-driven approaches is to design effective
global and local features to match query and training images,
which is also the focus of our proposed approach.

III. WORLDEXPO’10 CROWD DATASET

We contribute a large-scale benchmark dataset for under-
standing crowd. All the videos are shot with actual surveil-
lance cameras from Shanghai 2010 WorldExpo, which was the
world’s largest fair site ever with an area size of 5.28 square
km. Over 73 million people have visited during six months and
nearly 250 pavilions were built at the expo site. The abundant
sources of these surveillance videos enrich the diversity and
completeness of the surveillance scenes. We define four chal-

lenges and evaluation protocols on this dataset: crowd segmen-
tation, and estimation of crowd density, collectiveness and cohe-
siveness. It would significantly promote the research on crowd
understanding.

A. Data Collection

A huge amount of crowd videos were collected from Shang-
hai 2010 WorldExpo from June to October 2010. A total of
2630 video sequences from 245 cameras with disjoint views are
selected. Each camera has 10–12 videos, one of which was col-
lected at night, and at least two in each month. Each sequence
lasts one minute (3000 frames), and the data size is 40 GB.
Cameras were mounted on the top of buildings and had far-field
views. The resolutions of videos are 720 × 576, which is higher
than or comparable to existing datasets (Table I). The data was
collected under various weather conditions: sunny, cloudy, and
rainy (pedestrians held umbrellas on rainy days). All the scenes
generally fall into four categories: road, square, queue at en-
trances, and mixture of the previous three types of scenes (e.g.,
the bottom-right image in Fig. 1 has both queue and crowd
in square). Generally, crowds in queue or on road tend to have
higher collectiveness, while crowds in queue tend to have higher
cohesiveness. Examples are shown in Figs. 1 and 2.

B. Annotation

A professional labeling company was hired and 20 label-
ers were trained for the annotation task. Three frames were
uniformly sampled from each sequence for annotation. Before
labelers annotate a frame, they first browsed its surrounding
frames to observe moving objects. The boundaries of crowd re-
gions are drawn with polygons as shown in Fig. 1. Each crowd
region is labeled with three properties: density, collectiveness
and cohesiveness. Each crowd property is labeled as one of the
three levels: low (1), medium (2), and high (3). The property of
background regions is always labeled as 0.

The annotation rule for crowd segmentation is as follows.
Every person has his or her own territory which is a circle
with a radius of one meter.3 If the territories of two persons
overlap, the two persons are connected. A crowd region covers
a connected component of multiple persons.

Crowd density is annotated with the widely used Jacobs’s
method [29] proposed in social science, which classifies density
into three levels. It counts the average number (n) of persons

3The “one meter” for each person is empirically determined by the labeler as
2/3 of the person’s height.



IEE
E P

ro
of

ZHANG et al.: DATA-DRIVEN CROWD UNDERSTANDING: A BASELINE FOR A LARGE-SCALE CROWD DATASET 5

Fig. 4. Illustration of different levels of collectiveness and cohesiveness.
(a) Low collectiveness. (b) Medium collectiveness. (c) High collectiveness.
(d) Low cohesiveness. (e) High cohesiveness.

in every square meter. A scene is sparse if n ≤ 1, medium if
1 < n ≤ 2, or dense if n > 2. Since crowd is not uniformly
distributed in a scene, we empirically modified this rule to make
it easier for annotation. Within a segmented crowd region, if
the territory of a person includes another 0 ≤ m ≤ 2 persons on
average, this crowd region is annotated as sparse. Similarly, it
is labeled as medium if 2 < m ≤ 5, and dense if m > 5. This
is consistent with the Jacobs’s method [29], since the area of
a person’s territory is around 3 square meters. Our annotation
rule also implicitly considers crowd size. If a crowd region only
has three persons, it is always labeled as sparse, even if all three
stand tightly within one square meter, because there are no more
than two persons in the territory of another person. Examples of
density annotations are shown in Fig. 1.

Collectiveness and cohesiveness have been widely studied
in physics [10], [25], [61] and sociology [8], [36], [49] for
a long time. There is no explicit mathematical definition on
crowd collectiveness and cohesiveness. Therefore, collective-
ness and cohesiveness of our dataset’s samples are defined in a
subjective manner. For each sample, we have the same multiple
human labelers to annotate its collectedness and cohesiveness
(e.g., low=1, medium=2, high=3), and the average of their an-
notations is used as the final label. Fig. 4 shows examples of our
definition on different levels. The collectiveness of Fig. 4(a) is
labeled as low, since the pedestrians move in different directions
without the same goal. In Fig. 4(b), a few crowd groups move in
opposite directions and its collectiveness is labeled as medium.
In Fig. 4(c), all the persons move in the same direction and the
collectiveness is high.

Cohesiveness measures the stability of local geometrical and
topological structures of crowd groups. Fig. 4(d) shows the same
crowd at different frames. The topological structure of its mem-
bers has changed significantly, and therefore the cohesiveness is
low. Fig. 4(e) shows an example with high cohesiveness. Note
that high collectiveness does not mean high cohesiveness. If
a group of people move in the same direction but with very
different speed, their local structures cannot remain stable.

Fig. 5 shows the histograms (on the area of crowd regions)
of the three properties for the four type of scenes. According

Fig. 5. Statistics of three properties in different crowd scenes (blue = low, red
= medium, green = high). (a) Density. (b) Collectiveness. (c) Cohesiveness.

TABLE II
PARTITION OF TRAINING AND TEST SETS

Road Queue Square Mixture Total

N s / t r a in 83 38 41 30 192
N s / t e s t 20 10 12 11 53
N s / t o t a l 103 48 53 41 245
N c / t r a in 809 394 464 386 2053
N c / t e s t 207 103 147 120 577
N c / t o t a l 1016 497 611 506 2630

Ns indicates the number of scenes and Nc indicates the number
of video sequences.

to our statistics, around 75% regions are background and the
remaining 25% regions are crowds. Most of the crowd regions
in our dataset have high density. Generally, road and queue
crowd scenes with strict man-made constraints have higher col-
lectiveness and cohesiveness than open scenes such as square.
Especially, in queue scenes, people are kept within some bounds,
and most of the crowd regions have high cohesiveness.

C. Evaluation Protocols

80% of the data is partitioned for training and the other 20%
for testing. The two subsets have no overlap on scenes or video
sequences, In this way, the methods’ capability of handling
unseen scenes can be well evaluated. On the test set, we attempt
to make data distribution more balanced on the four types of
scenes. Detailed statistics are shown in Table II. Each crowd
region in the test set was annotated by five labelers and we
use the average of their scores. Since the training set is much
larger, we cannot afford the cost of labeling each crowd region
for multiple times. Although each crowd region is only labeled
by one labeler, the whole training set is labeled by 20 labelers.
The bias introduced by individual labelers can be reduced to
some extent, because the learning process is based on the whole
training set. Four evaluation criteria on the test set have been set
for the proposed challenges.

Crowd segmentation. Every pixel in an annotated frame has
a label: background (0) or crowd (1). ROC curve is used to
evaluate the performance of crowd segmentation.

Crowd density estimation. Every pixel has an annotated den-
sity score ranging from 0 to 3. 0 indicates background and no
crowd exists, while 3 indicates dense crowd. The estimation
algorithms are expected to output continuous density scores.
The Mean Square Error (MSE) is used for evaluation, and is
computed as

MSE =
1

NtestNI

N t e s t∑

i=1

∑

p∈Ii

(l̂p − lp)2 (1)
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Fig. 6. Illustration of our proposed data-driven crowd understanding method.

where for pixel p in frame Ii , the ground-truth annotation is lp ,
the predicted output is l̂p , Ntest is the number of test samples
and NI is the number of pixels for image Ii .

Collectiveness and cohesiveness estimation. Since it is not
reasonable to estimate collectiveness or cohesiveness of back-
ground, we only use manually segmented crowd regions for
evaluation. The scores of both properties are in the range of 1
to 3. Similar to crowd density estimation, the MSE is used for
evaluation.

IV. DATA-DRIVEN CROWD UNDERSTANDING

We propose a data-driven crowd understanding approach as
the baseline for our dataset. Different from most scene-specific
crowd understanding methods, the data-driven method can be
applied to any unseen scene without extra labeling and training.
Data-driven approaches [40], [60] have achieved great success
on scene understanding, which transfer the annotations of train-
ing data to test samples via dense pixel-level or superpixel-level
image matching. Our large-scale annotated training set makes it
possible for us to develop a data-driven approach as a baseline
for our crowd understanding dataset.

A. Overview of the Proposed Method

In order to automatically annotate a query frame, the key of
our data-driven method is to retrieve the most similar samples
from training set and transfer their labels to the query via dense
image matching. Fig. 6 illustrates the overall framework of our
proposed method. In our framework, a short video clip including
30 frames surrounding the query frame is extracted as input. The
training video clips are generated in the same way. To transfer
labels only from training video clips that are similar to the
query, the most similar scenes to the query video clip are first
retrieved from the training set based on the global crowd feature
as the candidate scene set. Then multi-scale crowd patches are
extracted in a sliding window fashion with 50% overlap from
the query video. For each patch, the most similar patches are

retrieved from the candidate scene set based on local crowd
features. Therefore, the key is to design effective global crowd
feature to retrieve similar scenes and local crowd feature to
match similar patches. Instead of using existing generic features,
we learn crowd features and the optimal combination weights
of different components based on training crowd videos. The
crowd properties of each pixel can then be estimated by average
voting. The multi-scale MRF is utilized to ensure the smoothness
of the resulting crowd property map.

B. Global Crowd Feature for Candidate Scene Retrieval

For each patch in the query frame, it is costly to search among
millions of crowd patches in the whole dataset for the most
similar training patches. Therefore, it is more efficient to first
retrieve a small set of candidate training video clips most similar
to the query clip and match training patches within this subset. A
global feature is needed to describe the whole crowd scene. One
commonly used scene feature GIST requires convolving each
image with a set of Gabor filters. However, there is no filter
specifically designed to describe crowd scenes. Therefore, for
our global crowd feature, we train mid-level filters to effectively
describe the content of a crowd scene (see Fig. 7).

