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Abstract

We propose a new approach for general object tracking

with fully convolutional neural network. Instead of treating

convolutional neural network (CNN) as a black-box feature

extractor, we conduct in-depth study on the properties of C-

NN features offline pre-trained on massive image data and

classification task on ImageNet. The discoveries motivate

the design of our tracking system. It is found that convolu-

tional layers in different levels characterize the target from

different perspectives. A top layer encodes more semantic

features and serves as a category detector, while a lower

layer carries more discriminative information and can bet-

ter separate the target from distracters with similar appear-

ance. Both layers are jointly used with a switch mechanism

during tracking. It is also found that for a tracking target,

only a subset of neurons are relevant. A feature map se-

lection method is developed to remove noisy and irrelevan-

t feature maps, which can reduce computation redundancy

and improve tracking accuracy. Extensive evaluation on the

widely used tracking benchmark [36] shows that the pro-

posed tacker outperforms the state-of-the-art significantly.

1. Introduction

Visual tracking, as a fundamental problem in comput-

er vision, has found wide applications. Although much

progress [7, 29, 38] has been made in the past decade,

tremendous challenges still exist in designing a robust track-

er that can well handle significant appearance changes, pose

variations, severe occlusions, and background clutters.

Existing appearance-based tracking methods adopt ei-

ther generative or discriminative models to separate the

foreground from background and distinct co-occurring ob-

jects. One major drawback is that they rely on low-level

hand-crafted features which are incapable to capture seman-

tic information of targets, not robust to significant appear-

ance changes, and only have limited discriminative power.

Driven by the emergence of large-scale visual data

sets and fast development of computation power, Deep
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Figure 1. Feature maps for target localization. (a)(b) From left to

right: input image, the ground truth target heat map, the predict-

ed heat maps using feature maps of conv5-3 and conv4-3 layers of

VGG network [27] (See Section 4.2 for the regression method). (c)

From left to right: input image, ground truth foreground mask, av-

erage feature maps of conv5-3 (top) and conv4-3 (bottom) layers,

average selected feature maps conv5-3 (top) and conv4-3 (bottom)

layers (See Section 4.1 for the feature map selection method).

Neural Networks (DNNs), especially convolutional neu-

ral networks [17] (CNNs), with their strong capabilities of

learning feature representations, have demonstrated record

breaking performance in computer vision tasks, e.g., im-

age classification [16, 27], object detection [8, 23, 22], and

saliency detection [33, 39]. Different from hand-crafted

features, those learned by CNNs from massive annotated

visual data and a large number of object classes (such as Im-

ageNet [4]) carry rich high-level semantic information and

are strong at distinguishing objects of different categories.

These features have good generalization capability across

data sets. Recent studies [28, 1] have also shown that such

features are robust to data corruption. Their neuron respons-



es have strong selectiveness on object identities, i.e., for a

particular object only a subset of neurons are responded and

different objects have different responding neurons.

All these motivate us to apply CNNs to address above

challenges faced by tracking. Given the limited number of

training samples in online tracking and the complexity of

deep models, it is inferior to directly apply CNNs to track-

ing, since the power of CNNs relies on large-scale training.

Prior works [6, 35, 12] attempted to transfer offline learned

DNN features (e.g. from ImageNet) for online tracking and

achieved state-of-the-art performance. However, DNN was

treated as a black-box classifier in these works. In contrast,

we conduct in-depth study on the properties of CNN fea-

tures from the perspective of online visual tracking and in

order to make better use of them in terms of both efficiency

and accuracy. Two such properties are discovered and they

motivate the design of our tracking system.

First, CNN features at different levels/depths have dif-

ferent properties that fit the tracking problem. A top con-

volutional layer captures more abstract and high-level se-

mantic features. They are strong at distinguishing objects

of different classes and are very robust to deformation and

occlusion as shown in Figure 1 (a). However, they are less

discriminative to objects of the same category as shown by

the examples in Figure 1 (b). A lower layer provides more

detailed local features which help to separate the target from

distracters (e.g. other objects in the same class) with similar

appearance as shown in Figure 1 (b). But they are less ro-

bust to dramatic change of appearance, as shown in Figure 1

(a). Based on these observations, we propose to automati-

cally switch the usage of these two layers during tracking

depending on the occurrence of distracters.

