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Abstract—Image re-ranking, as an effective way to improve the results of web-based image search, has been adopted by current

commercial search engines such as Bing and Google. Given a query keyword, a pool of images are first retrieved based on textual

information. By asking the user to select a query image from the pool, the remaining images are re-ranked based on their visual

similarities with the query image. A major challenge is that the similarities of visual features do not well correlate with images’ semantic

meanings which interpret users’ search intention. Recently people proposed to match images in a semantic space which used

attributes or reference classes closely related to the semantic meanings of images as basis. However, learning a universal visual

semantic space to characterize highly diverse images from the web is difficult and inefficient. In this paper, we propose a novel image

re-ranking framework, which automatically offline learns different semantic spaces for different query keywords. The visual features of

images are projected into their related semantic spaces to get semantic signatures. At the online stage, images are re-ranked by

comparing their semantic signatures obtained from the semantic space specified by the query keyword. The proposed query-specific

semantic signatures significantly improve both the accuracy and efficiency of image re-ranking. The original visual

features of thousands of dimensions can be projected to the semantic signatures as short as 25 dimensions. Experimental results show

that 25-40 percent relative improvement has been achieved on re-ranking precisions compared with the state-of-the-art methods.

Index Terms—Image search, image re-ranking, semantic space, semantic signature, keyword expansion
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1 INTRODUCTION

WEB-SCALE image search engines mostly use keywords
as queries and rely on surrounding text to search

images. They suffer from the ambiguity of query key-
words, because it is hard for users to accurately describe
the visual content of target images only using keywords.
For example, using “apple” as a query keyword, the
retrieved images belong to different categories (also called
concepts in this paper), such as “red apple,” “apple logo,”
and “apple laptop.” In order to solve the ambiguity, con-
tent-based image retrieval [1], [2] with relevance feedback
[3], [4], [5] is widely used. It requires users to select multi-
ple relevant and irrelevant image examples, from which
visual similarity metrics are learned through online train-
ing. Images are re-ranked based on the learned visual sim-
ilarities. However, for web-scale commercial systems,
users’ feedback has to be limited to the minimum without
online training.

Online image re-ranking [6], [7], [8], which limits
users’ effort to just one-click feedback, is an effective way
to improve search results and its interaction is simple
enough. Major web image search engines have adopted

this strategy [8]. Its diagram is shown in Fig. 1. Given a
query keyword input by a user, a pool of images relevant
to the query keyword are retrieved by the search engine
according to a stored word-image index file. Usually the
size of the returned image pool is fixed, e.g., containing
1;000 images. By asking the user to select a query image,
which reflects the user’s search intention, from the pool,
the remaining images in the pool are re-ranked based on
their visual similarities with the query image. The word-
image index file and visual features of images are pre-
computed offline and stored.1 The main online computa-
tional cost is on comparing visual features. To achieve
high efficiency, the visual feature vectors need to be short
and their matching needs to be fast. Some popular visual
features are in high dimensions and efficiency is not satis-
factory if they are directly matched.

Another major challenge is that, without online train-
ing, the similarities of low-level visual features may not
well correlate with images’ high-level semantic meanings
which interpret users’ search intention. Some examples
are shown in Fig. 2. Moreover, low-level features are
sometimes inconsistent with visual perception. For exam-
ple, if images of the same object are captured from differ-
ent viewpoints, under different lightings or even with
different compression artifacts, their low-level features
may change significantly, although humans think the
visual content does not change much. To reduce this
semantic gap and inconsistency with visual perception,
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1. Visual features must be saved. The web image collection is
dynamically updated. If the visual features are discarded and only the
similarity scores of images are stored, whenever a new image is added
into the collection and we have to compute its similarities with existing
images, whose visual features need be computed again.
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there have been a number of studies to map visual fea-
tures to a set of predefined concepts or attributes as
semantic signatures [9], [10], [11], [12]. For example,
Kovashka et al. [12] proposed a system which refined
image search with relative attribute feedback. Users
described their search intention with reference images
and a set of pre-defined attributes. These concepts and
attributes are pre-trained offline and have tolerance with
variation of visual content. However, these approaches
are only applicable to closed image sets of relatively small
sizes, but not suitable for online web-scale image re-rank-
ing. According to our empirical study, images retrieved
by 120 query keywords alone include more than 1,500
concepts. It is difficult and inefficient to design a huge
concept dictionary to characterize highly diverse web
images. Since the topics of web images change dynami-
cally, it is desirable that the concepts and attributes can be
automatically found instead of being manually defined.

1.1 Our Approach

In this paper, a novel framework is proposed for web image
re-ranking. Instead of manually defining a universal con-
cept dictionary, it learns different semantic spaces for differ-
ent query keywords individually and automatically. The
semantic space related to the images to be re-ranked can be
significantly narrowed down by the query keyword pro-
vided by the user. For example, if the query keyword is
“apple,” the concepts of “mountain” and “Paris” are irrele-
vant and should be excluded. Instead, the concepts of
“computer” and “fruit” will be used as dimensions to learn
the semantic space related to “apple.” The query-specific
semantic spaces can more accurately model the images to
be re-ranked, since they have excluded other potentially
unlimited number of irrelevant concepts, which serve only
as noise and deteriorate the re-ranking performance on both
accuracy and computational cost. The visual and textual
features of images are then projected into their related
semantic spaces to get semantic signatures. At the online
stage, images are re-ranked by comparing their semantic
signatures obtained from the semantic space of the query
keyword. The semantic correlation between concepts is

explored and incorporated when computing the similarity
of semantic signatures.

Our experiments show that the semantic space of a query
keyword can be described by just 20-30 concepts (also
referred as “reference classes”). Therefore the semantic sig-
natures are very short and online image re-ranking becomes
extremely efficient. Because of the large number of key-
words and the dynamic variations of the web, the semantic
spaces of query keywords are automatically learned
through keyword expansion.