Mid-level crowd filters. Mid-level feature learning has been
exploited in recent works on several vision topics, such as
scene classification [59] and action recognition [30]. But ex-
isting works on mid-level feature learning did not consider the
special properties of crowd understanding. The crowd property
of a patch would significantly influence its appearance. Our
goal is therefore to train discriminative mid-level filters that
are able to distinguish patches of different appearance. We first
group patches into several clusters with similar visual appear-
ance. 16 000 spatio-temporal patches are uniformly sampled
from crowd regions for clustering based on their ground truth
crowd density, collectiveness and cohesiveness. In this way, the
sampled patches have good diversity. The affinity propagation
(AP) clustering method [23] is adopted because it does not
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Fig. 7. Global crowd feature for scene retrieval. Red regions in the response map have high response value while blue regions are low. The retrieved scenes have
similar views. Dense crowds are in areas farther to cameras.

require the number of clusters to be estimated in advance. For
our dataset, Nc = 30 clusters are obtained for our training set
by the AP algorithm. To capture distinctive appearance patterns
to describe patches of different clusters, a discriminative filter
is learned for each crowd cluster. For each cluster k, all the
patches assigned to this cluster are regarded as positive sam-
ples, and patches from the other clusters and background are
randomly sampled to form the negative samples. The number
of negative samples is set 10 times as many as the positive
samples. After creating the positive and negative patch sets, a
linear SVM classifier {wk , bk}Nc

k=1 is trained for every cluster.
The SVM weights wk and bias term bk serve as the kth crowd
mid-level filter. A response score map is obtained when crowd
mid-level filters are used to convolve with a query video clip.

Global crowd feature. Global crowd feature is designed to
describe the properties of the whole crowd scene for scene re-
trieval. Therefore, global crowd feature is extracted from the
whole response maps generated by the mid-level filters for each
video clip. The response maps are divided into Nx × Ny cells
with no overlap. We set Nx = 4 and Ny = 5 for our proposed
dataset. The average response scores of each grid is calculated.
Such scores of all the filter response maps of Nc filters is con-
catenated as the global crowd feature to calculate its similarity
between different scenes and to retrieve similar training scenes
for a query (see Fig. 7). The total dimension of our global crowd
feature is therefore Nx × Ny × Nc = 600.

C. Local Crowd Feature for Patch Matching

To distinguish different crowd properties, local crowd fea-
ture should describe both appearance and motion information
at multiple scales. Therefore, our local crowd feature includes
eight appearance and motion features extracted from each 3-D
spatio-temporal crowd volume.

Multi-scale augmentation. Video surveillance data has large
perspective variation, and crowds can be observed at different
scales. In order to augment the training set and increase the
robustness of matching with query patches, we sample both

Fig. 8. Local crowd feature. (a) Uniformly sampling four frames from a
3-D crowd volume and dividing them into 3 × 3 cells. (b) Extracting HOG at
each sampled frame. (c) Features computed from Hough transform are used to
distinguish crowd patches from man-made patches with long line structures.
(d) Examples of crowd patches with coherent (top) and incoherent (bottom)
motions. Each sampled frame is divided into four sub-regions. Histograms of
motion directions (third column) and speed (fourth column) are computed in
each sub-region and the whole region.

training and test patches at multiple scales and normalize them
to the same size (36 × 36 × 30) as shown in Fig. 6.

Appearance features. The first feature f1 , HOG [17], is ex-
tracted from each sampled patch, as shown in Fig. 8(a) and (b).
4 frames are uniformly sampled from a 3-D patch, and each
frame is divided into 3 × 3 cells with 50% overlap. The size of
each cell is 18 × 18. Empirically, we observe that HOG cannot
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Fig. 9. Using relevance feedback to learn the optimal weights for the local crowd feature.

distinguish crowd patches with some man-made background
patches with long line structures [such as fence in Fig. 8(c)],
which are commonly observed in crowd scenes. We design two
features (f2 and f3) with Hough transform to capture line struc-
tures. Traditional Hough transform is based on edge detection
operators, such as Canny and Sobel. However, these edge opera-
tors ignore much texture information, especially for the surveil-
lance video patch with relatively low resolution. Therefore, we
perform Hough transform on image gradient map

r(θ) = x0 cos θ + y0 sin θ (2)

where θ is determined by gradient (Δx,Δy) at (x0 , y0) and is
calculated as θ = Δy

Δx + π
2 . After applying a Gaussian filter, a

response map M(r, θ) in the polar coordinate is obtained, as
shown in Fig. 8(c). The feature f2 = [μv , σv ] characterizes ver-
tical lines. μv and σv are the mean and variance of responses in
the range θ ∈ [0, 10◦] ∪ [170◦, 180◦]. The feature f3 = [μa, σa ]
characterizes the longest line in any direction. The mode of the
highest peak is detected with the mean shift algorithm and its
mean and variance are μa and σa .

Motion features. To characterize local motion of the sampled
patch, the feature f4 , Histogram of Optical Flows (HOF) [35],
is computed on the same sampled frames and cells. The same
parameter setting is adopted as HOG. In order to further charac-
terize whether individuals in crowd move in similar directions
and keep stable local structures, the features f5 − f8 are com-
puted based on the histograms of motion directions and speed
as shown in Fig. 8(d). They are the entropy and variance of the
two types of histograms. The patch at each frame is divided into
four sub-regions. Histograms of the four sub-regions and of the
whole region are computed. Note that besides f5 − f8 , f1 and
f4 at sampled frames are also useful for estimating collective-
ness and cohesiveness, since they characterize how appearance
and motion change over time.

Learning feature weights. The f1 − f8 features are concate-
nated as the local crowd feature. The distance between a training
patch xi and a query patch xq is then computed as

d(xi, xq ) =
8∑

k=1

ωk‖fik − fqk‖2 (3)

where fik and fqk is the kth local crowd feature of the patch xi

and xq . It is important to assign a set of optimal weights {ωk} to
weight the importance of the eight features. We do not use the

annotated labels in the training set to learn the weights, because
it might make our crowd feature overfit to a particular task.
Instead, we choose a relevance feedback approach to learn the
weights that most match human perception. The weights learned
in this way are more general and can be applied to various crowd
understanding tasks.

It starts with uniform weights. Some examples of matching
results with uniform distribution were shown Fig. 9. At each
iteration t, a patch x

(t)
q is randomly selected from the training

set and is tried to match with other training patches x
(t)
i using the

current weights. Top N matches are presented to a labeler, who
labels each of them as similar (1), dissimilar (−1), or uncertain
(0) based on visual perception (Fig. 9). Based on the feedback,
the feature weights are adjusted with adaptive SVM [65] as

d(t+1)(xi, xq ) = d(t)(xi, xq ) +
8∑

k=1

Δω
(t)
k ‖fik − fqk‖2 (4)

where d(t) represents the distance function at iteration t, and
Δω(t) are the parameters estimated from the feedback examples
at iteration t. To learn the parameter Δω(t) , we adopted a SVM-
like objective function

min
w ( t )

1
2

∥∥∥w(t)
∥∥∥

2
+ C(t)

N ( t )∑

i=1

ξ
(t)
i

s.t. ξ
(t)
i ≥ 0; C(t) = η(t)(1 − η(t))

yid
(t)(xi) + yi

8∑

k=1

Δω
(t)
k

∥∥∥f
(t)
ik − f

(t)
qk

∥∥∥
2
≥ 1 − ξ

(t)
i

∀(xi, yi) ∈ D(t) (5)

where
∑N

i=1 ξ
(t)
i measures the total classification error of the

tth feedback iteration. The cost factor C(t) represents the dis-
criminative capability of the current iteration data to balance
the contribution of previous iterations. So we define the C(t) as
C(t) = η(t)(1 − η(t)), where η(t) is the accuracy of feedback
results at iteration t. η = 1 or 0 means all the feedback results
are similar patches or dissimilar patches, which would not im-
prove the retrieval results, and result in the lowest value of C.
Oppositely, an equal number of positive samples and negative
samples would lead to optimal weights.
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Fig. 10. Four query patches are selected from a query video clip. Their most similar (two upper rows) and dissimilar (two bottom rows) training patches based
on our local crowd feature are shown in green and red rectangles, respectively.

At every iteration, a different query patch is randomly cho-
sen. The iterations stop when the weighted features well match
human perception and cannot be further improved. Some ex-
amples of matching results are shown in Fig. 10. The learned
weights well distinguish background and crowds of different
density levels.

D. Crowd Property Estimation

For each query video clip, we first retrieve its M = 30 most
similar training video clips according to the global crowd fea-
ture. In addition, no more than three video clips are from the
same scene to ensure their diversity. Image patches from the
candidate training clips form the pool of candidate training
patches. For the query video clip (30 frames), crowd patches
are sampled at S = 3 different scales. For each patch p at scale
s, its observed label score l̂sp is the averaged label score of its top
K = 20 matched training patches from the candidate training
patch pool.

The final label scores {lsp} are obtained by the multi-scale
MRF [26] to ensure smoothness. The graph can be represented
by (V,E), where V are the pixel nodes and E are the neighbors
at the same level and intermediated nodes that connect a patch
to layers above and below it. The energy function with S level
scales is thus given by

min
l

∑

s∈S

⎛

⎝
∑

p∈Vs

D(η̂s
p , l

s
p) +

∑

(p,q)∈E

V (lsp − lsq )

⎞

⎠ (6)

where lsp represents the estimated property of patch p at scale s,
and q is the spatial neighbor of patch p. The data term is defined
as D = |η̂s

p − lsp |, where η̂s
p = 1

2 (l̂s+1
p + l̂sp) is of the bottom two

scales and η̂s
p = l̂sp is of the top scale. The smoothness term is de-

fined as V = min(|lsp − lsq |, ε), which enforces the smoothness
between the neighboring nodes. This multi-scale MRF model
is optimized using the Max-Product Belief Propagation method
on grid structure [20].

V. EXPERIMENTAL EVALUATION

We evaluate our data-driven approach for different crowd
understanding tasks, including crowd segmentation (Section V-
A), crowd density estimation (Section V-B), and crowd col-

lectiveness and cohesiveness estimation (Section V-C) on the
WorldExpo’10 dataset and compare it with other methods. The
evaluation metrics were explained in Section III-C. For the test
set, the patches are extracted in a sliding window fashion with
50% overlap in three scales, 36 × 36, 72 × 72, and 144 × 144,
respectively. The estimated property of each pixel is obtained by
averaging all the predictions of overlapping patches. The exten-
sive experimental results by our proposed method and the com-
pared ones on crowd segmentation, crowd density estimation,
and crowd collectiveness and cohesiveness estimation demon-
strate our method’s capability of handling unseen scenes.

A. Crowd Segmentation

We compare our proposed data-driven approach (Data-
driven) with six other crowd segmentation methods. The ROC
curve is used to evaluate the performance of crowd segmenta-
tion. The following approaches are compared.