Second, the CNN features pre-trained on ImageNet are

for distinguishing generic objects. However, for a particu-

lar target, not all the features are useful for robust tracking.

Some feature responses may serve as noise. As shown in

Figure 1 (c), it is hard to distinguish the target object from

background if all the feature maps are used. In contrast,

through proper feature selection, the noisy feature maps not

related to the representation of the target are cleared out and

the remaining ones can more accurately highlight the target

and suppress responses from background. We propose a

principled method to select discriminative feature maps and

discard noisy or unrelated ones for the tracking target.

The contributions of this work are three folds:

i) We analyze CNN features learned from the large-scale

image classification task and find important properties for

online tracking. It facilitates further understanding of CNN

features and helps to design effective CNN-based trackers.

ii) We propose a new tracking method which jointly con-

siders two convolutional layers of different levels so that

they complement each other in handling drastic appearance

change and distinguishing target object from its similar dis-

tracters. This design significantly mitigate drifts.

iii) We develop a principled method which automatically

selects discriminative feature maps and discards noisy or

unrelated ones, further improving tracking accuracy.

Evaluation on the widely used tracking benchmark [36]

shows that the proposed method well handles a variety

of challenging problems and outperforms state-of-the-art

methods.

2. Related Work

A tracker contains two components: an appearance mod-

el updated online and a search strategy to find the most

likely target locations. Most recent works [2, 41, 11, 20]

focus on the design of appearance models. In generative

models, candidates are searched to minimize reconstruc-

tion errors. For example, Ross et al. [25] learned sub-

space online to model target appearance. Recently, sparse

coding has been exploited for tracking [21, 3, 32, 31, 30],

where the target is reconstructed by a sparse linear combi-

nation of target templates. In discriminative models, track-

ing is cast as a foreground and background separation prob-

lem [24, 37, 34]. Online learning algorithms based on CRF-

s [24], boosting [9], multiple instance learning [2] and struc-

tured SVM [10] were applied in tracking and achieved good

performance. In [40], the generative and discriminative

models were incorporated for more accurate online track-

ing. All these methods used hand-crafted features.

The application of DNNs in online tracking is under ful-

ly explored. In [35], a stacked denoising autoencoder (S-

DAE) was offline trained on an auxiliary tiny image data set

to learn generic features and then used for online tracking.

In [19], tracking was performed as foreground-background

classification with CNN trained online without offline pre-

training. Fan et al. [6] used fully convolutional network for

human tracking. It took the whole frame as input and pre-

dicted the foreground heat map by one-pass forward prop-

agation. Redundant computation was saved. Whereas [35]

and [19] operated in a patch-by-by scanning manner. Given

N patches cropped from the frame, DNNs had to be eval-

uated for N times. The overlap between patches leads to

a lot of redundant computation. In [12], pre-trained CN-

N features were used to construct target-specific saliency

maps for online tracking. Existing works treated DNNs as

black-box feature extractors. Our contributions summarized

in Section 1 were not explored in these works.

3. Deep Feature Analysis for Visual Tracking

Analysis on deep representations is important to under-

stand the mechanism of deep learning. However, it is still

very rare for the purpose of visual tracking. In this sec-

tion, we present some important properties of CNN features

which can better facilitate visual tracking. Our feature anal-

ysis is conducted based on the 16-layer VGG network [27]
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Figure 2. CNNs trained on image classification task carry spatial configuration information. (a) input image (top) and ground truth fore-

ground mask. (b) feature maps (top row) of conv4-3 layer which are activated within the target region and are discriminative to the

background distracter. Their associated saliency maps (bottom row) are mainly focused on the target region. (c) feature maps (top row)

of conv5-3 layer which are activated within the target region and capture more semantic information of the category (both the target and

background distracter). Their saliency maps (bottom row) present spatial information of the category.

pre-trained on the ImageNet image classification task [4],

which consists of 13 convolutional layers followed by 3 ful-

ly connected layers. We mainly focus on the conv4-3 layer

(the 10-th convolutional layer) and the conv5-3 layer (the

13-th convolutional layer), both of which generate 512 fea-

ture maps.

Observation 1 Although the receptive field 1 of CNN fea-

ture maps is large, the activated feature maps are sparse

and localized. The activated regions are highly correlated

to the regions of semantic objects .