We introduce a large scale benchmark database2 with
manually labeled ground truth. It includes 120; 000
images retrieved by the Bing Image Search using 120
query keywords. Experiments on this database show that
25-40 percent relative improvement has been achieved on
re-ranking precisions with around 70 times speedup,
compared with the state-of-the-art methods.

The proposed query-specific semantic signatures are also
effective on image re-ranking without query images being
selected [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. The effec-
tiveness is shown in Section 7 through evaluation on the
MSRA-MM data set [33] and comparison with the state-of-
the-art methods.

1.2 Discussion on Search Scenarios

We consider the following search scenarios when designing
the system and doing evaluation. When a user inputs a tex-
tual query (e.g., “Disney”) and starts to browse the text-
based research result, he or she has a search intention,
which could be a particular target image or images in a par-
ticular category (e.g., images of Cinderella Castle). Once the
user finds a candidate image similar to the target image or
belonging to the category of interest, the re-ranking function
is used by choosing that candidate image as a query image.
Certain criteria should be considered in these search scenar-
ios. (1) In both cases, we expect the top ranked images are in
the same semantic category as the query image (e.g., images
of princesses and Disney logo are considered as irrelevant).
(2) If the search intention is to find a target image, we expect
that images visually similar to the query image should have
higher ranks. (3) If the search intention is to browse images
of a particular semantic category, diversity of candidate
images may also be considered.

The first two criteria have been considered in our system
design. Our query-specific semantic signatures effectively
reduce the gap between low-level visual features and
semantic categories, and also make image matching more
consistent with visual perception. Details in later sections
will show that if a candidate image is very similar to the
query image, the distance of their semantic signatures will

Fig. 1. The conventional image re-ranking framework.

Fig. 2. All the images shown in this figure are related to palm trees. They
are different in color, shape, and texture.

2. http://mmlab.ie.cuhk.edu.hk/CUHKSR/Dataset.htm.
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be close to zero and the candidate image will have a high
rank. To evaluate the first criterion in experiments, we man-
ually label images into categories according to their seman-
tic meanings, and compare with re-ranking results in
Sections 6.1-6.6. It is measured with precisions. The second
criterion is more subjective. We conduct a user study in Sec-
tion 6.7, where the subjects were informed to consider the
first two criteria.

In this paper, we do not consider increasing the diversity
of search result by removing near-duplicate or very similar
images, which is another important issue in web image
search and has a lot of existing works [34], [35]. We re-rank
the first 1; 000 candidate images returned by the commercial
web image search engine, which has considered the diver-
sity issue and removed many near-duplicate images. The
query-specific semantic signature is proposed to reduce
semantic gap but cannot directly increase the diversity of
search result. We do not address the diversity problem to
make the paper focused on semantic signatures. However,
we believe that the two aspects can incorporated in multiple
possible ways.

2 RELATED WORK

The key component of image re-ranking is to compute
visual similarities reflecting semantic relevance of images.
Many visual features [36], [37], [38], [39], [40] have been
developed in recent years. However, for different query
images, the effective low-level visual features are different.
Therefore, Cui et al. [6], [7] classified query images into
eight predefined intention categories and gave different fea-
ture weighting schemes to different types of query images.
But it was difficult for the eight weighting schemes to cover
the large diversity of all the web images. It was also likely
for a query image to be classified to a wrong category. In
order to reduce the semantic gap, query-specific semantic
signature was first proposed in [41]. Kuo et al. [42] recently
augmented each image with relevant semantic features
through propagation over a visual graph and a textual
graph which were correlated.

Another way of learning visual similarities without add-
ing users’ burden is pseudo relevance feedback [43], [44],
[45]. It takes the top N images most visually similar to the
query image as expanded positive examples to learn a simi-
larity metric. Since the top N images are not necessarily
semantically-consistent with the query image, the learned
similarity metric may not reliably reflect the semantic rele-
vance and may even deteriorate re-ranking performance. In
object retrieval, in order to purify the expanded positive
examples, the spatial configurations of local visual features
are verified [46], [47], [48]. But it is not applicable to general
web image search, where relevant images may not contain
the same objects.

There is a lot of work [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32] on using visual features to re-rank images retrieved by
initial text-only search, however, without requiring users to
select query images. Tian et al. [24] formulated image re-
ranking with a Bayesian framework. Hsu et al. [15] used the
Information Bottleneck (IB) principle to maximize the
mutual information between search relevance and visual

features. Krapac et al. [26] introduced generic classifiers
based on query-relative features which could be used for
new query keywords without additional training. Jing and
Baluja [21] proposed VisualRank to analyze the visual link
structures of images and to find the visual themes for re-
ranking. Lu et al. [31] proposed the deep context to refine
search results. Cai et al. [32] re-ranked images with attrib-
utes which were manually defined and learned from manu-
ally labeled training samples. These approaches assumed
that there was one major semantic category under a query
keyword. Images were re-ranked by modeling this domi-
nant category with visual and textual features. In Section 7,
we show that the proposed query-specific semantic signa-
ture is also effective in this application, where it is crucial to
reduce the semantic gap when computing the similarities of
images. Due to the ambiguity of query keywords, there may
be multiple semantic categories under one keyword query.
Without query images selected by users, these approaches
cannot accurately capture users’ search intention.