1) SVM (Codebook): To the best of our knowledge, the only
existing method specifically designed for crowd segmentation
is [4]. The proposed method modeled crowd texture with a
codebook. The SIFT features are extracted from interest points
in frames. The codebook of size 1000 is built through k-means
clustering on the SIFT feature. Crowd-likelihood features are
computed based on the codebook as in [4] and used to classify
each patch with SVM with a RBF kernel.

2) BS: Background subtraction is used by many crowd un-
derstanding works [11], [12], [15], [42] to segment crowd. The
method used in [12] is chosen for comparison.

3) Deformable Parts Model (DPM): Pedestrian detection ap-
proaches might also be used for crowd segmentation. A state-
of-the-art pedestrian detector with DPM [19] is applied to test
frames. It is trained on the INRIA dataset [17]. A pixel is seg-
mented as crowd if it falls into a pedestrian window. We also
compare with two baselines to evaluate the effectiveness of the
components of our proposed method.

4) SVM (HOG): This baseline follows the same framework
as [4] but utilizes the HOG as the features to describe crowd,
which is a popular descriptor for pedestrians. 5) SVM Local
Crowd Feature (LCF). To evaluate the performance of our pro-
posed data-driven classifier, we also create a baseline that uti-
lizes SVM and our proposed LCF feature. For methods 1), 4)
and 5), we select 192 clips from every training scenes with
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Fig. 11. (a) ROC curves of crowd segmentation results by different methods.
(b) ROC curves of crowd segmentation results by using different local features
in our proposed data-driven framework. (c) MSE of density estimation by our
proposed framework with varying M and K . (d) MSE of density estimation by
our proposed framework with varying K and different local features.

medium density distribution as the training data. The SVM is
trained with approximately 230 000 patches. For fair compari-
son, when comparing with methods 1), 4) and 5), our data-driven
method is trained with the same training set.

As shown in Fig. 11(a), our data-driven method with the
proposed LCF feature outperforms the compared methods. Al-
though BS works better than several other methods, it still per-
forms worse than our data-driven approach. This is because
background subtraction methods utilize motion information and
cannot handle crowds that move slowly or are stationary. It is
also affected by scene clutters. When setting the false positive
ratio to 0.1, the true positive ratio of BS is 10% lower than that of
ours. The pedestrian detector (DPM) does not work well neither
because of severe occlusions. We also observe that when using
the same classifier, i.e., SVM, our proposed local crowd fea-
ture significantly outperforms the widely used HOG and SIFT
features. However, using the SVM classifier with our proposed
feature is still inferior to the proposed data-driven approach,
which is more effective on handling the complex distributions
of crowd and background patches.

In order to further evaluate the effectiveness of our proposed
local crowd feature, we compare our LCF feature to different
local features by using them as the local feature in our pro-
posed data-driven framework. The compared features include
HOG [17], Local Binary Patterns (LBP) [50], Gray-Level Co-
occurrence Matrix (GLCM) [44], HOG3D [31] and Dense Tra-
jectory (DT) [63]. The general appearance features, such as
LBP, GLCM and HOG, are widely used for general texture de-
scription and crowd understanding. HOG3D and DT are utilized
for spatio-temporal description and achieve satisfactory perfor-
mance on action recognition and crowd behavior understanding.
We utilize the recommended parameters for all the compared
features. Fig. 11(b) shows the ROC curves of different local fea-

TABLE III
MSE OF CROWD DENSITY ESTIMATION BY REGRESSION-BASED METHODS

(LEFT COLUMN) AND OUR PROPOSED DATA-DRIVEN METHODS WITH

DIFFERENT LOCAL FEATURES (RIGHT COLUMN)

Method MSE Method MSE

HOG+RR 1.10 Data-driven (HOG) 0.94
GLCM+GPR [11] 1.07 Data-driven (GLCM) 1.03
LBP+KRR [15] 0.98 Data-driven (LBP) 0.91
Lempitsky [37] 1.31 Data-driven (Ours) 0.71

tures, where our proposed LCF feature outperforms other local
features. LCF is more effective to describe the crowd characters.
Note that DT obtains better performance than other texture fea-
tures, which shows that motion information is important for the
crowd segmentation task. But the general spatio-temporal fea-
tures, such as DT and HOG3D, are not effective on describing
crowds.

B. Crowd Density Estimation

Our propose data-driven framework can also be utilized to
estimate crowd density. The MSE (1) is used as the evaluation
criterion. We compare our proposed method with some state-of-
the-art regression based methods. All the major components in
our methods are also evaluated. At last, we also discuss parame-
ter selection and computational cost of our data-driven method.

Comparison with regression-based methods. We compared
our proposed framework with several regression-based methods
to estimate crowd density of each patch [11], [15], [37], [54].
They were originally proposed for crowd counting but can be
used to estimate density in a similar way.

Gaussian Processes Regression (GPR) with GLCM feature
was used for crowding counting [11]. Similarly, Kernel Ridge
Regression (KRR) with LBP feature was adopted in [15]. Lem-
pitsky [37] proposed a crowd density estimation approach that
uses SIFT and regularized linear regression, which was also used
in [54]. We also use the widely used HOG feature with the basic
Ridge Regression (HOG+RR) as a baseline. The density esti-
mation results of all the methods are listed in Table III. For fair
comparison, we use the same training data for both regression-
based methods and our data-driven method, which means that
the step of candidate scene retrieval based on the global crowd
feature is skipped in our method. Instead, we perform the local
patch matching on all training data.

Our approach achieves the highest accuracy among all the
compared methods. Most of these regression-based methods
are scene-specific, and models learned from a particular scene
can only be well applied to the same scene. From Table III, it is
obvious that they do not show satisfactory performance in the
large-scale dataset. In contrast, data-driven methods are more
suitable for the large-scale and dynamic dataset. Some examples
of our results are shown in Fig. 12.

Experiments are also conducted on the popular UCSD dataset
[11] and MALL dataset [15], which are widely used to eval-
uate crowd counting and crowd density estimation. Pedestri-
ans’ positions are labeled for each scene of the two dataset.
Followed by the Jacobs’s method mentioned in III-B, the
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Fig. 12. Example density estimation results (red = dense, yellow = medium, green = sparse) by our data-driven framework (odd columns) and by the
regression-based method LBP+KRR (even columns), which is the best regression-based method.

TABLE IV
MSE OF CROWD DENSITY ESTIMATION BY REGRESSION-BASED

METHODS AND OUR PROPOSED DATA-DRIVEN METHODS ON

THE UCSD DATASET AND MALL DATASET

Method UCSD [11] MALL [15]

Lempitsky [37] 1.07 1.16
GLCM+GPR [11] 0.73 0.91
LBP+KRR [15] 0.62 0.84
Data-driven (Ours) 0.54 0.77

density level annotations can be generated from the position
labels. Both regression-based methods and our data-driven
method are only trained from the training set of our World-
Expo’10 dataset. Following, the same test partition as in [11] and
[15]. Most of the regression-based methods are scene-specific,
and our proposed method outperforms all the compared meth-
ods in these two datasets as shown by the results in Table IV.
The results demonstrate that our proposed method is able to
handle unseen target scene with our large-scale training dataset.

TABLE V
MSE OF CROWD DENSITY ESTIMATION BY THE DATA-DRIVEN FRAMEWORK

WITH DIFFERENT GLOBAL AND LOCAL CROWD FEATURES

HOG LBP GLCM HOG3D DT HOGHOF LCF (UW) LCF

GIST 1.08 1.08 1.21 1.15 1.10 0.96 0.98 0.94
GIST+MRF 0.93 0.95 1.08 1.00 0.93 0.84 0.88 0.82
GCF 1.06 1.01 1.19 1.16 1.02 0.93 0.94 0.89
GCF+MRF 0.90 0.88 1.05 0.98 0.85 0.80 0.82 0.78

Evaluation of individual components. The effects of differ-
ent local features are first investigated by using them in the
proposed data-driven framework. Notice that spatio-temporal
features, such as DT and HOGHOF [35], have better perfor-
mances than texture features because of the additional motion
information. Our LCF outperforms all other compared features.
In addition, our LCF feature with uniform weights was com-
pared as a baseline to demonstrate the necessity of the rele-
vance feedback scheme as Eq. (5). We then compare our GCF
for candidate scene retrieval with the GIST feature (Table V).
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We observe that our GCF based on the mid-level crowd filters
generate more accurate candidate scenes for label transfer with
different local features. We also test the effect of the multi-scale
MRF. Obviously, the MRF effectively improves the estimation
accuracy because it enforces smoothness on the resulting label
maps.

Parameter selection. The proposed data-driven system re-
trieves M most similar scenes for the query clip, and further
selects K nearest neighbors for each query patch to estimate
the crowd properties. We investigate the performance of our
data-driven system by varying the parameters M and K.

Fig. 11(c) shows the MSE by setting different M and K. The
performance improves as the number of candidate scenes (larger
M ) increases. The performance drops as K increases since
more candidate patches may introduce noise to label transfer,
especially when M is small. Although by conducting local patch
matching in all training frames (equivalent to M = 7000), we
obtain lower MSEs (as shown by the results in Table III). The
computational time is proportional to M and using such large M
is not practical for real-world applications. We also fix M = 30
and calculate the MSE of density estimation with varying K
using different local features as shown in Fig. 11(d). Smaller K
incorporates less information and larger K might result in more
noise. We observed that K = 20 achieves the best performance
for most types of local features. The balanced performance and
computational cost are achieved when M = 30 and K = 20.

Computational cost. Our implementation is in MATLAB and
is mostly parallelized. All our tests ran on a PC with a Core-i7
3.4 GHz quad core processor and 16 GB RAM. Our compu-
tational cost is mainly dominated by the extraction of global
and local crowd features, which costs nearly 100 s for every
query clip. But it can be easily sped up by utilizing more power-
ful hardware and better parallelization. Labeling one query clip
with candidate scene retrieval and local patch matching takes
less than 10 s. The main bottleneck of our implementation is
file I/O for loading retrieval set features from hard disk. More
appropriate data structure and larger RAM would improve the
effectiveness of our implementation.

C. Collectivness and Cohesiveness Estimation

Our proposed method can also be extended to estimate collec-
tiveness and cohesiveness. The MSE (1) is used as the evaluation
criterion. Since it does not make sense to estimate collective-
ness or cohesiveness on background, we only estimate annotated
crowd regions for evaluation. We compared with the collective-
ness measurement method proposed by Zhou et al. [70]. Since
collectiveness and cohesiveness describe the motion informa-
tion of crowds, we only compare our LCF feature with two
spatio-temporal features, HOG3D [31] and HOGHOF [35].

