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ABSTRACT

The recently proposed Magnetic Resonance Fingerprinting
(MRF) technique can simultaneously estimate multiple pa-
rameters through dictionary matching. It has promising po-
tentials in a wide range of applications. However, MRF intro-
duces errors due to undersampling during the data acquisition
process and the limit of dictionary resolution. In this paper,
we investigate the error source of MRF and propose the tech-
nologies of improving the quality of MRF with compressed
sensing, error prediction by decision trees, and adaptive filter-
ing. Experimental results support our observations and show
significant improvement of the proposed technologies.

Index Terms— Magnetic resonance fingerprinting, com-
pressed sensing, decision tree, bilateral filtering

1. INTRODUCTION

Magnetic Resonance Fingerprinting (MRF) recently pro-
posed by Ma et al. [1] has drawn a lot of attentions. MRF has
the potential to quantitatively examine many magnetic reso-
nance parameters simultaneously. It has been reported that
MRF outperforms the widely used DESPOT1 and DESPOT2
[2] for T1 and T2 estimation. It can also be used to directly
estimate the combination proportions of different types of
tissues at a single pixel. This may lead to new diagnostic
testing methodologies.

MRF scans an object for multiple times with pseudoran-
domized experimental parameters, and generate unique signal
evolutions (called “fingerprints”) as a function of the multiple
material properties under investigation. There is no steady
state during the whole acquisition of MRF. The magnetization
after the previous excitation is used as a starting point of the
next excitation. After acquisition, each pixel has a sequence
of signals and the most possible material of the pixel is esti-
mated by matching its signal evolution with a pre-calculated
dictionary, which includes the “fingerprints” of possible mate-
rials. The dictionary entry that has the maximum dot-product
with the signal evolution is considered to be most likely to
represent the true signal evolution. Each dictionary entry is
also associated with a set of magnetic parameters. Quan-
titative maps of the magnetic parameters are then translated
from the results of dictionary matching in a pixel-wise fash-

ion. Since MRF is very new, little further work has been done
to improve the quality of its estmation on parameter maps.

The contribution of this paper lies in two aspects. Firstly,
we investigate the error sources of MRF on estimating param-
eter maps, and have the following observations.

• In order to achieve the tradeoff between accuracy and
scanning time, MRF heavily undersamples data in k-
space and leads to artifacts in the reconstructed image
at each sampling time. Such errors propagate to param-
eter maps through dictionary matching.

• Because of the limit of memory and computational re-
source, the resolution of the dictionary is limited. The
dictionary size grows exponentially with the number
of parameters to be estimated. In our experiments, al-
though only three parameters are estimated, the dictio-
nary size has reached 100 million. We observe that
most of the errors happen when a true parameter lies
between dictionary entries, because the similarities be-
tween the measured signal evolution and all the dictio-
nary entries are relatively low in that case. Some statis-
tic results are shown in Figure 1.

• Since MRF estimates parameters by dictionary match-
ing, if a dictionary entry is wrongly matched, its pa-
rameter could be far away from the ground truth, which
leads to large errors. An example is shown in Figure 2.
The estimation errors are not Gaussian distributed.

Secondly, based on the observations above, we propose
three technologies to correct estimation errors. (1) We apply
Compressed Sensing (CS) [3] at each sampling time point,
and reconstruct all the k-space data before the matching pro-
cess. (2) A method is proposed to predict the correctness of
every pixel on the parameter map with decision trees [4]. The
prediction is based on the top matching similarities and cor-
responding indices among all the dictionary entries. (3) If a
pixel is predicted as error, it is replaced with the result of con-
volving its neighbor pixels with an adaptive filter. It does not
include the value of the error pixel in the linear combination,
since its error could be very large. The weights on the neigh-
bor pixels are adaptively decided.
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Fig. 1. (a) Estimated off-resonance frequency map by MRF.
Some pixels have large errors because of mismatch with dic-
tionary entries. (b) Histogram of the distance between the
ground truth parameter and its nearest dictionary entry for all
the mismatched pixels. The distance between two neighbour
entries is taken as 1. Most mismatched pixels lies in the mid-
dle of dictionary entries. (c)-(d): Histograms of the similari-
ties between the signal evolutions and the best matched dic-
tionary entries. For correctly matched pixels, the similarities
are mostly above 1.9, while those of mismatched pixels span
between 1.8 and 1.9. The statistics are obtained from the train
set in Figure 5.