Recently, for general image recognition and matching,
there have been a number of works on using projections
over predefined concepts, attributes or reference classes as
image signatures. The classifiers of concepts, attributes, and
reference classes are trained from known classes with
labeled examples. But the knowledge learned from the
known classes can be transferred to recognize samples of
novel classes which have few or even no training samples.
Since these concepts, attributes, and reference classes are
defined with semantic meanings, the projections over them
can well capture the semantic meanings of new images
even without further training. Rasiwasia et al. [9] mapped
visual features to a universal concept dictionary for image
retrieval. Attributes [49] with semantic meanings were used
for object detection [10], [50], [51], object recognition [52],
[53], [54], [55], [56], [57], [58], [59], [60], face recognition [58],
[61], [62], image search [60], [63], [64], [65], [66], [67], action
recognition [68], and 3D object retrieval [69]. Lampert et al.
[10] predefined a set of attributes on an animal database
and detected target objects based on a combination of
human-specified attributes instead of training images.
Sharmanska et al. [50] augmented this representation with
additional dimensions and allowed a smooth transition
between zero-shot learning, unsupervised training and
supervised training. Parikh and Grauman [58] proposed rel-
ative attributes to indicate the strength of an attribute in an
image with respect to other images. Parkash and Parikh [60]
used attributes to guide active learning. In order to detect
objects of many categories or even unseen categories,
instead of building a new detector for each category,
Farhadi et al. [51] learned part and attribute detectors which
were shared across categories and modeled the correlation
among attributes. Some approaches [11], [54], [70], [71]
transferred knowledge between object classes by measuring
the similarities between novel object classes and known
object classes (called reference classes). For example, Torre-
sani et al. [71] proposed an image descriptor which was the
output of a number of classifiers on a set of known image
classes, and used it to match images of other unrelated
visual classes. In the current approaches, all the concepts/
attributes/reference-classes are universally applied to all
the images and they are manually defined. They are more
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suitable for offline databases with lower diversity (such as
animal databases [10], [54] and face databases [11]), since
image classes in these databases can better share similari-
ties. To model all the web images, a huge set of concepts or
reference classes are required, which is impractical and inef-
fective for online image re-ranking. Intuitively, only a small
subset of the concepts are relevant to a specific query. Many
concepts irrelevant to the query not only increase the
computational cost but also deteriorate the accuracy of re-
ranking. However, how to automatically find such relevant
concepts and use them for online web image re-ranking was
not well explored in previous studies.

3 APPROACH OVERVIEW

The diagram of our approach is shown in Fig. 3. It has
offline and online parts. At the offline stage, the reference
classes (which represent different concepts) related to
query keywords are automatically discovered and their
training images are automatically collected in several
steps. For a query keyword (e.g., “apple”), a set of most
relevant keyword expansions (such as “red apple” and
“apple macbook”) are automatically selected utilizing
both textual and visual information. This set of keyword
expansions defines the reference classes for the query
keyword. In order to automatically obtain the training
examples of a reference class, the keyword expansion
(e.g., “red apple”) is used to retrieve images by the search
engine based on textual information again. Images
retrieved by the keyword expansion (“red apple”) are
much less diverse than those retrieved by the original
keyword (“apple”). After automatically removing out-
liers, the retrieved top images are used as the training
examples of the reference class. Some reference classes
(such as “apple laptop” and “apple macbook”) have simi-
lar semantic meanings and their training sets are visually
similar. In order to improve the efficiency of online image

re-ranking, redundant reference classes are removed. To
better measure the similarity of semantic signatures, the
semantic correlation between reference classes is esti-
mated with a web-based kernel function.

For each query keyword, its reference classes forms the
basis of its semantic space. A multi-class classifier on visual
and textual features is trained from the training sets of its
reference classes and stored offline. Under a query key-
word, the semantic signature of an image is extracted by
computing the similarities between the image and the refer-
ence classes of the query keyword using the trained multi-
class classifier. If there are K types of visual/textual fea-
tures, such as color, texture, and shape, one could combine
them together to train a single classifier, which extracts one
semantic signature for an image. It is also possible to train a
separate classifier for each type of features. Then, the K clas-
sifiers based on different types of features extract K seman-
tic signatures, which are combined at the later stage of
image matching. Our experiments show that the latter strat-
egy can increase the re-ranking accuracy at the cost of stor-
age and online matching efficiency because of the increased
size of semantic signatures.

According to the word-image index file, an image
may be associated with multiple query keywords, which
have different semantic spaces. Therefore, it may have
different semantic signatures. The query keyword input
by the user decides which semantic signature to choose.
As an example shown in Fig. 3, an image is associated
with three keywords “apple,” “mac” and “computer.”
When using any of the three keywords as query, this
image will be retrieved and re-ranked. However, under
different query keywords, different semantic spaces are
used. Therefore an image could have several semantic
signatures obtained in different semantic spaces. They all
need to be computed and stored offline.

At the online stage, a pool of images are retrieved by
the search engine according to the query keyword. Since

Fig. 3. Diagram of our new image re-ranking framework.
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all the images in the pool are associated with the query
keyword according to the word-image index file, they all
have pre-computed semantic signatures in the same
semantic space specified by the query keyword. Once
the user chooses a query image, these semantic signa-
tures are used to compute image similarities for re-rank-
ing. The semantic correlation of reference classes is
incorporated when computing the similarities.

3.1 Discussion on Computational Cost and Storage

Compared with the conventional image re-ranking dia-
gram in Fig. 1, our approach is much more efficient at
the online stage, because the main online computational
cost is on comparing visual features or semantic signa-
tures and the lengths of semantic signatures are much
shorter than those of low-level visual features. For exam-
ple, the visual features used in [6] are of more than
1; 700 dimensions. According to our experiments, each
keyword has 25 reference classes on average. If only one
classifier is trained combining all types of visual features,
the semantic signatures are of 25 dimensions on average.
If separate classifiers are trained for different types of
visual features, the semantic signatures are of 100-200
dimensions.3 Our approach does not involve online train-
ing as required by pseudo relevance feedback [43], [44],
[45]. It also provides much better re-ranking accuracy,
since offline training the classifiers of reference classes
captures the mapping between visual features and
semantic meanings. Experiments show that semantic sig-
natures are effective even if images do not belong to any
of the found reference classes.