Table VI reports the results of collectiveness and cohesiveness
estimation by different methods. For collectiveness estimation,
[70] does not work well if feature points cannot be well de-
tected and tracked, especially when the video resolution is low.
Our data-driven method performs robustly and does not rely on
any detection and tracking. The experiment results show that
our proposed crowd feature achieves better accuracy on collec-

TABLE VI
MSE OF COLLECTIVENESS AND COHESIVENESS ESTIMATION

MSE

Zhou et al. [70] for collectiveness 0.71
Data-driven (HOG3D) for collectiveness 0.67
Data-driven (HOGHOF) for collectiveness 0.52
Data-driven for collectiveness (our LCF) 0.49
Data-driven (HOG3D) for cohesiveness 0.78
Data-driven (HOGHOF) for cohesiveness 0.66
Data-driven for cohesiveness (our LCF) 0.64

tiveness estimation than the other two spatio-temporal features.
For cohesiveness estimation, there is no previous work on this
topic. We only report the results by our data-driven framework
with different local features. The data-driven method with our
proposed crowd features also achieves the best performance.

VI. DISCUSSION AND FUTURE WORK

The WorldExpo’10 dataset is a large-scale benchmark dataset
for crowd understanding and covers a large variety of scenes
with sufficient training data. Such training data would benefit
learning algorithms specifically designed for big data, such as
deep learning, data-driven approaches etc. Therefore, we hope
the WorldExpo’10 dataset would become an important resource
for more crowd video surveillance applications and can play a
critical role in advancing the research on understanding crowds.
We envision the following possible potential challenges:

Crowd counting. Most of existing crowd counting algorithms
and datasets are scene-specific and focus on low density crowd.
In comparison, the WorldExpo’10 dataset contains a large num-
ber of scenes with high variation of density. In the most crowded
scenes, the number of pedestrians in a frame is close to one thou-
sand. The crowd density also varies in a large range. Therefore,
it is much more challenging and realistic to real-world surveil-
lance applications. The baseline method of density estimation
proposed in this paper would offer an important prior for crowd
counting.

Abnormal event detection. Anomaly detection is an important
problem in crowd understanding with extensive applications. In
our high quality, diverse and large-scale WorldExpo’10 dataset,
plenty of abnormal events can be observed and defined to eval-
uate and advance related research. The universal properties,
density, collectiveness and cohesiveness, might be helpful for
anomaly detection.

Crowd scene classification. We roughly summarize the crowd
scenes in the WorldExpo’10 dataset into four categories. How-
ever, it can be further classified into many more categories based
on different crowd behaviors, such as crowd gathering, crowd
dispersing, crowd queuing, rushing, and loitering.

Deep learning has achieved great success in computer vi-
sion during recent years. However, so far little work has been
done on deep learning for crowd understanding due to the lack
of large-scale training data with annotation. This new dataset
would significantly advance deep learning research in this area,
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and more effective and discriminative crowd features and rep-
resentations can be learned.

VII. CONCLUSION

In this paper, we contribute a large-scale annotated bench-
mark dataset including 245 scenes for cross-scene crowd under-
standing. Four challenges are proposed for this dataset based on
their importance in scientific studies and crowd video surveil-
lance applications. Benefiting from the large-scale training set,
a data-driven approach with new global and local crowd features
is proposed to solve crowd understanding tasks. It serves as a
baseline for the proposed dataset and outperforms state-of-the-
art approaches.
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Data-Driven Crowd Understanding: A Baseline
for a Large-Scale Crowd Dataset

Cong Zhang, Kai Kang, Hongsheng Li, Xiaogang Wang, Member, IEEE, Rong Xie,
and Xiaokang Yang, Senior Member, IEEE

Abstract—Crowd understanding has drawn increasing attention
from the computer vision community, and its progress is driven
by the availability of public crowd datasets. In this paper, we
contribute a large-scale benchmark dataset collected from the
Shanghai 2010 World Expo. It includes 2630 annotated video
sequences captured by 245 surveillance cameras, far larger
than any public dataset. It covers a large number of different
scenes and is suitable for evaluating the performance of crowd
segmentation and estimation of crowd density, collectiveness,
and cohesiveness, all of which are universal properties of crowd
systems. In total, 53 637 crowd segments are manually annotated
with the three crowd properties. This dataset is released to the
public to advance research on crowd understanding. The large-
scale annotated dataset enables using data-driven approaches for
crowd understanding. In this paper, a data-driven approach is
proposed as a baseline of crowd segmentation and estimation
of crowd properties for the proposed dataset. Novel global and
local crowd features are designed to retrieve similar training
scenes and to match spatio-temporal crowd patches so that the
labels of the training scenes can be accurately transferred to the
query image. Extensive experiments demonstrate that the proposed
method outperforms state-of-the-art approaches for crowd
understanding.

Index Terms—Crowd features, crowd scene understanding,
data-driven methods, large-scale benchmark.

I. INTRODUCTION

CROWD understanding is an interdisciplinary topic and
has been studied in physics [10], [25], [61], biology [52],
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[66], sociology [8], [36], [49], and psychology [6], [45] for
a long time. In multimedia and computer vision community,
a number of works contribute to action recognition [7], [28],
event detection [47], [62] and behavior analysis [56] for the
individuals or small groups in videos. Due to severe occlusion
and perspective distortion, crowd understanding is a challeng-
ing topic and draws increasing attention because of the large
demands on crowd video surveillance, which is especially im-
portant for metropolis security. Current works mainly focus on
crowd segmentation [2], [12], crowd counting [11], [14], [15],
[26], [42], crowd tracking [1], [3], [27], [53], [55], [72], and
crowd behavior analysis [32], [33], [38], [41], [43], [46], [57],
[58], [64], [69]–[71].

The progress of crowd understanding was mainly driven by
the available public crowd datasets. Most of the above men-
tioned works [11], [12], [14], [15], [38], [41], [42], [64], [69]
on crowd understanding are scene-specific, i.e., crowd under-
standing models learned from a particular scene can only be
applied to the same scene. For example, the crowd counting
approaches [11], [12], [14], [15], [42] require manually anno-
tating some frames from the target scenes for training. In crowd
behavior analysis [24], [33], [38], [41], [43], [46], [64], [69],
behavior models trained for a target scene cannot generalize
to other scenes. Therefore, the datasets proposed in [11], [15],
[38], [64], [69] only contain one or two scenes.

Scientific studies [10], [13], [48] show that different crowd
systems share the same underlying principles and can be char-
acterized by a set of universal properties. Automatically under-
standing such general crowd properties across different scenes
from videos not only has important applications, such as crowd
video retrieval and crowd event detection, but also benefits sci-
entific studies [9], [66] in other areas.

The learned crowd models are expected to generalize to new
scenes not in the training set. Some research efforts [57], [70]
have been made recently in this direction. Progress relies heav-
ily on the availability of large-scale crowd datasets that include
a large variety of scenes and video sequences. Existing crowd
datasets do not provide enough variation. The largest one [70]
(which actually combines other major crowd datasets) only con-
tains 62 scenes. Because of security issues, only a small number
of crowd videos by surveillance cameras are publicly available.
The videos in [70] are mainly collected from the INTERNET.
They are not of bird’s-eye view and are therefore not suitable
for crowd understanding. It provides only annotations of col-
lectiveness at video-sequence level. Other multi-scene crowd
datasets [2], [55] even do not provide ground-truth annotations.
Benchmark datasets have become a bottleneck for the research
on cross-scene crowd understanding.

1520-9210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Examples of four types of scenes from the WorldExpo‘10 dataset.
Crowd regions are manually labeled with polygons of different density levels
(high = red, medium = yellow, low = green).

The first contribution of this paper is that we contribute a
large-scale benchmark dataset1 for crowd understanding. It in-
cludes 2630 annotated video sequences captured by 245 surveil-
lance cameras, all from Shanghai 2010 WorldExpo.2 Since all
the cameras have disjoint bird’s-eye views, they cover a large
variety of scenes and the videos are especially suitable for cross-
scene surveillance studies. Example scenes are shown in Figs. 1
and 2. We propose four challenges for this dataset: crowd seg-
mentation, and estimation of crowd density, collectiveness and
cohesiveness.

Crowd segmentation is the first step towards understanding
crowds, because it answers the question of where the crowds
are. Crowd counting, tracking, and behavior analysis are mainly
based on the results of crowd segmentation, which itself also
has important applications such as crowd trespassing detection.
Density is a well known property of crowds and is related to
other crowd properties such as collectiveness and cohesiveness
[66]. Density estimation is of interest to security and traffic
management, where highly dense crowds may lead to congestion
or even disasters. Collectiveness is the degree of individuals in
crowds acting with the same goal and was first studied in [70]
from the perspective of computer vision. Collective behaviors
widely exist in various crowd systems [8], [13], [66], [69], and
have many potential applications [70]. Cohesiveness is another
important property of crowd systems, in which some individuals
move in groups and are bonded by force because of their special
relationships. It measures the stability of local geometric and
topological structures of crowd groups. Although it has been
widely studied in crowd psychology [6], [18], it has not yet
been addressed as a vision problem.

To accurately evaluate the methods that aim to solve the pro-
posed four challenges, the WorldExpo’10 dataset is manually

1[Online]. Available: http://www.ee.cuhk.edu.hk/∼xgwang/crowdexpo.html
2Since most exhibition pavilions have been deconstructed, and no video

corresponding to those pavilions still in use is included, the data is approved to
be released for academic purposes.

annotated at the region level. There are a total of 53 637 crowd
segments with polygon boundaries, each of which was labeled
with all the three crowd properties. Its annotations are much
more comprehensive than any existing dataset. For example,
the current largest one, CUHK dataset [70], only contains 413
videos with 413 annotations (because its annotations are at video
level), while ours has 160 911 annotations. A detailed compari-
son with existing datasets is shown inTable I. Other researchers
can propose new challenges and add new annotations to the
WorldExpo’10 dataset. It would significantly advance the re-
search of crowd understanding.