Due to pooling and convolutional layers, the receptive

fields of the conv4-3 and conv5-3 layers are very large

(92×92 and 196×196 pixels, respectively). Figure 2 shows

some feature maps with the maximum activation values in

the object region. It can be seen that the feature maps have

only small regions with nonzero values. These nonzero val-

ues are localized and mainly correspond to the image region

of foreground objects. We also use the approach in [26] to

obtain the saliency maps of CNN features. The saliency

maps in Figure 2 (bottom row) show that the change of in-

put that results in the largest increase of the selected feature

maps are located within the object regions. Therefore, the

feature maps are capturing the visual representation related

to the objects. These evidences indicate that DNN features

learned from image classification are localized and correlat-

ed to the object visual cues. Thus, these CNN features can

be used for target localization.

Observation 2 Many CNN feature maps are noisy or un-

related for the task of discriminating a particular target

from its background.

The CNN features pre-trained on ImageNet can describe

a large variety of generic objects and therefore they are sup-

1We use the term receptive field to denote the input image region that

are connected to a particular neuron in the feature maps
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Figure 3. Activation value histograms of feature maps in conv4-3

(left) and conv5-3 (right).

posed to detect abundant visual patterns with a large num-

ber of neurons. However, when tracking a particular tar-

get object, it should focuses on a much smaller subset of

visual patterns which well separate the target from back-

ground. As illustrated in Figure 1 (c), the average of all

the feature maps is cluttered with background noise. And

we should discard feature maps that have high response in

both target region and background region so that the tracker

does not drift to the background regions. Figure 3 shows the

histograms of the activation values for all the feature maps

within the object region. The activation value of a feature

map is defined as the sum of its responses in the object re-

gion. As demonstrated in Figure 3, most of the feature maps

have small or zero values within the object region. There-

fore, there are lots of feature maps that are not related to

the target object. This property provides us the possibility

in selecting only a small number of feature maps with small

degradation in tracking performance.

Observation 3 Different layers encode different types of

features. Higher layers capture semantic concepts on object

categories, whereas lower layers encode more discrimina-

tive features to capture intra class variations.

Because of the redundancy of feature maps, we employ

a sparse representation scheme to facilitate better visualiza-

tion. By feeding forward an image of an object through the

VGG network, we obtain the feature maps F ∈ R
d×n of

a convolutional layer (either the conv4-3 or conv5-3 layer),
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Figure 4. The first and the third rows are input images. The sec-

ond and the fourth rows are reconstructed foreground masks using

conv5-3 feature maps. The sparse coefficients are computed us-

ing the images in the first column and directly applied to the other

columns without change.

where each feature map is reshaped into a d-dimensional

vector and n denotes the number of feature maps. We fur-

ther associate the image with a foreground mask π ∈ R
d×1,

where the i-th element πi = 1 if the i-th neuron of each

feature map is located within the foreground object, and

πi = 0, otherwise. We reconstruct the foreground mask

using a subset of the feature maps by solving

min
c

‖π − Fc‖2
2
+ λ‖c‖1,

s.t. c � 0,
(1)

where c ∈ R
n×1 is the sparse coefficient vector, and λ the

parameter to balance the reconstruction error and sparsity.

Figure 4 shows some of the reconstructed foreground

masks using the feature maps of conv5-3. For the two ex-

amples (face and motorcycle) in Figure 4, we only compute

the sparse coefficients for images in the first column and

use the coefficients to reconstruct foreground masks for the

rest of the columns. The selected feature maps in Figure 4

(a) capture the semantic concepts of human faces and are

robust to faces with appearance variation and even identity

change. The selected feature maps in Figure 4 (b) accu-

rately separate the target from cluttered background and are

invariant to pose variation and rotation. Although trained on

the image classification task, the high-level semantic repre-

sentation of object categories encoded by the conv5-3 layer

enables object localization. However, these features are not

discriminative enough to different objects of the same cate-

gory, thus they can not be directly applied to visual tracking.

Compared with the conv5-3 feature maps, the features

captured by conv4-3 are more sensitive to intra-class ap-

pearance variation. In Figure 2, the selected feature maps

of conv4-3 can well separate the target person from the oth-

er non-target person. Besides, different feature maps focus

Table 1. Face classification accuracy using different feature maps.

Experiment 1 is to classify face and non-face. Experiment 2 is

classify face identities.