However, in order to achieve significant improvement
of online efficiency and accuracy, our approach does
need extra offline computation and storage, which come
from collecting the training examples and reference clas-
ses, training the classifiers of reference classes and com-
puting the semantic signatures. According to our
experimental study, it takes 20 hours to learn the seman-
tic spaces of 120 keywords using a machine with Intel
Xeon W5580 3.2G CPU. The total cost linearly increases
with the number of query keywords, which can be proc-
essed in parallel. Given 1,000 CPUs,4 we will be able to
process 100,000 query keywords in one day. With the
fast growth of GPUs, it is feasible to process the indus-
trial scale queries. The extra storage of classifiers and
semantic signatures are comparable or even smaller than
the storage of visual features of images. In order to peri-
odically update the semantic spaces, one could repeat
the offline steps. However, a more efficient way is to
adopt the framework of incremental learning [72]. Our
experimental studies show that the leaned semantic
spaces are still effective without being updated for sev-
eral months or even one year.

4 DISCOVERY OF REFERENCE CLASSES

4.1 Keyword Expansion

For a keyword q, we define its reference classes by find-
ing a set of keyword expansions EðqÞ most relevant to q.
To achieve this, a set of images SðqÞ are retrieved by the
search engine using q as query based on textual informa-
tion. Keyword expansions are found from words
extracted from images in SðqÞ,5 according to a very large
dictionary used by the search engine. A keyword expan-
sion e 2 EðqÞ is expected to frequently appear in SðqÞ. In
addition, in order for reference classes to well capture
the visual content of images, we require that there are
subsets of images which all contain e and have similar
visual content. Based on these considerations, EðqÞ is
found in a search-and-rank way as follows.

For each image I 2 SðqÞ, all the images in SðqÞ are re-
ranked according to their visual similarities to I. Here, we
use the visual features and visual similarities introduced in
[6]. The T most frequent words WI ¼ fw1

I ; w
2
I ; . . . ; wTI g

among top D re-ranked images (most visually similar to I)
are found. fw1

I ; w
2
I ; . . . ; wTI g are sorted by the frequency of

words appearing among the D images from large to small.
If a word w is among the top ranked image, it has a ranking
score rIðwÞ according to its ranking order; otherwise
rIðwÞ ¼ 0,

rIðwÞ ¼ T � j w ¼ wjI
0 w =2WI:

�
(1)

The overall score of a word w is its accumulated ranking
scores over all the images,

rðwÞ ¼
X
I2S

rIðwÞ: (2)

A large rIðwÞ indicates that w appears in a good num-
ber of images visual similar to I. If w only exists in a
small number of images or the images containing w are
visually dissimilar to one another, rIðwÞ would be zero
for most I. Therefore, if w has a high accumulated rank-
ing score rðwÞ, it should be found among a large number
of images in SðqÞ and some images with w are visually
similar in the meanwhile. The P words with highest
scores are selected to form the keyword expansions EðqÞ,
which define the reference classes. We choose T ¼ 3,
D ¼ 16, P ¼ 30, and the size of SðqÞ is 1; 000.

An intuitive way of finding keyword expansions could
be first clustering images with visual/textual features and
then finding the most frequent word in each cluster as
the keyword expansion. We do not adopt this approach
for two reasons. Images belonging to the same semantic
concept (e.g., “apple laptop”) have certain visual diversity
(e.g., due to variations of viewpoints and colors of lap-
tops). Therefore, one keyword expansion falls into several
image clusters. Similarly, one image cluster may have
several keyword expansions with high frequency, because
some concepts have overlaps on images. For examples, an

3. In our experiments, 120 query keywords are considered. But key-
word expansions, which define reference classes, are from a very large
dictionary used by the web search engine. They could be any words
beyond the 120 ones. Different query keywords are processed indepen-
dently. If more query keywords are considered, the dimensions of
semantic signatures of each query keyword will not increase.

4. Computational power of such a scale or even larger is used by
industry. Jing and Baluja [21] used 1000 CPUs to process images offline.

5. The words are extracted from filenames, ALT tags and surround-
ing text of images, after being stemmed and removing stop words.
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image may belong to “Paris Eiffel tower,” “Paris nights”
and “Paris Album.” Since the one-to-one mapping
between clusters and keyword expansions do not exist, a
post processing step similar to our approach is needed to
compute the scores of keywords selected from multiple
clusters and fuse them. The multimodal and overlapping
distributions of concepts can be well handled by our
approach. Secondly, clustering web images with visual
and textual features is not an easy task especially with
the existence of many outliers. Bad clustering result
greatly affects later steps. Since we only need keyword
expansions, clustering is avoided in our approach. For
each image I, our approach only considers its D nearest
neighbors and is robust to outliers.

4.2 Training Images of Reference Classes

In order to automatically obtain the training images of refer-
ence classes, each keyword expansion e combined with the
original keyword q is used as query to retrieve images from
the search engine and top K images are kept. Since the
expanded keywords e have less semantic ambiguity than
the original keyword q, the images retrieved by e are much
less diverse. After removing outliers by k-means clustering,
these images are used as the training examples of the refer-
ence class. The cluster number of k-means is set as 20 and
clusters of sizes smaller than 5 are removed as outliers.

4.3 Redundant Reference Classes

Some reference classes, e.g., “apple laptop” and “apple
macbook,” are pair-wisely similar in both semantics and
visual appearance. To reduce computational cost we
remove some redundant ones, which cannot increase the
discriminative power of the semantic space. To compute the
similarity between two reference classes, we use half data in
both classes to train a binary SVM classifier to classify the
other half data. If they can be easily separated, the two clas-
ses are considered not similar.
P reference classes are obtained from previous steps. The

training images of reference class i are randomly split into
two sets, A1

i and A2
i . To measure the distinctness Dði; jÞ

between two reference classes i and j, a SVM is trained
from A1

i and A1
j . For each image in A2

i , the SVM outputs a
score of its probability of belonging to class i. Assume the
average score over A2

i is pi. Similarly, the average score pj
over A2

j is also computed. Then

Dði; jÞ ¼ hððpi þ pjÞ=2Þ; (3)

where h is a monotonically increasing function. In our
approach, it is defined as

hðpÞ ¼ 1� e�bðp�aÞ; (4)

where b and a are two constants. When ðpi þ pjÞ=2 goes
below the threshold a, hðpÞ decreases very quickly so as to
penalize pairwisely similar reference classes. We empiri-
cally choose a ¼ 0:6 and b ¼ 30.