The second contribution is to propose a data-driven approach
as a baseline of crowd segmentation and estimation of crowd
properties for the proposed dataset. This is the first time to
propose a unified approach that solves all the four crowd un-
derstanding challenges. As a generic solution, it has the poten-
tial of being applied to estimating other crowd properties. The
large-scale annotated training data makes using data-driven ap-
proaches possible. Similar to [40], [60], no training procedure
is required for our proposed data-driven method. The proposed
method transfers the required information (such as density, col-
lectiveness and cohesiveness) from the labeled training videos
to the query via image matching. Our framework contains the
following three steps: 1) retrieving candidate scenes similar to
the query clip based on the proposed global crowd feature; 2)
extracting multi-scale patches from the query and computing
the proposed local crowd feature for each patch; 3) for each
query patch, retrieving its nearest-neighboring patches from the
candidate scenes and transferring the crowd properties from
the nearest neighbors. The multiscale Markov Random Field
(MRF) is utilized to enforce the smoothness of the resulting
segmentation and property maps.

However, the general features widely used for scene under-
standing and texture description are not effective to describe
crowd. Therefore, unlike other data-driven methods, new global
crowd features (GCF) and local crowd features are proposed
in our method. The proposed features are more effective than
widely used generic features (such as GIST [51], HOG3D [31]
and HOGHOF [35]) in the applications of crowd understand-
ing. A new global crowd feature is proposed to retrieve similar
crowd scenes for each input video clip. We train a series of mid-
level filters as the crowd filters to generate filtering response
maps for the input video clip. The global crowd feature of the
input is then generated as the concatenation of the response
maps. A new local crowd feature is proposed to compare sim-
ilarities of spatio-temporal crowd patches. It combines eight
types of features to characterize crowd appearance and motion.
The combination weights of the eight features are automatically
learned with relevance feedback such that the weighted features
well match human perception on crowds.

The remainder of this paper is organized as follows. The
existing works related to crowd understanding are reviewed
and discussed in Section II. The details of our dataset, in-
cluding annotation and evaluation protocols are introduced in
Section III. Section IV presents our proposed data-driven ap-
proach for crowd understanding, the global crowd feature and
the local crowd feature. In Section V, comprehensive experi-
ments have been conducted to show the effectiveness of our
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Fig. 2. Examples of four types of scenes from our dataset: road (first row), queue (second row), square (third row), and mixed (last row).

TABLE I
COMPARISON OF DIFFERENT CROWD DATASETS

UCF [2] Data-driven [55] CUHK [70] Flickr [26] PETS [21] WorldExpo’10

Source internet internet internet internet surveillance surveillance

# of scenes 38 35 62 50 8 245
# of videos 38 35 413 50 Images 40 2,630
Resolution 480 × 360 480 × 360 various various 720 × 576 720 × 576
Annotation type n/a n/a video-level frame-level frame-level region-level
# of annotation 0 0 50 50 4000 160, 911
Task segmentation tracking collectiveness counting counting segmentation, density,

collectiveness, cohesiveness

Videos or images in the CUHK [70] and Flickr [26] datasets do not have uniform resolutions.

approach and compare it with state-of-the-art methods. Finally,
the future works are discussed in Section VI and conclusion is
drawn in Section VII.

II. RELATED WORKS

Crowd datasets. A number of crowd datasets [2], [3], [11],
[15], [21], [33], [38], [43], [55], [64], [70] have been released in
recent years. They are designed for specific tasks. Since many
approaches are scene-specific, most of these datasets [3], [11],
[15], [33], [38], [43], [64] have one or two scenes, and cannot
be used to study generic crowd understanding. Courty et al.
[16] proposed the AGORASET dataset which contains eight
three-dimensional (3-D) synthetic scenes of walking pedestri-
ans. However, real-world surveillance videos are much more
challenging and realistic for research and evaluation. Table I
compares our proposed dataset to existing ones with more than
five scenes. Most of them are collected from the internet. The
crowd counting dataset [26] only contains 50 static images from
Flickr. The PETS [21] dataset was collected by eight cameras
with overlapping views on a campus. Both the above datasets
annotate the total number of persons in each image/frame. The
UCF [2] and data-driven [55] datasets do not provide any an-
notation. The CUHK dataset [70] provides collectiveness an-
notation for each video sequence. Since each video contains
multiple groups with different collective behaviors, it is more
accurate to annotate collectiveness of each crowd region as in

our dataset. None of the previous datasets provide annotations
on crowd segmentation, density, collectiveness and cohesive-
ness simultaneously.

Crowd segmentation. Crowd segmentation is an important
step for crowd counting, tracking and behavior analysis. It is
typically conducted through background subtraction [11], [12],
[14], [15], [34], optical flow estimation [2], [38], feature point
tracking [68], pedestrian detection [24], [54], [67], and SVM
classifier [4]. All these approaches have major limitations in
practice. For instance, some areas in the scene might be occupied
by crowds for long periods and the background is invisible. Fig. 3
shows example results of crowd segmentation by some above
mentioned approaches. Background subtraction does not work
well when it is difficult to model and update the background [see
Fig. 1(a)]. Background modeling generates a lot of false alarms
due to the changes of lightings, scene clutters, and nonhuman
foreground objects. Optical flow estimation and feature point
tracking do not work well when the crowds are stationary or
move slowly, or the video quality is low [see Fig. 1(b) and (c)].
These motion-based approaches do not utilize crowd textures
that can be used to distinguish other image regions. Appearance-
based pedestrian detectors perform poorly on extremely dense
crowds because of heavy occlusions and small pedestrian
sizes [see Fig. 1(d)]. In comparison, our data-driven approach
works on crowd patches and uses both appearance and motion
features.
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Fig. 3. Example results by different crowd segmentation methods. (a) Result by background subtraction used in [11]. (b) Result by optical flow. (c) Result by
feature point tracking with the KLT tracker [68]. (d) Result by pedestrian detection used in DPM [19]. (e) Result by our data-driven approach.

Crowd counting and density estimation. A number of works
[11], [14], [15], [26], [42] directly estimate the number of pedes-
trians in a whole image without detecting individual persons.
Most of them require annotating training frames of the tar-
get scene and rely on crowd segmentation. Meanwhile, several
methods [5], [22], [37] are proposed to estimate crowd density
based on pedestrian localization results. However, these meth-
ods are also scene-specific and not applicable to cross-scene
crowd understanding in large-scale surveillance applications.

Crowd behavior analysis. Many approaches [32], [33], [38],
[41], [43], [46], [64] for crowd behavior analysis learn motion
patterns for a target scene. They are not scene-independent and
do not capture universal properties of crowd behaviors. Zhou
et al. [69] measured the collectiveness using crowd manifolds
and compared it across different crowd scenes. Li et al. [39]
surveyed some state-of-the-art techniques on crowd behavior
analysis, including available features, existing models and eval-
uation protocols.

Data-driven approaches. Several works [40], [55], [60] were
proposed to solve pixel-wise or superpixel-wise classification
tasks via dense image matching. Such nonparametric and data-
driven approaches are suitable for large-scale data because they
do not need any training. They transfer the required informa-
tion from the training images to the query via dense image
matching. Liu et al. [40] proposed a nonparametric image pars-
ing method by recovering dense deformation fields between the
query and training images, and it can work with an arbitrary
set of labels. A simpler yet more effective nonparametric ap-
proach is proposed in [60], where the label transfer is achieved
by superpixel-level matching with local features. A data-driven
method is also adopted for crowd tracking in [55] to search for
similar behaviors among crowd motion patterns in other videos.
The key of these data-driven approaches is to design effective
global and local features to match query and training images,
which is also the focus of our proposed approach.

III. WORLDEXPO’10 CROWD DATASET

We contribute a large-scale benchmark dataset for under-
standing crowd. All the videos are shot with actual surveil-
lance cameras from Shanghai 2010 WorldExpo, which was the
world’s largest fair site ever with an area size of 5.28 square
km. Over 73 million people have visited during six months and
nearly 250 pavilions were built at the expo site. The abundant
sources of these surveillance videos enrich the diversity and
completeness of the surveillance scenes. We define four chal-

lenges and evaluation protocols on this dataset: crowd segmen-
tation, and estimation of crowd density, collectiveness and cohe-
siveness. It would significantly promote the research on crowd
understanding.

A. Data Collection

A huge amount of crowd videos were collected from Shang-
hai 2010 WorldExpo from June to October 2010. A total of
2630 video sequences from 245 cameras with disjoint views are
selected. Each camera has 10–12 videos, one of which was col-
lected at night, and at least two in each month. Each sequence
lasts one minute (3000 frames), and the data size is 40 GB.
Cameras were mounted on the top of buildings and had far-field
views. The resolutions of videos are 720 × 576, which is higher
than or comparable to existing datasets (Table I). The data was
collected under various weather conditions: sunny, cloudy, and
rainy (pedestrians held umbrellas on rainy days). All the scenes
generally fall into four categories: road, square, queue at en-
trances, and mixture of the previous three types of scenes (e.g.,
the bottom-right image in Fig. 1 has both queue and crowd
in square). Generally, crowds in queue or on road tend to have
higher collectiveness, while crowds in queue tend to have higher
cohesiveness. Examples are shown in Figs. 1 and 2.

B. Annotation

A professional labeling company was hired and 20 label-
ers were trained for the annotation task. Three frames were
uniformly sampled from each sequence for annotation. Before
labelers annotate a frame, they first browsed its surrounding
frames to observe moving objects. The boundaries of crowd re-
gions are drawn with polygons as shown in Fig. 1. Each crowd
region is labeled with three properties: density, collectiveness
and cohesiveness. Each crowd property is labeled as one of the
three levels: low (1), medium (2), and high (3). The property of
background regions is always labeled as 0.

The annotation rule for crowd segmentation is as follows.
Every person has his or her own territory which is a circle
with a radius of one meter.3 If the territories of two persons
overlap, the two persons are connected. A crowd region covers
a connected component of multiple persons.

Crowd density is annotated with the widely used Jacobs’s
method [29] proposed in social science, which classifies density
into three levels. It counts the average number (n) of persons

3The “one meter” for each person is empirically determined by the labeler as
2/3 of the person’s height.
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Fig. 4. Illustration of different levels of collectiveness and cohesiveness.
(a) Low collectiveness. (b) Medium collectiveness. (c) High collectiveness.
(d) Low cohesiveness. (e) High cohesiveness.

in every square meter. A scene is sparse if n ≤ 1, medium if
1 < n ≤ 2, or dense if n > 2. Since crowd is not uniformly
distributed in a scene, we empirically modified this rule to make
it easier for annotation. Within a segmented crowd region, if
the territory of a person includes another 0 ≤ m ≤ 2 persons on
average, this crowd region is annotated as sparse. Similarly, it
is labeled as medium if 2 < m ≤ 5, and dense if m > 5. This
is consistent with the Jacobs’s method [29], since the area of
a person’s territory is around 3 square meters. Our annotation
rule also implicitly considers crowd size. If a crowd region only
has three persons, it is always labeled as sparse, even if all three
stand tightly within one square meter, because there are no more
than two persons in the territory of another person. Examples of
density annotations are shown in Fig. 1.

