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Abstract 

Bayesian analysis is a popular subspace based face 

recognition method. It casts the face recognition task into 

a binary classification problem with each of the two 

classes, intrapersonal variation and extrapersonal 

variation, modeled as a Gaussian distribution. However, 

with the existence of significant transformations, such as 

large illumination and pose changes, the intrapersonal 

facial variation cannot be modeled as a single Gaussian 

distribution, and the global linear subspace often fails to 

deliver good performance on the complex non-convex 

data set. In this paper, we extend the Bayesian face 

recognition into Gaussian mixture models. The complex 

intrapersonal variation manifold is learnt by a set of local 

linear intrapersonal subspaces and thus can be effectively 

reduced. The effectiveness of the novel method is 

demonstrated by experiments on the data set from AR face 

database containing 2340 face images. 

1. Introduction 

Face recognition has drawn much attention in recent 

years. However, it remains a complicated problem far 

from being completely solved. There are two major 

difficulties. The first is due to the significant intrapersonal 

variation. The face images for the same person may have 

very different appearance under different conditions. The 

existence of expression, lighting and pose changes leads 

to a complex distribution of face set. Second, there are 

usually not enough reference samples for each face class 

to capture all kinds of variations. Sometimes, only one 

reference image is available for each person, while the 

probe image may be taken under a very different 

condition. So the design of a face recognition system 

should focus on how to reduce intrapersonal variation 

using limited training data.  

A family of subspace methods such as PCA and LDA 

are developed to extract low dimensional features from 

the raw face data for recognition [1][2][4][5][6][7]. 

Bayesian analysis [3] is another successful subspace face 

recognition method. Instead of classifying the probe face 

image into L classes for L individuals, it casts the face 

recognition task into solving a binary pattern recognition 

problem with each of the two classes, intrapersonal 

variation and extrapersonal variation, modeled as a 

Gaussian distribution. The success of Bayesian face 

recognition is based on the fact that it separates the 

intrapersonal transformation difference, caused by 

expression, lighting, and pose changes etc., from the 

intrinsic difference discriminating individual identity, and 

effectively reduces it under a probabilistic measure [4][5]. 

However, when the transformation difference is 

significant, the intrapersonal variation manifold will 

become highly non-convex and complex. A global linear 

subspace based on a single Gaussian model often fails to 

deliver good performance. In this paper, we extend the 

Bayesian face recognition into Gaussian mixture models. 

The complex intrapersonal variation manifold is 

decomposed into several clusters with simple distribution, 

and learnt by multiple local intrapersonal subspaces. 

Several mixture linear subspace methods have been 

proposed in previous work. However, their clustering 

procedures are all based on face images or face classes 

instead of intrapersonal face difference as proposed in this 

paper. In view-based PCA subspaces [8] and two-stage 

LDA face recognition [9], the face images are partitioned 

into several subsets according to different views and a 

PCA or LDA subspace is trained for each view. The pose 

of the probe face image is first recognized and then the 

face class is recognized among a subset of reference 

images with the same view. This approach requires the 

face class has at least one reference sample for each 

cluster and this condition is difficult to meet in many 

applications. In [10], Gross et al. employ Gaussian 

mixture models to characterize each face class. It also 

requires a large number of training samples for each 

person. In [11][12], the face classes are clustered into 

several subsets based on class centers. However, each 

subset still contains all kinds of intrapersonal variations. 

Even though there are only a small number of face classes 

in each subset, the face data distribution still may be too 

complex to be linearly separable.  

The main advantage of our mixture Bayesian face 

recognition method over these conventional mixture 

subspaces methods is that it focuses on intrapersonal 

variation, the most significant factor deteriorating face 

recognition performance and causing complex data 

distribution. Moreover, it can be accomplished even if 

there is only one reference sample for each face class. 

Experiments on the data set from AR face database [13] 
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containing 2340 face images show the superiority of the 

new method. 