4.4 Reference Class Selection

We finally select a set of reference classes from the P candi-
dates. The keyword expansions of the selected reference

classes are most relevant to the query keyword q. The rele-
vance is defined by Eq. (2). Meanwhile, we require that the
selected reference classes are dissimilar with each other
such that they are diverse enough to characterize different
aspects of its keyword. The distinctiveness is measured by
the P � P matrix D defined in Section 4.3. The two criteria
are simultaneously satisfied by solving the following opti-
mization problem.

We introduce an indicator vector y 2 f0; 1gP such that
yi ¼ 1 indicates reference class i is selected and yi ¼ 0 indi-
cates it is removed. y is estimated by solving,

arg max
y2f0;1gP

�Ryþ yTDy
� �

: (5)

Let ei be the keyword expansion of reference class i. R ¼
ðrðe1Þ; . . . ; rðeP ÞÞ, where rðeiÞ is defined in Eq. (2). � is the
scaling factor used to modulate the two criterions. Since
integer quadratic programming is NP hard, we relax y to be
in IRP and select reference classes i whose yi � 0:5.

5 SEMANTIC SIGNATURES

Given M reference classes for keyword q and their training
images, a multi-class classifier on the visual features of
images is trained and it outputs an M-dimensional vector p,
indicating the probabilities of a new image I belonging to
different reference classes. p is used as the semantic signa-
ture of I. The distance between two images Ia and Ib are
measured as the L1-distance between their semantic signa-
tures pa and pb,

dðIa; IbÞ ¼ pa � pb
�� ��

1
: (6)

5.1 Combined Features versus Separate Features

In order to train the SVM classifier, we adopt six types
of visual features used in [6]: attention guided color sig-
nature, color spatialet, wavelet [73], multi-layer rotation
invariant edge orientation histogram, histogram of ori-
ented gradients [37], and GIST [74]. They characterize
images from different perspectives of color, shape, and
texture. The total dimensionality around 1; 700.

A natural idea is to combine all the visual features to
train a single powerful SVM better distinguishing reference
classes. However, the purpose of using semantic signatures
is to capture the visual content of an image, which may
belong to none of the reference classes, instead of classifying
it into one of the reference classes. If there are K types of
independent visual features, it is more effective to train sep-
arate SVM classifiers on different types of features and to
combine the K semantic signatures fpkgKk¼1 from the out-
puts of the K classifiers. The K semantic signatures describe
the visual content from different aspects (e.g., color, texture,
and shape) and can better characterize images outside the
reference classes. For example, in Fig. 4, “red apple” and
“apple tree” are two reference classes. A new image of
“green apple” can be well characterized by two semantic
signatures from two classifiers trained on color features and
shape features separately, since “green apple” is similar to
“red apple” in shape and similar to “apple tree” in color. If
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the color and shape features are combined to compute a sin-
gle semantic signature, it cannot well characterize the image
of “green apple.” Since the “green apple” is dissimilar to
any reference class when jointly considering color and
shape, the semantic signature has low distributions over all
the reference classes.

Then the distance between two images Ia and Ib is

dðIa; IbÞ ¼
XK
k¼1

wk pa;k � pb;k
�� ��

1
; (7)

where wk is the weight on different semantic signatures and
it is specified by the query image Ia selected by the user. wk
is decided by the entropy of pa;k,

wk ¼
1

1þ eHðpa;kÞ
; (8)

Hðpa;kÞ ¼ �
XM
i¼1

pa;ki ln pa;ki : (9)

If pa;k uniformly distributes over reference classes, the kth
type of visual features of the query image cannot be well
characterized by any of the reference classes and we assign
a low weight to this semantic signature.

5.2 Incorporating Textual Features

Our approach provides a natural way to integrate visual
and textual features. Semantic signatures can also be
computed from textual features and combined with
those from visual features. Visual and textual features
are in different modalities. However, after projecting
into the same semantic space, they have the same repre-
sentation. The semantic signatures from textual features
are computed as follows. Let E ¼ fdi; . . . ; dmg be the
training examples of a reference class. di contains the
words extracted from image i and is treated as a docu-
ment. In principle, any document classifier can be used
here. We adopt a state-of-the-art approach proposed in
[45] to learn a word probability model pðwjuÞ, which is a
discrete distribution, from E. u is the parameter of the
discrete distribution of words over the dictionary and it
is learned by maximizing the observed probability,

Y
di2E

Y
w2di
ð0:5pðwjuÞ þ 0:5pðwjCÞÞn

i
w : (10)

niw is the frequency of word w in di, and pðwjCÞ is the word
probability built upon the whole repository C,

pðwjCÞ ¼
P

di
niw

jCj : (11)

Once u is learned with EM, the textual similarity between an
image dj and the reference class is defined as

X
w2dj

pðwjuÞnjw: (12)

After normalization, the similarities to reference classes are
used as semantic signatures.

5.3 Incorporating Semantic Correlations

Equation (6) matches two semantic signatures along each
dimension separately. It assumes the independency
between reference classes, which are in fact semantically
related. For example, “apple macbook” is more related to
“apple ipad” than to “apple tree.” This indicates that in
order to more reasonably compute image similarities, we
should take into account such semantic correlations, and
allow one dimension in the semantic signature (e.g., “apple
macbook”) to match with its correlated dimensions (e.g.,
“apple ipod”). We further improve the image similarity pro-
posed in Eq. (6) with a bilinear form,

sðIa; IbÞ ¼
X
i;j

pa;iCijp
b;j ¼ paTCpb; (13)

where C is an M by M matrix, whose ði; jÞth entry Cij
denotes the strength of semantic correlation between the ith
and jth reference classes. If multiple semantic signatures
are used, we compute the bilinear similarity on each type of
semantic signatures and combine them using the same
weights as in Eq. (7).

