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Abstract. Multiple classifier systems provide an effective way to improve pat-
tern recognition performance. In this paper, we use multiple classifier combina-
tion to improve LDA for high dimensional data classification. When dealing 
with the high dimensional data, LDA often suffers from the small sample size 
problem and the constructed classifier is biased and unstable. Although some 
approaches, such as PCA+LDA and Null Space LDA, have been proposed to 
address this problem, they are all at cost of discarding some useful discrimina-
tive information. We propose an approach to generate multiple Principal Space 
LDA and Null Space LDA classifiers by random sampling on the feature vector 
and training set. The two kinds of complementary classifiers are integrated to 
preserve all the discriminative information in the feature space. 

1   Introduction 

Multiple classifier combination is an effective way to improve pattern recognition 
performance. Random subspace [4] and bagging [5] are two popular techniques to 
combine weak classifiers into a powerful decision rule. In the random subspace 
method, a set of low dimensional subspaces are generated by randomly sampling 
from the high dimensional feature vector and multiple classifiers constructed in the 
random subspaces are combined in the final decision. In bagging, random independ-
ent bootstrap replicates are generated by sampling the training set. A classifier is 
constructed from each replicate, and the results of all the classifiers are finally inte-
grated. Based on the two random sampling techniques, we propose an approach using 
multiple LDA classifier combination for high dimensional data classification. 

Linear Discriminant Analysis (LDA) is a popular feature extraction technique for 
data classification. It determines a set of projection vectors maximizing the between-
class scatter matrix ( bS ) and minimizing the within-class scatter matrix ( wS ) in the 

projective feature space. But when dealing with the high dimensional data, LDA 
often suffers from the small sample size problem. When there are not enough training 
samples, wS  is not well estimated and may become singular [3]. 

To address this problem, a two-stage PCA+LDA approach [1] is proposed. The 
high dimensional data is first projected to a low dimensional PCA subspace, in which 

wS  is non-singular, and then LDA is performed. We call it Principal Space LDA. 
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The eigenvectors with small eigenvalues removed from the PCA subspace may also 
encode some information helpful for recognition. Their removal may introduce a loss 
of discriminative information.  

Chen et. al. [2] suggested that the null space spanned by the eigenvectors of wS  

with zero eigenvalues contains the most discriminative information. However, as 
explained in [2], with the existence of noise, when the training sample number is 
large, the null space of wS  becomes small, so much discriminative information out-

side this null space will be lost.  
Some random sampling based LDA classification approaches can be found in 

[7][8]. Different from the previous work, our method simultaneously samples on the 
feature space and training samples, and takes advantage of the discriminative infor-
mation in both the principal and null spaces of wS . We also explain that both Princi-

pal Space LDA (P-LDA) and Null Space LDA (N-LDA) encounter the overfitting 
problem, but for different reasons. So we will improve them in different ways accord-
ingly. A more detailed description on the algorithm can be found in [9][10]. In this 
paper, we make an extensive experimental study on the XM2VTS database [12]. 

2   LDA for High Dimensional Data Classification 

Two conventional LDA approaches, PCA+LDA and N-LDA are briefly reviewed in 
this section. The high dimensional data is represented as a vector x

�
 with length N. 

The training set contains M samples belonging to L classes. 

2.1   PCA+LDA 

Principal Component Analysis (PCA) computes a set of eigenvectors of the ensemble 
covariance matrix C of the training set. Eigenvectors are sorted by eigenvalues, which 
represent the variance of data distribution. There are at most M-1 eigenvectors with 
non-zero eigenvalues. Normally K eigenvectors, [ ]KuuU

�
�

�
,1= , with the largest 

eigenvalues, are selected to span the PCA subspace. Low dimensional features are 
extracted by projecting the high dimensional data x

�
 into the PCA subspace, 

( )mxUw T ��� −= .                (1) 

where m
�

 is the mean of the training set.     
LDA tries to find a set of projecting vectors W  maximizing the ratio of determi-

nant of bS  and the determinant of wS , 

WSW

WSW
W

w
T

b
T

maxarg= .   (2) 

W  can be computed from the eigenvectors of bw SS 1−  [6]. The rank of wS  is at most 

M-L. But when the training set is small and M-L is smaller than the vector length N, 

wS  may become singular and it is difficult to compute 1−
wS . 
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In the two-stage PCA+LDA approach [1], the data vector is first projected to a 
PCA subspace spanned by the M-L largest eigenvectors. LDA is then performed in 
the M-L dimensional subspace, such that wS  is nonsingular. But in many cases, M-L 

dimensionality is still too high for the training set. So the LDA classifier is often 
biased and unstable. Furthermore, much discriminative information outside the PCA 
subspace is discarded. 