2. METHODS

The key assumption underlying MRF is that the signal evo-
lutions or fingerprints for different materials or tissues can
be generated with an appropriate acquisition scheme: xi =
f(para1, para2, para3, exp

i
1, exp

i
2), i = 1, 2, ...N , where N

is the number of sampling times. xi is the signal evolution
at the ith sampling time. para1, para2, and para3 are the
parameters of the material to be estimated. expi1 and expi2
are the chosen experimental parameters at the ith sampling
time. f is the physical model of generating the signal evo-
lution, derived from the well-known Bloch equation formal-
ism of magnetic resonance. In this study, we choose f as an
inversion-recovery balanced steady state free-precession(IR-
bSSFP) sequence suggested in [1]. para1, para2 and para3

are the longitude relaxation time T1, the transverse relaxation
time T2, and the off-resonance frequency df . exp1 and exp2

are the flip angle FA and the repetition time TR.
DictionaryD ∈ CN×K is a collection of signal evolutions

for possible combinations of materials given the same set of

Fig. 2. The similarity vector for a pixel lying between two
entries. Multiple local maximum which are far apart are ob-
served. They lead to large estimation error. The entry with the
highest similarity is marked with “+”, and the entry nearest to
the ground truth is marked with “�”.

experimental parameters. K is the size of the dictionary, i.e.
the total number of possible combinations. The goal of MRF
is to find the right combination from the dictionary, which is
most likely to be the observed signal evolution x̂ ∈ CN×1,

[T1, T2, df ] = g(D, x̂). (1)

g is the function to select an entry from the dictionary best
matching x̂. In [1], the dot-product is used to calculate the
similarity between the measured signal evolution and all dic-
tionary entries {Dk},

g(D, x̂) = Γ(max
k
{DH

k x̂+ x̂HDk}). (2)

Both Dk and x̂ are complex signals with unit L2 norm
(||Dk||2 = ||x̂||2=1). DH

k and x̂H denotes the conjugate
transpose of Dk and x̂. Γ is the mapping from a dictionary
index to the corresponding parameters T1, T2 and df .

Let sk = DH
k x̂ + Dkx̂

H be the similarity between the
measured signal evolution and a dictionary entry. x̂ is con-
taminated with various noise. According to our experiments,
if the ground truth parameter lies in the middle of two entries,
it is likely that there are multiple local maximums with sim-
ilar similarities. These local maximums may be far apart in
the dictionary, which leads to mismatches and large estima-
tion errors. An example is shown in Fig. 2.

The observations motivate us to improve the quality of
MRF in two stages. In the first stage, we apply CS[3] to
the undersampled k-space data at each sampling time point
for image reconstruction. A sequence of N images is recon-
structed. The artifacts caused by undersampling is largely re-
moved by incorporating the sparsity prior in the wavelet do-
main and finite difference domain.

In the dictionary matching stage, to cope with the errors
caused by dictionary resolution, we propose to use pre-trained
decision trees to predict the locations of wrongly matched
pixels, and then replace them with the results of convolving



their neighbor pixels with a adaptive filter. If a pixel contains
material whose parameters, especially the parameter of off-
resonance frequency, are not close to any dictionary entries,
not only the similarity between the measured signal evolu-
tion and the best matched dictionary entry is relatively low,
but also there are multiple local maximums far apart in the
dictionary. On the contrary, if a pixel is correctly matched,
its largest similarity in the dictionary is high and also much
higher than other peaks. Some statistics are shown in Fig-
ure 1. Therefore, the values of the local maximums and their
locations are all useful cues of predicting mismatched pixels.