Collectiveness and cohesiveness have been widely studied
in physics [10], [25], [61] and sociology [8], [36], [49] for
a long time. There is no explicit mathematical definition on
crowd collectiveness and cohesiveness. Therefore, collective-
ness and cohesiveness of our dataset’s samples are defined in a
subjective manner. For each sample, we have the same multiple
human labelers to annotate its collectedness and cohesiveness
(e.g., low=1, medium=2, high=3), and the average of their an-
notations is used as the final label. Fig. 4 shows examples of our
definition on different levels. The collectiveness of Fig. 4(a) is
labeled as low, since the pedestrians move in different directions
without the same goal. In Fig. 4(b), a few crowd groups move in
opposite directions and its collectiveness is labeled as medium.
In Fig. 4(c), all the persons move in the same direction and the
collectiveness is high.

Cohesiveness measures the stability of local geometrical and
topological structures of crowd groups. Fig. 4(d) shows the same
crowd at different frames. The topological structure of its mem-
bers has changed significantly, and therefore the cohesiveness is
low. Fig. 4(e) shows an example with high cohesiveness. Note
that high collectiveness does not mean high cohesiveness. If
a group of people move in the same direction but with very
different speed, their local structures cannot remain stable.

Fig. 5 shows the histograms (on the area of crowd regions)
of the three properties for the four type of scenes. According

Fig. 5. Statistics of three properties in different crowd scenes (blue = low, red
= medium, green = high). (a) Density. (b) Collectiveness. (c) Cohesiveness.

TABLE II
PARTITION OF TRAINING AND TEST SETS

Road Queue Square Mixture Total

N s / t r a in 83 38 41 30 192
N s / t e s t 20 10 12 11 53
N s / t o t a l 103 48 53 41 245
N c / t r a in 809 394 464 386 2053
N c / t e s t 207 103 147 120 577
N c / t o t a l 1016 497 611 506 2630

Ns indicates the number of scenes and Nc indicates the number
of video sequences.

to our statistics, around 75% regions are background and the
remaining 25% regions are crowds. Most of the crowd regions
in our dataset have high density. Generally, road and queue
crowd scenes with strict man-made constraints have higher col-
lectiveness and cohesiveness than open scenes such as square.
Especially, in queue scenes, people are kept within some bounds,
and most of the crowd regions have high cohesiveness.

C. Evaluation Protocols

80% of the data is partitioned for training and the other 20%
for testing. The two subsets have no overlap on scenes or video
sequences, In this way, the methods’ capability of handling
unseen scenes can be well evaluated. On the test set, we attempt
to make data distribution more balanced on the four types of
scenes. Detailed statistics are shown in Table II. Each crowd
region in the test set was annotated by five labelers and we
use the average of their scores. Since the training set is much
larger, we cannot afford the cost of labeling each crowd region
for multiple times. Although each crowd region is only labeled
by one labeler, the whole training set is labeled by 20 labelers.
The bias introduced by individual labelers can be reduced to
some extent, because the learning process is based on the whole
training set. Four evaluation criteria on the test set have been set
for the proposed challenges.

Crowd segmentation. Every pixel in an annotated frame has
a label: background (0) or crowd (1). ROC curve is used to
evaluate the performance of crowd segmentation.

Crowd density estimation. Every pixel has an annotated den-
sity score ranging from 0 to 3. 0 indicates background and no
crowd exists, while 3 indicates dense crowd. The estimation
algorithms are expected to output continuous density scores.
The Mean Square Error (MSE) is used for evaluation, and is
computed as

MSE =
1

NtestNI

N t e s t∑

i=1

∑

p∈Ii

(l̂p − lp)2 (1)
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Fig. 6. Illustration of our proposed data-driven crowd understanding method.

where for pixel p in frame Ii , the ground-truth annotation is lp ,
the predicted output is l̂p , Ntest is the number of test samples
and NI is the number of pixels for image Ii .

Collectiveness and cohesiveness estimation. Since it is not
reasonable to estimate collectiveness or cohesiveness of back-
ground, we only use manually segmented crowd regions for
evaluation. The scores of both properties are in the range of 1
to 3. Similar to crowd density estimation, the MSE is used for
evaluation.

IV. DATA-DRIVEN CROWD UNDERSTANDING

We propose a data-driven crowd understanding approach as
the baseline for our dataset. Different from most scene-specific
crowd understanding methods, the data-driven method can be
applied to any unseen scene without extra labeling and training.
Data-driven approaches [40], [60] have achieved great success
on scene understanding, which transfer the annotations of train-
ing data to test samples via dense pixel-level or superpixel-level
image matching. Our large-scale annotated training set makes it
possible for us to develop a data-driven approach as a baseline
for our crowd understanding dataset.

A. Overview of the Proposed Method

In order to automatically annotate a query frame, the key of
our data-driven method is to retrieve the most similar samples
from training set and transfer their labels to the query via dense
image matching. Fig. 6 illustrates the overall framework of our
proposed method. In our framework, a short video clip including
30 frames surrounding the query frame is extracted as input. The
training video clips are generated in the same way. To transfer
labels only from training video clips that are similar to the
query, the most similar scenes to the query video clip are first
retrieved from the training set based on the global crowd feature
as the candidate scene set. Then multi-scale crowd patches are
extracted in a sliding window fashion with 50% overlap from
the query video. For each patch, the most similar patches are

retrieved from the candidate scene set based on local crowd
features. Therefore, the key is to design effective global crowd
feature to retrieve similar scenes and local crowd feature to
match similar patches. Instead of using existing generic features,
we learn crowd features and the optimal combination weights
of different components based on training crowd videos. The
crowd properties of each pixel can then be estimated by average
voting. The multi-scale MRF is utilized to ensure the smoothness
of the resulting crowd property map.

B. Global Crowd Feature for Candidate Scene Retrieval

For each patch in the query frame, it is costly to search among
millions of crowd patches in the whole dataset for the most
similar training patches. Therefore, it is more efficient to first
retrieve a small set of candidate training video clips most similar
to the query clip and match training patches within this subset. A
global feature is needed to describe the whole crowd scene. One
commonly used scene feature GIST requires convolving each
image with a set of Gabor filters. However, there is no filter
specifically designed to describe crowd scenes. Therefore, for
our global crowd feature, we train mid-level filters to effectively
describe the content of a crowd scene (see Fig. 7).

Mid-level crowd filters. Mid-level feature learning has been
exploited in recent works on several vision topics, such as
scene classification [59] and action recognition [30]. But ex-
isting works on mid-level feature learning did not consider the
special properties of crowd understanding. The crowd property
of a patch would significantly influence its appearance. Our
goal is therefore to train discriminative mid-level filters that
are able to distinguish patches of different appearance. We first
group patches into several clusters with similar visual appear-
ance. 16 000 spatio-temporal patches are uniformly sampled
from crowd regions for clustering based on their ground truth
crowd density, collectiveness and cohesiveness. In this way, the
sampled patches have good diversity. The affinity propagation
(AP) clustering method [23] is adopted because it does not
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Fig. 7. Global crowd feature for scene retrieval. Red regions in the response map have high response value while blue regions are low. The retrieved scenes have
similar views. Dense crowds are in areas farther to cameras.

require the number of clusters to be estimated in advance. For
our dataset, Nc = 30 clusters are obtained for our training set
by the AP algorithm. To capture distinctive appearance patterns
to describe patches of different clusters, a discriminative filter
is learned for each crowd cluster. For each cluster k, all the
patches assigned to this cluster are regarded as positive sam-
ples, and patches from the other clusters and background are
randomly sampled to form the negative samples. The number
of negative samples is set 10 times as many as the positive
samples. After creating the positive and negative patch sets, a
linear SVM classifier {wk , bk}Nc

k=1 is trained for every cluster.
The SVM weights wk and bias term bk serve as the kth crowd
mid-level filter. A response score map is obtained when crowd
mid-level filters are used to convolve with a query video clip.

Global crowd feature. Global crowd feature is designed to
describe the properties of the whole crowd scene for scene re-
trieval. Therefore, global crowd feature is extracted from the
whole response maps generated by the mid-level filters for each
video clip. The response maps are divided into Nx × Ny cells
with no overlap. We set Nx = 4 and Ny = 5 for our proposed
dataset. The average response scores of each grid is calculated.
Such scores of all the filter response maps of Nc filters is con-
catenated as the global crowd feature to calculate its similarity
between different scenes and to retrieve similar training scenes
for a query (see Fig. 7). The total dimension of our global crowd
feature is therefore Nx × Ny × Nc = 600.

C. Local Crowd Feature for Patch Matching

To distinguish different crowd properties, local crowd fea-
ture should describe both appearance and motion information
at multiple scales. Therefore, our local crowd feature includes
eight appearance and motion features extracted from each 3-D
spatio-temporal crowd volume.

Multi-scale augmentation. Video surveillance data has large
perspective variation, and crowds can be observed at different
scales. In order to augment the training set and increase the
robustness of matching with query patches, we sample both

Fig. 8. Local crowd feature. (a) Uniformly sampling four frames from a
3-D crowd volume and dividing them into 3 × 3 cells. (b) Extracting HOG at
each sampled frame. (c) Features computed from Hough transform are used to
distinguish crowd patches from man-made patches with long line structures.
(d) Examples of crowd patches with coherent (top) and incoherent (bottom)
motions. Each sampled frame is divided into four sub-regions. Histograms of
motion directions (third column) and speed (fourth column) are computed in
each sub-region and the whole region.

training and test patches at multiple scales and normalize them
to the same size (36 × 36 × 30) as shown in Fig. 6.