2. Bayesian Face Recognition 

Face recognition can be essentially considered as 

determining whether two face vectors are from the same 

individual (intrapersonal variation IΩ ) or different 

individuals (extrapersonal variation EΩ ). We decompose 

the difference ( ∆ ) between two face vectors into three 

components: intrinsic difference ( I
~

), which discriminates 

different individuals; transformation difference ( T
~

),

caused by all kinds of transformations such as varying 

expressions, illuminations, and views; and noise ( N
~

)

[4][5].T
~

 and N
~

 are the two components deteriorating the 

recognition performance. Normally, N
~

 is of small energy. 

The main difficulty for face recognition comes from T
~

,

which can change the face appearance substantially. A 

successful face recognition algorithm should reduce the 

energy of T
~

 as much as possible without sacrificing much 

of I
~

.

In the Bayesian algorithm, the similarity between two 

images can be measured as the intrapersonal likelihood 

)|( IP Ω∆ . Principal component analysis (PCA) is 

applied on the intrapersonal difference set { }IΩ∈∆∆ | to 

compute the intrapersonal principal subspace F and its 

complementary subspace F . Assuming that IΩ  has a 

Gaussian distribution, )|( IP Ω∆  is estimated as the 

product of two independent marginal Gaussian densities in 

F  and F ,
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In Eq.(1), )(∆Fd  is a Mahalanobis distance in F ,

referred as “distance-in-feature-space” (DIFS), 
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where iy  is the principal component of ∆ projected into 

F and 
iλ  is the eigenvalue. )(2 ∆ε  is defined as 

“distance-from-feature-space” (DFFS), equivalent to PCA 

residual error in F .

IΩ  contains T
~

 and N
~

 only, since it comes from the 

same individual. PCA on IΩ  produces a set of principal 

axes dominated by T
~

. When a face difference ∆  is 

projected onto the intrapersonal subspace, its T
~

component is therefore compacted onto a small number of 

largest eigenvectors in F. The energy of I
~

 is mainly 

concentrated in F . In such a way, T
~

 and I
~

 are 

decoupled. Since 
iλ  explicitly describes the energy 

distribution of T
~

, T
~

 can be effectively reduced by the 

inverse weighting of eigenvalues in DIFS. DFFS is a also 

distinctive component for recognition. It throws away 

most T
~

 on large eigenvectors, while keeps most of I
~

.

3. Bayesian Face Recognition Based on 

Gaussian Mixture Models 

However, when the intrapersonal difference in the face 

data set is too large, the intrapersonal variation manifold 

will be too complex to be modeled as a single Gaussian 

distribution. The derived intrapersonal subspace cannot 

effectively separate T
~

 from I
~

. We project the 

intrapersonal differences of samples from AR database 

onto the first two eigenvectors of intrapersonal subspace 

and plot them in Figure 2. Apparently it is not a Gaussian 

distribution. A better choice is to decompose the complex 

manifold into K simpler clusters and use multiple 

intrapersonal subspaces to model local regions. An 

algorithm deriving the local intrapersonal subspaces is 

proposed as following. 

(1) Randomly choose the initial cluster assignment 

( ) { }K,,2,1∈∆ for each intrapersonal difference 

sample ∆  in the training set. 

(2) Perform PCA separately on each cluster 

( ){ }kCk =∆∆= |  and compute the local 

intrapersonal subspace with eigenvector matrix kU

and cluster center km .

(3) Project the training intrapersonal difference example 

∆  into each local intrapersonal subspace spanned by 

r largest eigenvectors [ ]k
r

kk uuW ,,1=  and compute 

the reconstruction error as 

( ) 2
2 )()( k

Tkk
kk mWWm −∆−−∆=ε . (3) 

         Reassign ∆  to the cluster with the minimum 

reconstruction error, 

∆

F

F

DFFS

DIFS 

Figure 1. Compute DIFS and DFFS of ∆ in the 

intrapersonal subspace. 
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( ) )(minarg 2
k

k

ε=∆ .  (4) 

(4) Stop if no training examples has changed cluster, 

otherwise return to step (2). 

In Eq. (4), we use the “distance-from-feature-space” 

(DFFS) instead of Euclid distance to cluster center to 

assign the cluster to training samples. A small DFFS 

means the local subspace could well capture the major T
~

component, which is critically important to Bayesian face 

recognition. The cluster centers of some local 

intrapersonal subspaces are shown in Figure 3. 