2.2   Null Space LDA 

Chen et. al. [2] suggested that the null space of wS  also contains much discriminative 

information. It is possible to find some projection vectors W satisfying 0=WSW w
T  

and 0≠WSW b
T , thus the Fisher criteria in Eq. (2) definitely reaches its maximum 

value. The rank of wS , ( )wSr , is bounded by ( )NLM ,min − . Because of the exis-

tence of noise, ( )wSr  is almost equal to this bound. The dimension of the null space 

is ( )LMN +−,0max . As shown by experiments in [2], when the training sample 

number is large, the null space of wS  becomes small, thus much discriminative 

information outside this null space will be lost.  

3   Multiple LDA Classifier Combination   
  for High Dimensional Data Classification 

Both P-LDA and N-LDA face the same problem: the constructed classifier is unstable 
and much discriminative information is discarded. But they are caused by different 
reasons. So we design different random sampling algorithms to improve the two LDA 
methods, and combine them in a multiple classifier structure. 

3.1   Using Random Subspace to Improve P-LDA 

In P-LDA, overfitting happens when the training set is relatively small compared to 
the high dimensionality of the feature vector. In order to construct a stable LDA clas-
sifier, we sample a small subset of features to reduce discrepancy between the train-
ing set size and the feature vector length. Using such a random sampling method, we 
construct a multiple number of stable LDA classifiers, and combine them into a pow-
erful classifier covering the entire feature space without losing discriminative infor-
mation.  

We first apply PCA to the training set. All the eigenvectors with zero eigenvalues 
are removed, since all the training samples have zero projections on them. The M-1 
eigenvectors { }110 ,, −= MuuU

�
�

�
 with positive eigenvalues are retained as candidates 

to construct random subspaces. Then, K random subspaces are generated. The dimen-
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sion of random subspace is determined by the training set to make the LDA classifier 
stable. In each random subspace, the first N0 dimensions are fixed as the largest ei-
genvectors, and the remaining N1 dimensions are randomly selected from 
{ }11 ,,

0 −−− MNM uu
�

�
�

. The N0 largest eigenvectors encode much data structural infor-

mation. If they are not included in the random subspace, the accuracy of LDA classi-
fiers may be too low. Our approach guarantees that the LDA classifier in each ran-
dom subspace has satisfactory accuracy. The 1N  random dimensions cover most of 

the remaining small eigenvectors. So the ensemble classifiers also have a certain 
degree of error diversity.  

3.2   Using Bagging to Improve N-LDA 

In N-LDA, the overfitting problem happens when the training sample number is 
large, since the null space will be too small. It can be alleviated by bagging. In bag-
ging, random independent bootstrap replicates are generated by sampling the training 
set, so each replicate has a smaller number of training samples. We Generate K repli-
cates by randomly sampling the training set. A N-LDA classifier is constructed from 
each replicate and the multiple classifiers are combined using a fusion rule. 

3.3   Integrating Random Subspace and Bagging for LDA Based Classification 

While P-LDA is computed from the principal subspace of wS , in which 

0≠WSW w
T , N-LDA is computed from its orthogonal subspace in which 

0=WSW w
T . Both of them discard some discriminative information. Fortunately, 

the information retained by the two kinds of classifiers complements each other. So 
we combine them to construct the final classifier. Many methods on combining mul-
tiple classifiers have been proposed [11]. In this paper, we use two simple fusion 
rules: majority voting and sum rule. More complex combination algorithms may 
further improve the system performance. 

4   Experiments 

We apply the random sampling based LDA approach to face recognition and make a 
extensive experimental study on the XM2VTS face database [12]. There are 295 
people, and each person has four frontal face images taken in four different sessions. 
In our experiments, two face images of each class are selected for training, and the 
remaining two for testing. In preprocessing, the face image is normalized by transla-
tion, rotation, and scaling, such that the centers of two eyes are in fixed positions. A 
46 by 81 mask removes most of the background. So the face data dimension is 

37268146 =× . We adopt the recognition test protocol used in FERET [13]. All the 
face classes in the reference set are ranked. We measure the percentage of the “cor-
rect answer in top 1 match”. 
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4.1   Random Subspace LDA 

We first compare random subspace LDA with the conventional PCA+LDA approach. 
Table 1 reports the accuracy of a single P-LDA classifier constructed from PCA sub-
space with different dimension. Since there are 590 face images of 295 classes in the 
training set, there are 589 eigenfaces with non-zero eigenvalues. According to [1], the 
PCA subspace dimension should be M-L=295. However, the result shows that the 
accuracy is only 79% using a single P-LDA classifier constructed from 295 eigen-
faces, because this dimension is too high for this training set and wS  cannot be well 

estimated. We observe that P-LDA classifier has the best accuracy 92.9% when the 
PCA subspace dimension is set at 100. So for this training set 100 seems to be a suit-
able dimension to construct a stable P-LDA classifier. In the following experiments, 
we choose 100 as the dimension of random subspaces to construct the multiple P-
LDA classifiers. 