We adopt the web-based kernel function [75] to com-
pute the semantic correlations between reference classes.
For each reference class i, the expanded keywords ei þ q
is used as an input to the Google web search, and the
top 50 Google snippets,6 denoted as SðeiÞ, are collected.
After removing the original keyword q from the snip-
pets, the term frequency (TF) vector of SðeiÞ is com-
puted, and the top 100 terms with the highest TFs in
SðeiÞ are reserved. Each ei has a different set of top 100
terms. We L2-normalize the truncated vector, and denote
the result vector as ntfðeiÞ. The dimensionality of ntfðeiÞ
is equal to the size of the dictionary. However, only the
top 100 terms of ei with highest TFs have non-zero val-
ues. The semantic correlation between the ith and jth
reference classes, i.e., ei and ej, is computed as

Ci;j ¼ cosineðntfðeiÞ; ntfðejÞÞ: (14)

Fig. 4. Describe “green apple” with reference classes. Its shape is cap-
tured by the shape classifier of “red apple” and its color is captured by
the color classifier of “apple tree.”

6. Google snippet is a short summary generated by Google for each
search result item in response to the query.
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6 EXPERIMENTAL RESULTS

The images for testing the performance of re-ranking and
the training images of reference classes can be collected at
different time (since the update of reference classes may be
delayed) and from different search engines. Given a query
keyword, 1,000 images are retrieved from the whole web
using a search engine. As summarized in Table 1, we create
three data sets to evaluate the performance of our approach
in different scenarios. In data set I, 120; 000 testing images
for re-ranking were collected from the Bing Image Search-
with 120 query keywords in July 2010. These query key-
words cover diverse topics including animals, plants, food,
places, people, events, objects, and scenes, etc. The training
images of reference classes were also collected from the
Bing Image Search around the same time. Data set II uses
the same testing images as in data set I. However, its
training images of reference classes were collected from the
Google Image Search also in July 2010. In data set III, both
testing and training images were collected from the
Bing Image Searchbut at different time (eleven months
apart).7 All the testing images for re-ranking are manually
labeled, while the images of reference classes, whose num-
ber is much larger, are not labeled.

6.1 Re-Ranking Precisions

We invited five labelers to manually label testing images
under each query keyword into different categories accord-
ing to semantic meanings. Image categories were carefully
defined by the five labelers through inspecting all the test-
ing images under a query keyword. Defining image catego-
ries was completely independent of discovering reference
classes. The labelers were unaware of what reference classes
have been discovered by our system. The number of image
categories is also different than the number of reference
classes. Each image was labeled by at least three labelers
and its label was decided by voting. Some images irrelevant
to query keywords were labeled as outliers and not
assigned to any category.

Averaged top m precision is used as the evaluation crite-
rion. Top m precision is defined as the proportion of rele-
vant images among top m re-ranked images. Relevant
images are those in the same category as the query image.
Averaged top m precision is obtained by averaging over all
the query images. For a query keyword, each of the 1; 000
images retrieved only by keywords is used as a query image
in turn, excluding outlier images. We do not adopt the pre-
cision-recall curve, since in image re-ranking the users are
more concerned about the qualities of top ranked images

instead of the number of relevant images returned in the
whole result set.

We compare with two image re-ranking approaches used
in [6], which directly compare visual features, and two
approaches of pseudo-relevance feedback [43], [44], which
online learns visual similarity metrics.

� Global weighting. Fixed weights are adopted to fuse
the distances of different visual features [6].

� Adaptive weighting. Cui et al. [6] proposed adaptive
weights for query images to fuse the distances of dif-
ferent visual features. It is adopted by Bing Image
Search.

� PRF. The pseudo-relevance feedback approach pro-
posed in [43]. It used top-ranked images as positive
examples to train a one-class SVM .

� NPRF. The pseudo-relevance feedback approach
proposed in [44]. It used top-ranked images as posi-
tive examples and bottom-ranked images as negative
examples to train a SVM.

For our approach, two different ways of computing
semantic signatures in Section 5.1 are compared.

� Query-specific visual semantic space using single signa-
tures (QSVSS Single). For an image, a single semantic
signature is computed from one SVM classifier
trained by combining all types of visual features.

� Query-specific visual semantic space using multiple sig-
natures (QSVSS Multiple). For an image, multiple
semantic signatures are computed from multiple
SVM classifiers, each of which is trained on one type
of visual features separately.

QSVSS Single and QSVSS Multiple do not use textual
features to compute semantic signatures and do not incor-
porate semantic correlation between reference classes. The
two improvements are evaluated in Sections 6.5 and 6.6.
The visual features in all the six approaches above are the
same as [6]. The parameters of our approaches mentioned
in Sections 4 and 5 are tuned in a small separate data set
and fixed in all the experiments.

The averaged top m precisions on data sets I, II, and III
are shown in Fig. 5a, 5b, and 5c. Our approach signifi-
cantly outperforms Global Weighting and Adaptive
Weighting, which directly compare visual features. On
data set I, the averaged top 10 precision is enhanced from
44.41 percent (Adaptive Weighting) to 55.12 percent
(QSVSS Multiple). 24.1 percent relative improvement is
achieved. Figs. 5d and 5e show the histograms of improve-
ments of averaged top 10 precision of the 120 query key-
words on data set I and II by comparing QSVSS Multiple
with Adaptive Weighting. Fig. 5f shows the improvements
on the 10 query keywords on data set III. Our approach
also outperforms pseudo-relevance feedback.

TABLE 1
Descriptions of Data Sets

7. It would be closer to the scenario of real applications if test
images were collected later than the images of reference classes. How-
ever, such data set is not available for now. Although data set III is
smaller than data set I, it is comparable with the data set used in [6].
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Computing multiple semantic signatures from sepa-
rate visual features has higher precisions than computing
a single semantic signature from combined features. It
costs more online computation since the dimensionality
of multiple semantic signatures is higher. Fig. 6 shows
the sensitivity of QSVSS Multiple and QSVSS Single to
the choice of parameters a and b in Eq. (4). They are
robust in certain ranges. Comparing Figs. 5a and 5b, if
the testing images for re-ranking and the images of refer-
ence classes are collected from different search engines,
the performance is slightly lower than the case when
they are collected from the same search engine. But it is
still much higher than matching visual features. It indi-
cates that we can utilize images from various sources to
learn query-specific semantic spaces. As shown in
Fig. 5c, even if the testing images and the images of ref-
erence classes are collected eleven months apart, query-
specific semantic spaces are still effective. Compared
with Adaptive Weighting, the averaged top 10 precision
has been improved by 6.6 percent and the averaged top
100 precision has been improved by 9.3 percent. This
indicates that once the query-specific semantic spaces are
learned, they can remain effective for a long time.