Feature map Experiment 1 Experiment 2

conv4-3 76.42% 83.83%

conv5-3 89.56% 57.28%

on different object parts.

To further verify this, we conduct two quantitative exper-

iments. 1800 human face images belonging to six identities

and 2000 images containing non-face objects are collected

from the benchmark sequences [36]. Each image is asso-

ciated with a foreground mask to indicate the region of the

foreground object. In the first experiment, we evaluate the

accuracy in classifying the images into face and non-face

using the conv4-3 and conv5-3 layers separately. Three face

images belonging to three identities are selected as posi-

tive training samples to compute a set of sparse coefficients

{c1, c2, c2} via (1). At the test stage, given the feature maps

F and the foreground mask π of an input image, the recon-

struction error e for the foreground map is computed by

e = min
i

‖π − Fci‖
2

2
. (2)

The image is classified as a face image if its reconstruction

error e is less than a predefined threshold. Otherwise, it is

classified as a non-face image.

In the second experiment, our task is to classify all the

face images into different identities. For each identity, 20

images are used as the training samples to learn the sparse

coefficients ci, i = 1, 2, . . . , 6 using (1). At the test stage,

the foreground mask reconstruction error for each identity

is calculated, and the test image is classified as the identity

that has the minimum error as follows:

id = argmin
i

‖π − Fci‖
2

2
. (3)

The classification accuracy using the feature maps of

conv4-3 and conv5-3 for the two experiments are demon-

strated in Table 1. The feature maps of conv5-3 encode high

level semantic information and can better separate face from

non-face objects. But they achieve lower accuracy than

the features maps of conv4-3 in discriminating one identity

from another. The feature maps of conv4-3 preserve more

middle-level information and enables more accurate classi-

fication of different images belonging to the same category

(human faces). But they are worse than the feature maps of

conv5-3 in discriminating face from non-face. These result-

s motivate us to consider these two layers jointly for more

robust tracking.

4. Proposed Algorithm

An overview (Figure 5) of the proposed fully convolu-

tional network based tracker (FCNT) is as follows:
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Figure 5. Pipeline of our algorithm. (a) Input ROI region. (b) VGG network. (c) SNet. (d) GNet. (e) Tracking results.

1. For a given target, a feature map selection process is

performed on the conv4-3 and conv5-3 layers of the VGG

network to select the most relevant feature maps and avoid

overfitting on noisy ones.

2. A general network (GNet) that captures the catego-

ry information of the target is built on top of the selected

feature maps of the conv5-3 layer.

3. A specific network (SNet) that discriminates the target

from background with similar appearance is built on top of

the selected feature maps of the conv4-3 layer.

4. Both GNet and SNet are initialized in the first frame to

perform foreground heat map regression for the target and

adopt different online update strategies.

5. For a new frame, a region of interest (ROI) centered

at the last target location containing both target and back-

ground context is cropped and propagated through the fully

convolutional network.

6. Two foreground heat maps are generated by GNet and

SNet, respectively. Target localization is performed inde-

pendently based on the two heat maps.

7. The final target is determined by a distracter detection

scheme that decides which heat map in step 6 to be used.

4.1. Feature Map Selection

The proposed feature map selection method is based on

a target heat map regression model, named as sel-CNN, and

is conducted independently on the conv4-3 and conv5-3 lay-

ers of VGG. The sel-CNN model consists of a dropout lay-

er followed by a convolutional layer without any nonlinear

transformation. It takes the feature maps (conv4-3 or con5-

3) to be selected as input to predict the target heat map M,

which is a 2-dimensional Gaussian centered at the ground

truth target location with variance proportional to the target

size (See Figure 1 (a) and (b) for an example). The model is

trained by minimizing the square loss between the predicted

foreground heat map M̂ and the target heat map M:

Lsel = ‖M̂−M‖2. (4)

After parameter learning using back-propagation con-

verges, we fix the model parameters and select the feature

maps according to their impacts on the loss function. The

input feature maps F are vectorized into a vector denoted

by vec(F). Denote fi as the i-th element of vec(F). The

change of the loss function caused by the perturbation of

the feature map δF can be computed by a two-order Taylor

expansion as follows:

δLsel =
∑

i

giδfi +
1

2

∑

i

hii(δfi)
2 +

1

2

∑

i 6=j

hijδfiδfj ,

(5)

where gi = ∂Lsel

∂fi
and hij = ∂2Lsel

∂fi∂fj
are, respectively, the

first and second order derivatives of the objective function

with respect to the input feature maps. The number of ele-

ments in the feature maps is very large (> 270, 000). The

complexity for computing all the second order derivatives

hij is O(270, 0002), which is too time consuming. We ap-

proximate the Hessian matrix with a diagonal matrix, in

which the third term of the right hand side of (5) is neglect-

ed. Both the first derivatives gi and the second derivatives

hii can be efficiently computed via back-propagation.