Appearance features. The first feature f1 , HOG [17], is ex-
tracted from each sampled patch, as shown in Fig. 8(a) and (b).
4 frames are uniformly sampled from a 3-D patch, and each
frame is divided into 3 × 3 cells with 50% overlap. The size of
each cell is 18 × 18. Empirically, we observe that HOG cannot
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Fig. 9. Using relevance feedback to learn the optimal weights for the local crowd feature.

distinguish crowd patches with some man-made background
patches with long line structures [such as fence in Fig. 8(c)],
which are commonly observed in crowd scenes. We design two
features (f2 and f3) with Hough transform to capture line struc-
tures. Traditional Hough transform is based on edge detection
operators, such as Canny and Sobel. However, these edge opera-
tors ignore much texture information, especially for the surveil-
lance video patch with relatively low resolution. Therefore, we
perform Hough transform on image gradient map

r(θ) = x0 cos θ + y0 sin θ (2)

where θ is determined by gradient (Δx,Δy) at (x0 , y0) and is
calculated as θ = Δy

Δx + π
2 . After applying a Gaussian filter, a

response map M(r, θ) in the polar coordinate is obtained, as
shown in Fig. 8(c). The feature f2 = [μv , σv ] characterizes ver-
tical lines. μv and σv are the mean and variance of responses in
the range θ ∈ [0, 10◦] ∪ [170◦, 180◦]. The feature f3 = [μa, σa ]
characterizes the longest line in any direction. The mode of the
highest peak is detected with the mean shift algorithm and its
mean and variance are μa and σa .

Motion features. To characterize local motion of the sampled
patch, the feature f4 , Histogram of Optical Flows (HOF) [35],
is computed on the same sampled frames and cells. The same
parameter setting is adopted as HOG. In order to further charac-
terize whether individuals in crowd move in similar directions
and keep stable local structures, the features f5 − f8 are com-
puted based on the histograms of motion directions and speed
as shown in Fig. 8(d). They are the entropy and variance of the
two types of histograms. The patch at each frame is divided into
four sub-regions. Histograms of the four sub-regions and of the
whole region are computed. Note that besides f5 − f8 , f1 and
f4 at sampled frames are also useful for estimating collective-
ness and cohesiveness, since they characterize how appearance
and motion change over time.

Learning feature weights. The f1 − f8 features are concate-
nated as the local crowd feature. The distance between a training
patch xi and a query patch xq is then computed as

d(xi, xq ) =
8∑

k=1

ωk‖fik − fqk‖2 (3)

where fik and fqk is the kth local crowd feature of the patch xi

and xq . It is important to assign a set of optimal weights {ωk} to
weight the importance of the eight features. We do not use the

annotated labels in the training set to learn the weights, because
it might make our crowd feature overfit to a particular task.
Instead, we choose a relevance feedback approach to learn the
weights that most match human perception. The weights learned
in this way are more general and can be applied to various crowd
understanding tasks.

It starts with uniform weights. Some examples of matching
results with uniform distribution were shown Fig. 9. At each
iteration t, a patch x

(t)
q is randomly selected from the training

set and is tried to match with other training patches x
(t)
i using the

current weights. Top N matches are presented to a labeler, who
labels each of them as similar (1), dissimilar (−1), or uncertain
(0) based on visual perception (Fig. 9). Based on the feedback,
the feature weights are adjusted with adaptive SVM [65] as

d(t+1)(xi, xq ) = d(t)(xi, xq ) +
8∑

k=1

Δω
(t)
k ‖fik − fqk‖2 (4)

where d(t) represents the distance function at iteration t, and
Δω(t) are the parameters estimated from the feedback examples
at iteration t. To learn the parameter Δω(t) , we adopted a SVM-
like objective function

min
w ( t )

1
2

∥∥∥w(t)
∥∥∥

2
+ C(t)

N ( t )∑

i=1

ξ
(t)
i

s.t. ξ
(t)
i ≥ 0; C(t) = η(t)(1 − η(t))

yid
(t)(xi) + yi

8∑

k=1

Δω
(t)
k

∥∥∥f
(t)
ik − f

(t)
qk

∥∥∥
2
≥ 1 − ξ

(t)
i

∀(xi, yi) ∈ D(t) (5)

where
∑N

i=1 ξ
(t)
i measures the total classification error of the

tth feedback iteration. The cost factor C(t) represents the dis-
criminative capability of the current iteration data to balance
the contribution of previous iterations. So we define the C(t) as
C(t) = η(t)(1 − η(t)), where η(t) is the accuracy of feedback
results at iteration t. η = 1 or 0 means all the feedback results
are similar patches or dissimilar patches, which would not im-
prove the retrieval results, and result in the lowest value of C.
Oppositely, an equal number of positive samples and negative
samples would lead to optimal weights.
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Fig. 10. Four query patches are selected from a query video clip. Their most similar (two upper rows) and dissimilar (two bottom rows) training patches based
on our local crowd feature are shown in green and red rectangles, respectively.

At every iteration, a different query patch is randomly cho-
sen. The iterations stop when the weighted features well match
human perception and cannot be further improved. Some ex-
amples of matching results are shown in Fig. 10. The learned
weights well distinguish background and crowds of different
density levels.

D. Crowd Property Estimation

For each query video clip, we first retrieve its M = 30 most
similar training video clips according to the global crowd fea-
ture. In addition, no more than three video clips are from the
same scene to ensure their diversity. Image patches from the
candidate training clips form the pool of candidate training
patches. For the query video clip (30 frames), crowd patches
are sampled at S = 3 different scales. For each patch p at scale
s, its observed label score l̂sp is the averaged label score of its top
K = 20 matched training patches from the candidate training
patch pool.

The final label scores {lsp} are obtained by the multi-scale
MRF [26] to ensure smoothness. The graph can be represented
by (V,E), where V are the pixel nodes and E are the neighbors
at the same level and intermediated nodes that connect a patch
to layers above and below it. The energy function with S level
scales is thus given by

min
l

∑

s∈S

⎛

⎝
∑

p∈Vs

D(η̂s
p , l

s
p) +

∑

(p,q)∈E

V (lsp − lsq )

⎞

⎠ (6)

where lsp represents the estimated property of patch p at scale s,
and q is the spatial neighbor of patch p. The data term is defined
as D = |η̂s

p − lsp |, where η̂s
p = 1

2 (l̂s+1
p + l̂sp) is of the bottom two

scales and η̂s
p = l̂sp is of the top scale. The smoothness term is de-

fined as V = min(|lsp − lsq |, ε), which enforces the smoothness
between the neighboring nodes. This multi-scale MRF model
is optimized using the Max-Product Belief Propagation method
on grid structure [20].

V. EXPERIMENTAL EVALUATION

We evaluate our data-driven approach for different crowd
understanding tasks, including crowd segmentation (Section V-
A), crowd density estimation (Section V-B), and crowd col-

lectiveness and cohesiveness estimation (Section V-C) on the
WorldExpo’10 dataset and compare it with other methods. The
evaluation metrics were explained in Section III-C. For the test
set, the patches are extracted in a sliding window fashion with
50% overlap in three scales, 36 × 36, 72 × 72, and 144 × 144,
respectively. The estimated property of each pixel is obtained by
averaging all the predictions of overlapping patches. The exten-
sive experimental results by our proposed method and the com-
pared ones on crowd segmentation, crowd density estimation,
and crowd collectiveness and cohesiveness estimation demon-
strate our method’s capability of handling unseen scenes.

A. Crowd Segmentation

We compare our proposed data-driven approach (Data-
driven) with six other crowd segmentation methods. The ROC
curve is used to evaluate the performance of crowd segmenta-
tion. The following approaches are compared.

1) SVM (Codebook): To the best of our knowledge, the only
existing method specifically designed for crowd segmentation
is [4]. The proposed method modeled crowd texture with a
codebook. The SIFT features are extracted from interest points
in frames. The codebook of size 1000 is built through k-means
clustering on the SIFT feature. Crowd-likelihood features are
computed based on the codebook as in [4] and used to classify
each patch with SVM with a RBF kernel.

2) BS: Background subtraction is used by many crowd un-
derstanding works [11], [12], [15], [42] to segment crowd. The
method used in [12] is chosen for comparison.

3) Deformable Parts Model (DPM): Pedestrian detection ap-
proaches might also be used for crowd segmentation. A state-
of-the-art pedestrian detector with DPM [19] is applied to test
frames. It is trained on the INRIA dataset [17]. A pixel is seg-
mented as crowd if it falls into a pedestrian window. We also
compare with two baselines to evaluate the effectiveness of the
components of our proposed method.

4) SVM (HOG): This baseline follows the same framework
as [4] but utilizes the HOG as the features to describe crowd,
which is a popular descriptor for pedestrians. 5) SVM Local
Crowd Feature (LCF). To evaluate the performance of our pro-
posed data-driven classifier, we also create a baseline that uti-
lizes SVM and our proposed LCF feature. For methods 1), 4)
and 5), we select 192 clips from every training scenes with
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Fig. 11. (a) ROC curves of crowd segmentation results by different methods.
(b) ROC curves of crowd segmentation results by using different local features
in our proposed data-driven framework. (c) MSE of density estimation by our
proposed framework with varying M and K . (d) MSE of density estimation by
our proposed framework with varying K and different local features.

medium density distribution as the training data. The SVM is
trained with approximately 230 000 patches. For fair compari-
son, when comparing with methods 1), 4) and 5), our data-driven
method is trained with the same training set.

As shown in Fig. 11(a), our data-driven method with the
proposed LCF feature outperforms the compared methods. Al-
though BS works better than several other methods, it still per-
forms worse than our data-driven approach. This is because
background subtraction methods utilize motion information and
cannot handle crowds that move slowly or are stationary. It is
also affected by scene clutters. When setting the false positive
ratio to 0.1, the true positive ratio of BS is 10% lower than that of
ours. The pedestrian detector (DPM) does not work well neither
because of severe occlusions. We also observe that when using
the same classifier, i.e., SVM, our proposed local crowd fea-
ture significantly outperforms the widely used HOG and SIFT
features. However, using the SVM classifier with our proposed
feature is still inferior to the proposed data-driven approach,
which is more effective on handling the complex distributions
of crowd and background patches.

In order to further evaluate the effectiveness of our proposed
local crowd feature, we compare our LCF feature to different
local features by using them as the local feature in our pro-
posed data-driven framework. The compared features include
HOG [17], Local Binary Patterns (LBP) [50], Gray-Level Co-
occurrence Matrix (GLCM) [44], HOG3D [31] and Dense Tra-
jectory (DT) [63]. The general appearance features, such as
LBP, GLCM and HOG, are widely used for general texture de-
scription and crowd understanding. HOG3D and DT are utilized
for spatio-temporal description and achieve satisfactory perfor-
mance on action recognition and crowd behavior understanding.
We utilize the recommended parameters for all the compared
features. Fig. 11(b) shows the ROC curves of different local fea-

TABLE III
MSE OF CROWD DENSITY ESTIMATION BY REGRESSION-BASED METHODS

(LEFT COLUMN) AND OUR PROPOSED DATA-DRIVEN METHODS WITH

DIFFERENT LOCAL FEATURES (RIGHT COLUMN)

Method MSE Method MSE

HOG+RR 1.10 Data-driven (HOG) 0.94
GLCM+GPR [11] 1.07 Data-driven (GLCM) 1.03
LBP+KRR [15] 0.98 Data-driven (LBP) 0.91
Lempitsky [37] 1.31 Data-driven (Ours) 0.71

tures, where our proposed LCF feature outperforms other local
features. LCF is more effective to describe the crowd characters.
Note that DT obtains better performance than other texture fea-
tures, which shows that motion information is important for the
crowd segmentation task. But the general spatio-temporal fea-
tures, such as DT and HOG3D, are not effective on describing
crowds.