Three decision trees will be trained for T1, T2 and off-
resonance respectively. A decision tree can determine the
class label (correctly or wrongly matched pixel in our case)
of a pixel from the values of its input attributes. Each of its
internal nodes represents a test on an attribute. Each branch
represents the outcome of the test. Each leaf node is asso-
ciated with a class label and represents the decision taken
after computing all attributes. A path from root to leaf rep-
resents classification rules. The input attributes of these de-
cision trees form an 8 dimensional feature vector. It includes
the largest similarity values of the four highest peaks and their
indices. To train the decision trees, we simulated T1, T2 and
off-resonance frequency maps for a MR image. The ground
truth of the parameters on the simulated data is known, and
therefore we know whether pixel is correctly matched or not.

By predicting the correctness of pixels with the decision
trees, we divide all the pixels into two classes. A pixel pre-
dicted as being correctly matched follows the original MRF
matching process. Otherwise, it is replaced by convolving its
neighbor pixels with an adaptive filter, defined as:

Ifiltered(p) =
1

W

∑
j∈Ω/p

wpjIpj . (3)

Since the centered pixel p is mismatched, it may have large
error. We exclude it from the combination in Eq (3). Ω is the
neighborhood of p. Ipj is the estimated parameter at pixel pj .
wpj is adaptively computed with Eq (4). W is a normalization
factor to ensure the weights to sum to 1.

wpj = exp
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‖2− spj‖22

σ2
s

)
. (4)

The first term in Eq (4) is a spatial Gaussian weighting that
decreases the influence of distant pixels. The second term is
a similarity Gaussian weighting that decreases the influence
of the pixels whose dictionary matching result is unreliable.
spj is the largest similarity of dictionary matching at pixel
pj . According to Eq (2), its maximum value is 2. Figure 3
compares the result of our adaptive filtering and commonly
used Gaussian filtering. Our approach can well preserve local
structures with less blurring effect.

Fig. 3. Comparison of filtering results. From left to right:
ground truth, CS+MRF, Gaussian filtering on the result of
CS+MRF, and our adaptive filtering.

3. RESULT

3.1. Experimental Settings

All the experiments are implemented with Matlab 2012b(The
MathWorks). We simulate the MRF signal evolution with
the IR-bSSFP sequence using a pseudorandomized series of
flip angles and repetition time uniformly sampled between
10.5ms and 14ms. The flip angles are calculated as a series of
repeating sinusoidal curves added by Gaussian random noise.
The total number of sampling points is 500. When the sam-
pling time 0 ≤ t ≤ 250, FA(t) = 10 + sin( 2π

500 t) × 50 + η,
where η is a noise term sampled from a Gaussian distribu-
tion with a standard deviation of 5. When 251 ≤ t ≤ 300,
FA(t) = 0. When 301 ≤ t ≤ 500, FA(t) = 5 + sin( 2π

200 t) ×
25 + η. This simulation is the same as described in [1].

All the T1, T2 and off-resonance frequency maps are sim-
ulated with ground truth. A set of T1, T2 and off-resonance
frequency maps are used for training decision trees as shown
in Figure 4. Another two sets of maps are simulated for test.
Because of space limit, we only show one test set in Figure 5.
The size of the designed dictionary 61×29×115×500. The
entries for T1 are uniformly sampled from 800ms to 2000ms
every 20ms. The entries of T2 are uniformly sampled from
20ms to 300ms every 5ms. The sampling rates of the entries
of off-resonance frequency are 2Hz in [-80Hz 80Hz], 10Hz
in [80Hz 250Hz] and [-250Hz -80Hz] in order to incorporate
the effect of signal evolutions in different B0 fields. This de-
sign was also used in [1]. The k-space data at each sampling
time point was undersampled by a variable density random
mask. The undersampling ratio was chosen to be 70%. The
same mask was applied to both the training images and the
test images.