First, we generate the random subspaces by randomly selecting 100 eigenfaces 
from 589 eigenfaces with nonzero eigenvalues. The result of combining 20 P-LDA 
classifiers using majority voting is shown in Figure 1. The accuracy of each individ-
ual P-LDA classifier is low, between 50% and 70%. Using majority voting, the weak 
classifiers are greatly enforced, and 87% accuracy is achieved. This shows that P-
LDA classifiers constructed from different random subspaces are complementary of 
each other. In Table 2, as we increase the classifier number K, the accuracy of the 
combined classifier improves, and even becomes better than the highest accuracy in 
Table 1. Although increasing classifier number and using more complex combining 
rules may further improve the performance, it will increase the system burden. 

Table 1. Recognition accuracy of PCA+LDA classifier constructed from PCA subspace with 
different dimension. 

Dim 30 50 70 100 150 200 250 295 
Accuracy 0.870 0.925 0.927 0.929 0.898 0.864 0.820 0.792 

 

 

Fig. 1. Recognition accuracy of combing 20 P-LDA classifiers constructed from random sub-
spaces using majority voting. Each random subspace randomly selects 100 eigenfaces from 589 
eigenfaces with non-zero eigenvalues. 
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Table 2. Accuracy of combining different number (K) of P-LDA classifiers constructed from 
random subspaces using majority voting. Each random subspace randomly selects 100 eigen-
faces from 589 eigenfaces with non-zero eigenvalues. 

K 20 40 60 80 100 120 140 160 
Accuracy 0.871 0.907 0.917 0.922 0.937 0.932 0.939 0.939 

Table 3. Recognition accuracy of P-LDA classifiers constructed from different parts of eigen-
face sequence which has been sorted by eigenvalues. The first row is the index of eigenfaces 
spanning the subspace from which LDA classifier is constructed, and the second row is the 
recognition accuracy. 

Index 1-100 101-200 201-300 301-400 401-500 501-589 vote 
Accuracy 0.929 0.514 0.378 0.148 0.06 0.04 0.613 

Table 4. Recognition accuracy of combining P-LDA classifiers using different number (K) of 
random subspaces (sum rule). In each random subspace, the first 50 dimensions are fixed as  
the 50 largest eignfaces, and another 50 dimensions are randomly selected from the remaining 
593 eigenfaces with positive eigenvalues. We run ten times on the same training set and testing 
set, and record the accuracy means and variances.  

K 5 10 15 20 25 30 
Mean 0.954 0.958 0.959 0.961 0.961 0.962 

Variance 0.0133 0.0127 0.0094 0.0101 0.0068 0.0049 
 

Some largest eigenfaces encode much face structural information. If they are not 
included in the random subspace, the individual LDA classifier is poor. This can be 
further proved in Table 3, in which six LDA classifiers are constructed based on dif-
ferent parts of eigenface sequence. The first row is the index of eigenfaces spanning 
the subspace. Using only the eigenfaces with small eigenvalues, the recognition accu-
racy of LDA classifier is poor. But it doesn’t mean these eigenfaces are not useful for 
recognition. 

A better approach to improve the performance of the combined classifier is to in-
crease the accuracy of each individual weak classifier. To improve the accuracy of 
each individual P-LDA classifier, as illustrated in Section 3.1, in each random sub-
space, we fix the first 50 basis as the 50 largest eigenfaces, and randomly select an-
other 50 basis from the remaining 539 eigenfaces. As shown in Figure 2, individual 
P-LDA classifiers are improved significantly. They are similar to the LDA classifier 
based on the first 100 eigenfaces. These classifiers are also complementary of each 
other, so much better accuracy (96%) is achieved when they are combined. The rec-
ognition performance of using different number of random subspaces is shown in 
Table 4. We run 10 times on the same training set and testing set, recording the accu-
racy means and variances. Using more random subspaces, the accuracy is higher and 
more stable. 