When a probe face image is input, we compare its 

difference with the reference image and estimate the 

intrapersonal likelihood )|( IkP Ω∆  for each local 

intrapersonal subspace. The local intrapersonal subspace 

with the maximum )|( IkP Ω∆ is the best to model ∆ , so 

( )IP Ω∆ | is estimated as 

( ) ( ){ }K
kkI PP 1max| =∆=Ω∆ .  (5) 

)|( IkP Ω∆  can be estimated using Eq. (1). However, it is 

sometimes unstable when there are only a small number of 

training samples falling into some local cluster and the 

eigenvalue spectrum cannot be well estimated. Here, we 

estimate )|( IkP Ω∆  using a simpler but more stable 

version, 

( ))(exp)|( 2 ∆−=Ω∆
kIkP ε     (6) 

where ( )∆2
k

ε  is DFFS to the kth intrapersonal subspace. 

4. Experiments 

We conduct experiments on a data set from the AR 

database. It contains 90 subjects and each subject has 26 

face images taken in two sessions. For each session, there 

are 13 face images under different kinds of 

transformations. Some examples are shown in Figure 4. 

The 1170 face images taken in the first sessions are used 

for training set to compute the intrapersonal subspace. In 

testing, one neural face image taken in the first session for 

each subject is used as reference, and the 1170 face 

images taken in the second session are used as probe. In 

preprocessing, all the images are normalized for scaling, 

translation, and rotation, such that the eye centers are in 

fixed positions. A rectangle mask is used to remove the 

background and most of the hair region. 

In Figure 5, we compare the accumulative recognition 

accuracies of Bayesian face recognition based on 

Gaussian mixture models with several linear subspace 

methods based on uniform model, PCA, LDA, and Bayes. 

PCA is a baseline for evaluation, since it captures all 

kinds of major facial variation including both T and I, and 

does not take effort to reduce the intrapersonal variation. 

The recognition accuracy is extremely low, with about 

20% on top one match. Bayes performs much better than 

PCA, since it reduces the transformation difference to 

some extent. Bayesian face recognition based on four 

local intrapersonal subspaces has more than 10% 

improvement on top one match to the best linear subspace 

method as shown in Table 1. This clearly shows that the 

Gaussian mixture models can better deal with the complex 

data distribution. We also try the mixture Bayes based on 

different number of clusters. It is found that the 

performance only has a slight variation as shown in Fig. 6. 

The mixture linear subspaces methods proposed in [8][9] 

Figure 4. Face image examples taken in the same 

session for one subject in the AR database. 
Figure 2. Project the samples of intrapersonal difference 

from the AR database to the first two eigenvectors of 

intrapersonal subspace. The complex distribution can be 

better modeled as several local Gaussian models. 

Figure 3. Cluster centers for different local 

intrapersonal subspaces. 
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cannot be used here, since there is only one reference 

sample for each class. We test the mixture LDA method 

proposed in [12] by grouping the face classes into four 

clusters. This method only has top one recognition 

accuracy (45% as shown in Fig. 5). It fails to improve the 

performance, because the complex distribution of this data 

set is caused by large intrapersonal variations, which still 

exist in each cluster of that method. 

5. Conclusion 

In this paper, we propose a novel Bayesian face 

recognition approach based on Gaussian mixture models. 

Under this framework, the complex intrapersonal 

manifold is characterized by several local intrapersonal 

subspaces. It shows a significant improvement to 

conventional linear subspace methods based on uniform 

model.  
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Figure 6. Recognition accuracies of mixture Bayes on 

top one match based on different number of local 

intrapersonal subspaces. 

Figure 5. Accumulative recognition accuracies of PCA, 

LDA, Bayes, and mixture Bayes.  Mixture LDA only has 

the recognition accuracy of top one match. 

Table 1. Rank 1 recognition accuracies. 

PCA LDA Bayes 
Mixture 

LDA 

Mixture 

Bayes 

0.2137 0.5009 0.5188 0.4550 0.6385 
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