B. Crowd Density Estimation

Our propose data-driven framework can also be utilized to
estimate crowd density. The MSE (1) is used as the evaluation
criterion. We compare our proposed method with some state-of-
the-art regression based methods. All the major components in
our methods are also evaluated. At last, we also discuss parame-
ter selection and computational cost of our data-driven method.

Comparison with regression-based methods. We compared
our proposed framework with several regression-based methods
to estimate crowd density of each patch [11], [15], [37], [54].
They were originally proposed for crowd counting but can be
used to estimate density in a similar way.

Gaussian Processes Regression (GPR) with GLCM feature
was used for crowding counting [11]. Similarly, Kernel Ridge
Regression (KRR) with LBP feature was adopted in [15]. Lem-
pitsky [37] proposed a crowd density estimation approach that
uses SIFT and regularized linear regression, which was also used
in [54]. We also use the widely used HOG feature with the basic
Ridge Regression (HOG+RR) as a baseline. The density esti-
mation results of all the methods are listed in Table III. For fair
comparison, we use the same training data for both regression-
based methods and our data-driven method, which means that
the step of candidate scene retrieval based on the global crowd
feature is skipped in our method. Instead, we perform the local
patch matching on all training data.

Our approach achieves the highest accuracy among all the
compared methods. Most of these regression-based methods
are scene-specific, and models learned from a particular scene
can only be well applied to the same scene. From Table III, it is
obvious that they do not show satisfactory performance in the
large-scale dataset. In contrast, data-driven methods are more
suitable for the large-scale and dynamic dataset. Some examples
of our results are shown in Fig. 12.

Experiments are also conducted on the popular UCSD dataset
[11] and MALL dataset [15], which are widely used to eval-
uate crowd counting and crowd density estimation. Pedestri-
ans’ positions are labeled for each scene of the two dataset.
Followed by the Jacobs’s method mentioned in III-B, the
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Fig. 12. Example density estimation results (red = dense, yellow = medium, green = sparse) by our data-driven framework (odd columns) and by the
regression-based method LBP+KRR (even columns), which is the best regression-based method.

TABLE IV
MSE OF CROWD DENSITY ESTIMATION BY REGRESSION-BASED

METHODS AND OUR PROPOSED DATA-DRIVEN METHODS ON

THE UCSD DATASET AND MALL DATASET

Method UCSD [11] MALL [15]

Lempitsky [37] 1.07 1.16
GLCM+GPR [11] 0.73 0.91
LBP+KRR [15] 0.62 0.84
Data-driven (Ours) 0.54 0.77

density level annotations can be generated from the position
labels. Both regression-based methods and our data-driven
method are only trained from the training set of our World-
Expo’10 dataset. Following, the same test partition as in [11] and
[15]. Most of the regression-based methods are scene-specific,
and our proposed method outperforms all the compared meth-
ods in these two datasets as shown by the results in Table IV.
The results demonstrate that our proposed method is able to
handle unseen target scene with our large-scale training dataset.

TABLE V
MSE OF CROWD DENSITY ESTIMATION BY THE DATA-DRIVEN FRAMEWORK

WITH DIFFERENT GLOBAL AND LOCAL CROWD FEATURES

HOG LBP GLCM HOG3D DT HOGHOF LCF (UW) LCF

GIST 1.08 1.08 1.21 1.15 1.10 0.96 0.98 0.94
GIST+MRF 0.93 0.95 1.08 1.00 0.93 0.84 0.88 0.82
GCF 1.06 1.01 1.19 1.16 1.02 0.93 0.94 0.89
GCF+MRF 0.90 0.88 1.05 0.98 0.85 0.80 0.82 0.78

Evaluation of individual components. The effects of differ-
ent local features are first investigated by using them in the
proposed data-driven framework. Notice that spatio-temporal
features, such as DT and HOGHOF [35], have better perfor-
mances than texture features because of the additional motion
information. Our LCF outperforms all other compared features.
In addition, our LCF feature with uniform weights was com-
pared as a baseline to demonstrate the necessity of the rele-
vance feedback scheme as Eq. (5). We then compare our GCF
for candidate scene retrieval with the GIST feature (Table V).
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We observe that our GCF based on the mid-level crowd filters
generate more accurate candidate scenes for label transfer with
different local features. We also test the effect of the multi-scale
MRF. Obviously, the MRF effectively improves the estimation
accuracy because it enforces smoothness on the resulting label
maps.

Parameter selection. The proposed data-driven system re-
trieves M most similar scenes for the query clip, and further
selects K nearest neighbors for each query patch to estimate
the crowd properties. We investigate the performance of our
data-driven system by varying the parameters M and K.

Fig. 11(c) shows the MSE by setting different M and K. The
performance improves as the number of candidate scenes (larger
M ) increases. The performance drops as K increases since
more candidate patches may introduce noise to label transfer,
especially when M is small. Although by conducting local patch
matching in all training frames (equivalent to M = 7000), we
obtain lower MSEs (as shown by the results in Table III). The
computational time is proportional to M and using such large M
is not practical for real-world applications. We also fix M = 30
and calculate the MSE of density estimation with varying K
using different local features as shown in Fig. 11(d). Smaller K
incorporates less information and larger K might result in more
noise. We observed that K = 20 achieves the best performance
for most types of local features. The balanced performance and
computational cost are achieved when M = 30 and K = 20.

Computational cost. Our implementation is in MATLAB and
is mostly parallelized. All our tests ran on a PC with a Core-i7
3.4 GHz quad core processor and 16 GB RAM. Our compu-
tational cost is mainly dominated by the extraction of global
and local crowd features, which costs nearly 100 s for every
query clip. But it can be easily sped up by utilizing more power-
ful hardware and better parallelization. Labeling one query clip
with candidate scene retrieval and local patch matching takes
less than 10 s. The main bottleneck of our implementation is
file I/O for loading retrieval set features from hard disk. More
appropriate data structure and larger RAM would improve the
effectiveness of our implementation.

C. Collectivness and Cohesiveness Estimation

Our proposed method can also be extended to estimate collec-
tiveness and cohesiveness. The MSE (1) is used as the evaluation
criterion. Since it does not make sense to estimate collective-
ness or cohesiveness on background, we only estimate annotated
crowd regions for evaluation. We compared with the collective-
ness measurement method proposed by Zhou et al. [70]. Since
collectiveness and cohesiveness describe the motion informa-
tion of crowds, we only compare our LCF feature with two
spatio-temporal features, HOG3D [31] and HOGHOF [35].

Table VI reports the results of collectiveness and cohesiveness
estimation by different methods. For collectiveness estimation,
[70] does not work well if feature points cannot be well de-
tected and tracked, especially when the video resolution is low.
Our data-driven method performs robustly and does not rely on
any detection and tracking. The experiment results show that
our proposed crowd feature achieves better accuracy on collec-

TABLE VI
MSE OF COLLECTIVENESS AND COHESIVENESS ESTIMATION

MSE

Zhou et al. [70] for collectiveness 0.71
Data-driven (HOG3D) for collectiveness 0.67
Data-driven (HOGHOF) for collectiveness 0.52
Data-driven for collectiveness (our LCF) 0.49
Data-driven (HOG3D) for cohesiveness 0.78
Data-driven (HOGHOF) for cohesiveness 0.66
Data-driven for cohesiveness (our LCF) 0.64

tiveness estimation than the other two spatio-temporal features.
For cohesiveness estimation, there is no previous work on this
topic. We only report the results by our data-driven framework
with different local features. The data-driven method with our
proposed crowd features also achieves the best performance.

VI. DISCUSSION AND FUTURE WORK

The WorldExpo’10 dataset is a large-scale benchmark dataset
for crowd understanding and covers a large variety of scenes
with sufficient training data. Such training data would benefit
learning algorithms specifically designed for big data, such as
deep learning, data-driven approaches etc. Therefore, we hope
the WorldExpo’10 dataset would become an important resource
for more crowd video surveillance applications and can play a
critical role in advancing the research on understanding crowds.
We envision the following possible potential challenges:

Crowd counting. Most of existing crowd counting algorithms
and datasets are scene-specific and focus on low density crowd.
In comparison, the WorldExpo’10 dataset contains a large num-
ber of scenes with high variation of density. In the most crowded
scenes, the number of pedestrians in a frame is close to one thou-
sand. The crowd density also varies in a large range. Therefore,
it is much more challenging and realistic to real-world surveil-
lance applications. The baseline method of density estimation
proposed in this paper would offer an important prior for crowd
counting.

Abnormal event detection. Anomaly detection is an important
problem in crowd understanding with extensive applications. In
our high quality, diverse and large-scale WorldExpo’10 dataset,
plenty of abnormal events can be observed and defined to eval-
uate and advance related research. The universal properties,
density, collectiveness and cohesiveness, might be helpful for
anomaly detection.

Crowd scene classification. We roughly summarize the crowd
scenes in the WorldExpo’10 dataset into four categories. How-
ever, it can be further classified into many more categories based
on different crowd behaviors, such as crowd gathering, crowd
dispersing, crowd queuing, rushing, and loitering.

Deep learning has achieved great success in computer vi-
sion during recent years. However, so far little work has been
done on deep learning for crowd understanding due to the lack
of large-scale training data with annotation. This new dataset
would significantly advance deep learning research in this area,
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and more effective and discriminative crowd features and rep-
resentations can be learned.

VII. CONCLUSION

In this paper, we contribute a large-scale annotated bench-
mark dataset including 245 scenes for cross-scene crowd under-
standing. Four challenges are proposed for this dataset based on
their importance in scientific studies and crowd video surveil-
lance applications. Benefiting from the large-scale training set,
a data-driven approach with new global and local crowd features
is proposed to solve crowd understanding tasks. It serves as a
baseline for the proposed dataset and outperforms state-of-the-
art approaches.
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