3.2. Estimation of parameter maps

Fig.5 shows the estimated parameter maps for a test set. It
clearly shows the effectiveness of compressed sensing and
adaptive filtering on removing noise generated by MRF. Table
1 reports the quantitative comparison with the measurements
of Peak Signal to Noise Ratio(PSNR) and Structural SIMilar-
ity(SSIM) index[5]. The evaluation is done on two test sets
of parameter maps. Our proposed approach (CS-Tree8AF)



Fig. 4. The set of parameter maps used for training the deci-
sion trees. From left to right: T1, T2 and off-resonance fre-
quency maps

T1 T2 df
MRF 24.3\ 0.731 20.4\ 0.706 22.9\ 0.867
CS 26.2 \0.801 21.5\ 0.802 26.4\ 0.961

CS-Tree1AF 27.1 \ 0.822 22.4 \ 0.818 27.2 \ 0.955
CS-Tree4AF 28.0 \ 0.873 22.3 \ 0.842 26.5 \ 0.955
CS-Tree8AF 28.4 \ 0.881 22.9\ 0.863 28.9 \ 0.974

Table 1. PSNR and SSIM comparison of MRF, CS, CS-
Tree1AF, CS-Tree4AF and CS-Tree8AF. CS-Tree8AF is the
final approach we proposed. Others are used to evaluate the
effectiveness of each component in our approach. In each
cell, the left number denotes PSNR in dB and the right num-
ber denotes SSIM. See details in the text of Section 3.2.

has the best performance under both measurements and sig-
nificantly improve the quality of parameter maps estimated
with MRF. In order to evaluate the effectiveness of each com-
ponent in our approach, we compare with a few alternatives.
(1) Only apply compressed sensing as preprocessing of MRF
however without adaptive filtering (CS). It clearly improves
MRF, but not as good as CS-Tree8AF. (2) Different than our
decision trees with 8 attributes as input, it only has the largest
similarity after dictionary matching as the input of decision
trees (CS-Tree1AF). It essentially predicts the mismatched
pixels by simple thresholding. (3) The decision trees have
four input attributes, i.e. the largest similarity values of the
four highest peaks after dictionary matching (CS-Tree4AF).
However, it ignores the indices of the peaks. CS-Tree1AF
and CS-Tree4AF are not as good as CS-Tree8AF, since their
decision trees cannot accurately predict mismatched pixels.

4. DISCUSSION AND CONCLUSION

MRF has great potentials of developing new diagnostic test-
ing methodologies. It is important to understand its error
sources and improve its quality on parameter estimation. In
this paper, we investigate two types of errors through em-
pirical study. Motivated by our empirical observations, the
technologies of compressed sensing, error prediction, and
adaptive filtering are proposed to improve the MRF quality.
Their effectiveness is shown through experiments. Dictio-
nary learning based CS, more attributes for decision trees and
patch-based filters can be further explored in the future.

Fig. 5. Results of MRF, CS-MRF and CS-Tree8AF. From left
to right: T1, T2 and off-resonance frequency. From top to
bottom: ground truth, MRF, CS, and CS-Tree8AF.

5. ACKNOWLEDGMENT

This work was supported in part by Hong Kong RGC grant SEG
CUHK02, CUHK418811, China NSFC grant 81201076.

6. REFERENCES

[1] Dan Ma, Vikas Gulani, Nicole Seiberlich, Kecheng Liu, Jef-
frey L Sunshine, Jeffrey L Duerk, and Mark A Griswold, “Mag-
netic resonance fingerprinting,” Nature, vol. 495, no. 7440, pp.
187–192, 2013.

[2] Sean CL Deoni, Terry M Peters, and Brian K Rutt, “High-
resolution t1 and t2 mapping of the brain in a clinically accept-
able time with despot1 and despot2,” Magnetic resonance in
medicine, vol. 53, no. 1, pp. 237–241, 2005.

[3] Michael Lustig, David Donoho, and John M Pauly, “Sparse mri:
The application of compressed sensing for rapid mr imaging,”
Magnetic resonance in medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[4] J. Ross Quinlan, “Induction of decision trees,” Machine learn-
ing, vol. 1, no. 1, pp. 81–106, 1986.

[5] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli, “Image quality assessment: From error visibility to
structural similarity,” Image Processing, IEEE Transactions on,
vol. 13, no. 4, pp. 600–612, 2004.