6.2 Online Efficiency

The online computational cost depends on the length of
visual feature (if matching visual features) or semantic
signatures (if using our approach). In our experiments,
the visual features have around 1; 700 dimensions, and
the averaged number of reference classes per query is 25.
Thus the length of QSVSS Single is 25 on average. Since
six types of visual features are used, the length of
QSVSS Multiple is 150. It takes 12ms to re-rank 1,000
images matching visual features, while QSVSS Multiple
and QSVSS Single only need 1:14ms and 0:2ms. Given the
large improvement on precisions, our approach also
improves the efficiency by 10 to 60 times.

6.3 Re-Ranking Images Outside Reference Classes

It is interesting to know whether the query-specific
semantic spaces are effective for query images outside
reference classes. We design an experiment to answer this
question. If the category of an query image corresponds
to a reference class, we deliberately delete this reference
class and use the remaining reference classes to train
SVM classifiers and to compute semantic signatures when
comparing this query image with other images. We repeat
this for every image and calculate the average top m pre-
cisions. This evaluation is denoted as RmCategoryRef and
is done on data set III.8 QSVSS Multiple is used. The
results are shown in Fig. 7. It still greatly outperforms the
approaches of directly comparing visual features. It can
be explained from two aspects. (1) As discussed in Sec-
tion 5.1, QSVSS Multiple can characterize the visual con-
tent of images outside reference classes. (2) Many

Fig. 6. Averaged top 20 precisions on Data set III when (a) choosing dif-
ferent a while fixing b ¼ 30; and (b) choosing different b while fixing
a ¼ 0:6.

Fig. 5. (a)-(c) Averaged top m precisions on data sets I, II, III. (d) and (e) Histograms of improvements of averaged top 10 precisions on data sets I
and II by comparing QSVSS Multiple with Adaptive Weighting. (f) Improvements of averaged top 10 precisions on the 10 query keywords on data set
III by comparing QSVSS Multiple with Adaptive Weighting.

8. We did not test on data set I or II since it is very time consuming.
For every query image, SVM classifiers have to be re-trained.
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negative examples (belonging to different categories than
the query image) are well modeled by the reference clas-
ses and are therefore pushed backward on the ranking
list. Therefore query-specific semantic spaces are effective
for query images outside reference classes.

6.4 Query-Specific versus Universal Semantic
Spaces

In previous works [9], [10], [11], [54], [70], a universal set of
reference classes or concepts were used to map visual fea-
tures to a semantic space for object recognition or image
retrieval on closed databases. We evaluate whether it is
applicable to web-based image re-ranking. We randomly
select M reference classes from the whole set of reference
classes of all the 120 query keywords in data set I. The M
selected reference classes are used to train a universal
semantic space in a way similar to Section 5.1. Multiple
semantic signatures are obtained from different types of fea-
tures separately. This universal semantic space is applied to
data set III. The averaged top m precisions are shown in
Fig. 7. M is chosen as 25, 80, 120 and 160.9 This method is
denoted as UnivMClasses. When the universal semantic
space chooses the same number (25) of reference classes as
our query-specific semantic spaces, its precisions are no bet-
ter than visual features. Its precisions increase when a larger
number of reference classes are selected. However, the gain
increases very slowly when M is larger than 80. Its best pre-
cisions (when M ¼ 160) are much lower than QSVSS Multi-
ple and RmCategoryRef, even though the length of its
semantic signatures is five times larger.

6.5 Incorporating Textual Features

As discussed in Section 5.2, semantic signatures can be com-
puted from textual features and combined with those from
visual features. Fig. 8 compares the averaged top m preci-
sions of QSVSS Multiple with

� Query-specific textual and visual semantic space using
multiple signatures (QSTVSS Multiple). For an image,
multiple semantic signatures are computed from
multiple classifiers, each of which is trained on one
type of visual or textual features separately.

� Textual feature alone (Text). The cross-entropy
between the word histograms of two images is used
to compute the similarity.

It shows that incorporating textual features into the com-
putation of semantic signatures significantly improves the
performance. Moreover, the weights of combining visual
semantic signatures and textual semantic signatures can be
automatically decided by Eq. (8).

6.6 Incorporating Semantic Correlations

As discussed in Section 5.3, we can further incorporate
semantic correlations between reference classes when
computing image similarities. For each type of semantic
signatures obtained above, i.e., QSVSS Single,
QSVSS Multiple, and QSTVSS Multiple, we compute the
image similarity with Eq. (13), and name the correspond-
ing results as QSVSS Single Corr, QSVSS Multiple Corr,
and QSTVSS Multiple Corr respectively. Fig. 9 shows the
re-ranking precisions for all types of semantic signatures
on the three data sets. Notably, QSVSS Single Corr
achieves around 10 percent relative improvement com-
pared with QSVSS Single, reaching the performance of
QSVSS Multiple despite its signature is six times shorter.