We also apply random subspace to N-LDA. Similar to the method in Section 3.1, 
the random subspaces with dimension D (295<D<590) are generated from PCA sub-
space and a N-LDA classifier is constructed from each random subspace. As shown 
in Figure 3, there is no improvement in recognition performance. When the random 
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subspace dimensionality D is low, the null space dimension  (D-295) is small, so the 
recognition accuracy drops greatly. Random subspace further reduces the null space 
dimension and deteriorates the overfitting problem of N-LDA. 

 

 

Fig. 2. Recognition accuracy of combing 20 P-LDA classifiers constructed from random sub-
spaces. For each 100 dimensional random subspace, the first 50 dimensions are fixed as the 50 
largest eigenfaces, and another 50 dimensions are randomly selected from the remaining 539 
eigenfaces with non-zero eigenvalues. 

  

Fig. 3. Recognition accuracy of combining 20 N-LDA classifiers from random subspaces with 
different dimensions using majority voting. 

4.2   Bagging LDA 

Figure 4 reports the performance of bagging based N-LDA. We generate 20 repli-
cates and each replicate contains 300 training samples. The individual N-LDA classi-
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fier constructed from each replicate is less effective than the original classifier trained 
on the full training set. This is because that some intra-class variations are not in-
cluded in each replicate. However, when the multiple classifiers are combined, the 
accuracy is significantly improved, and becomes much better than the standard N-
LDA. Table 5 reports performance of bagging based N-LDA using different number 
of replicates, but fixing training sample number in each replicate as 300. As similar in 
Table 4, it is more stable using a relatively large number of replicates. In Figure 5, we 
fix the bagging replicates number as 20, but change the training sample number con-
tained in the replicates from 100 to 500. The best performance is achieved using 
proper moderate training sample number in each replicate. When the training sample 
number in each replicate is too small, the null space cannot effectively remove the 
intra-class variation. When the training sample number in each replicate is too large, 
the null space dimension is too small to contain enough discriminative information, 
and different replicates are similar.   

Table 5. Recognition accuracy of combining N-LDA classifiers using different number (K) of 
bagging replicates (sum rule). We run ten times on the same training set and testing set, and 
record the accuracy means and variances. 

K 5 10 15 20 25 30 
Mean 0.929 0.934 0.942 0.956 0.951 0.961 

Variance  0.0120 0.0109 0.097 0.009 0.036 0.027 
 
We also study using bagging to improve P-LDA classifiers. The PCA subspace is 

spanned by the 100 largest eigenfaces and 20 replicates are generated. The accuracies 
with the replicate containing different number of people are shown in Figure 6. As 
expected, the combined classifier shows no improvement over the original P-LDA 
classifier. In each replicate, the P-LDA classifier is constructed from an even smaller 
number of training samples. It deteriorates the small sample size problem. 

4.3   Integrating Random Subspace and Bagging Based LDA 

Integrating the multiple P-LDA classifiers generated by random subspace and N-
LDA classifiers generated by bagging, the recognition accuracy can be further im-
proved. We combine 10 P-LDA classifiers constructed from random subspaces and 
10 N-LDA classifiers constructed from bagging replicates, and set an even better 
result as shown in Table 6. 

Table 6. Compare random sampling based LDA with conventional LDA approaches. R-LDA 
(1): random subspace based LDA; R-LDA (2): bagging based N-LDA; R-LDA (3): integrating 
random subspace and bagging based LDA 

PCA+LDA N-LDA R-LDA (1) R-LDA (2) R-LDA (3) 
0.929 0.919 0.961 0.956 0.976 
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Fig. 4. Recognition accuracy of combining 20 N-LDA classifiers constructed from bagging 
replicates. 

 

Fig. 5. Recognition accuracy of combing 20 N-LDA classifiers with different number of train-
ing samples contained in the bagging replicates (sum rule). 

 

Fig. 6. Recognition accuracy of combining 20 P-LDA classifiers constructed from bagging 
replicates containing different number of training samples. The PCA space is spanned by 100 
largest eigenfaces. The combining rule is majority voting. 
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5   Conclusion 

Both P-LDA and N-LDA encounter the overfitting problems in when dealing with the 
high dimensional data classification, however, for different reasons. So we improve 
them using different random sampling approaches, sampling on feature for P-LDA 
and sampling on training samples for N-LDA. The two kinds of complementary clas-
sifiers are finally integrated in our system. The extensive experimental study on the 
XM2VTS database illustrates the effectiveness of our method and how it works. 
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