6.7 User Study

In order to fully reflect the extent of users’ satisfaction,
user study is conducted to compare the results of
QSVSS Multiple10 and Adaptive Weightingon data set I.
Twenty users are invited. Eight of them are familiar with
image search and the other twelve are not. We ensure
that all the participants do not have any knowledge
about current approaches for image re-ranking, and they
are not told which results are from which methods. Each
user is assigned 20 queries and is asked to randomly
select 30 images per query. Each selected image is used
as a query image and the re-ranking results of Adaptive
Weightingand our approach are shown to the user. The
user is required to indicate whether our re-ranking result
is “Much Better,” “Better,” “Similar,” “Worse,” or “Much
Worse” than that of Adaptive Weighting. The evaluation
criteria are (1) the top ranked images belong to the same
semantic category as the query image; and (2) candidate
images which are more visual similar to the query image
have higher ranks. 12; 000 user comparison results
are collected and shown in Fig. 10. In over 55 percent
cases our approach delivers better results. Ours is worse
only in fewer than 18 percent cases, which are often the
noisy cases with few images relevant to the query image.

Fig. 11a shows an example that QSVSS Multiple pro-
vides much better results. The query keyword is “palm.”
The initial text-based search returns a pool of images with
diverse semantic meanings, such as palm cell phones, palm
centro and hands. The selected query image is about palm
trees on beach. After re-ranking, QSVSS Multiple returns
many images which have large variance in visual content
but are relevant to the query image in semantic meanings.

Fig. 7. Comparisons of averaged top m precisions of re-ranking images
outside reference classes and using universal semantic space on data
set III.

9. We stop evaluating larger M because training a multi-class SVM
classifier on hundreds of classes is time consuming.

10. Since Adaptive Weighting only uses visual features, to make the
comparison fair, textual features are not used to compute semantic sig-
natures and sematic correlation between classes is not considered.
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These images cannot be found by directly matching visual
features. Fig. 11b shows an example that QSVSS Multiple
provides worse results than Adaptive Weighting according
to the user study. Actually, in this example there are very
few images in the image pool relevant to the query image,
which can be regarded as an outlier. Both approaches pro-
vide bad results. The user prefers the result of Adaptive
Weighting perhaps because its result is more diverse,
although not many relevant images are found either. Please
find more examples in supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.214.

7 RE-RANKING WITHOUT QUERY IMAGES

Query-specific semantic signature can also be applied to
image re-ranking without selecting query images. This
application also requires the user to input a query keyword.
But it assumes that images returned by initial text-only
search have a dominant topic and images belonging to that
topic should have higher ranks. A lot of related works are
discussed in the third paragraph in Section 2. Existing
approaches typically address two issues: (1) how to com-
pute the similarities between images and reduce the seman-
tic gap; and (2) how to find the dominant topic with ranking

algorithms based on the similarities. Our query-specific
semantic signature is effective in this application since it
can improve the similarity measurement of images. In this
experiment QSVSS Multiple is used to compute similarities.
We compare with the state-of-the-art methods on the public
MSRA-MM V1.0 data set [33]. This data set includes 68
diverse yet representative queries collected from the query
log of Bing, and contains 60; 257 images. Each image was
manually labeled into three relevance levels and the Nor-
malized Discounted Cumulated Gain (NDCG) [28] is used
as the standard evaluation metric. NDCG at rank m is calcu-

lated as NDCG@m ¼ 1
Z

Pm
j¼1

2tj�1

logð1þjÞ, where tj is the relevance

level the jth image in the rank list and Z is a normalization

Fig. 9. Incorporating semantic correlations among reference classes. (a)-(c) Single visual semantic signatures with/without sematic correlation. (d)-(f)
Multiple visual & textual semantic signatures with/without sematic correlation.

Fig. 8. Averaged top m precisions incorporating textual features.

Fig. 10. Comparison results of user study on data set I.
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constant to make NDCG@m be 1 for a perfect ranking. We
adopt three re-ranking approaches by keeping their ranking
algorithms while replacing their features with our query-
specific semantic signatures: random walk (RWalk) [17],
kernel-based re-ranking by taking top N images as confi-
dent samples (KernelTopN) [28], and kernel-based re-rank-
ing by detecting confident samples based on bounded
variable least square (KernelBVLS) [28]. The details of these
ranking algorithms can be found in literature. Table 2
reports NDCG@m of initial text result, the three original
approaches in [17], [28], their corresponding versions with
our query-specific sematic signatures, Information Bottle-
neck [15] and Bayesian Visual Ranking (Bayesian) [24]. The
NDCG@m improvements of these approaches over
initial result are shown in Fig. 12. It is observed that our
query-specific semantic signatures are very effective.

Compared with the initial result, the NDCG@m improve-
ments of the three approaches in [17], [28] are 0:007, 0.008
and 0.021, while the improvements become 0.029, 0.052 and
0.067 when their features are placed with query-specific
semantic signatures.

8 CONCLUSION AND FUTURE WORK

We propose a novel framework, which learns query-spe-
cific semantic spaces to significantly improve the effec-
tiveness and efficiency of online image re-ranking. The
visual features of images are projected into their related
semantic spaces automatically learned through keyword
expansions offline. The extracted semantic signatures can
be 70 times shorter than the original visual features,
while achieve 25-40 percent relative improvement on re-
ranking precisions over state-of-the-art methods.

In the future work, our framework can be improved
along several directions. Finding the keyword expansions
used to define reference classes can incorporate other
metadata and log data besides the textual and visual fea-
tures. For example, the co-occurrence information of key-
words in user queries is useful and can be obtained in log
data. In order to update the reference classes over time in
an efficient way, how to adopt incremental learning [72]
under our framework needs to be further investigated.
Although the semantic signatures are already small, it is
possible to make them more compact and to further
enhance their matching efficiency using other technologies
such as hashing [76].

TABLE 2
Performance of Image Re-Ranking without Selecting Query Images on the MSRA-MM V1.0 Data Set

The values in the parentheses are the NDCG@m improvements over initial search.

Fig. 12. The NDCG@m improvements over initial search, i.e., the differ-
ence between NDCG@m after re-ranking and that without re-ranking.

Fig. 11. Examples of results of initial text-based search, image re-ranking by Adaptive Weighting [6] and by QSVSS Multiple. The red crosses indi-
cate the images irrelevant to the query image. Examples that QSVSS Multiple has a better (a) or worse (b) result than Adaptive Weighting according
to the user study.
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