We define the significance of the element fi as the

change of the objective function after setting fi to zero, i.e.,

δfi = 0 − fi. According to (5), the significance of fi can

then be computed as

si = −gifi +
1

2
hiif

2

i . (6)

The significance of the k-th feature map are further de-

fined as the summation of significance of all its elements

Sk =
∑

x,y s(x, y, k), where s(x, y, k) is the significance

of the element indexed by location (x, y) on the k-th fea-

ture map. All the feature maps are sorted in the descending

order by their significance, and the top K feature maps are

selected. These selected feature maps have significant im-

pact on the objective function and thus are most relevant to

the tracking task. Our feature map selection method can

be conducted in an online fashion. In our experiments, we

only conduct feature selection at the first frame and have

achieved good performance. This should be partially at-

tributed to the robustness of CNN features.



The idea of using quadratic approximation of the cost

function to remove connections in networks can be traced

back to 1989 [18]. The aim was to reduce the number of

parameters and improve speed, while we target on removing

noisy feature maps and improving tracking accuracy.

4.2. Target Localization

Figure 5 (c) and (d) show the design of the CNNs for

target localization. After feature map selection in the first

frame, we build the SNet and the GNet on top of the select-

ed conv4-3 and conv5-3 feature maps, respectively. Both

networks share the same architecture that consists of two

additional convolutional layers. The first additional convo-

lutional layer has convolutional kernels of size 9×9 and out-

puts 36 feature maps as the input to the next layer. The sec-

ond additional convolutional layer has kernels of size 5× 5
and outputs the foreground heat map of the input image.

ReLU is chosen as the nonlinearity for these two layers.

SNet and GNet are initialized in the first frame by mini-

mizing the following square loss function:

L = LS + LG,

LU = ‖M̂U −M‖2F + β‖WU‖
2

F ,
(7)

where the subscript U ∈ {S,G} indicates SNet and GNet,

respectively; M̂U represents the foreground heat map pre-

dicted by the network; M is the target heat map, WU is the

weight parameter of the convolutional layers; β is a trade

off parameter for weight decay.

Note that the sel-CNN for selecting features and the S-

Net and GNet for localization are different in CNN struc-

tures. The sel-CNN architecture is very simple to avoid

using noisy feature maps to overfit the objective function,

whereas the SNet and GNet are more complex. Since the

noisy feature maps have been discarded by the feature map

selection, more complex models facilitate more accurate

tracking. Detailed experimental results and analysis on the

selection of different model architectures for localization

and feature map selection are provided in the supplemen-

tary materials.

In a new frame, we crop a rectangle ROI region centered

at the last target location. By forward propagating the ROI

region through the networks, the foreground heat maps are

predicted by both GNet and SNet. Target localization is first

performed on the heat map produced by GNet. Denote the

target location as X̂ = (x, y, σ) , where x, y and σ repre-

sent the center coordinates and scale of the target bounding

box, respectively. Given the target location X̂
t−1 in the last

frame, we assume the locations of target candidates in the

current frame are subject to a Gaussian distribution

p(Xt|X̂t−1) = N (Xt; X̂t−1,Σ), (8)

where Σ is a diagonal covariance matrix that indicates the

variances of the location parameters. The confidence of

the i-th candidate is computed as the summation of al-

l the heat map values within the candidate region conf i =
∑

j∈Ri
M̂G(j), where M̂G denotes the heat map generat-

ed by GNet; Ri is the region of the i-th target candidate

according to its location parameter Xt
i (8); j denotes the co-

ordinate index. The candidate with the highest confidence

is predicted as the target by GNet.

According to the analysis in Section 3, GNet based on

the conv5-3 layer captures semantic features and is high-

ly invariant to intra class variation. Hence, the foreground

heat map generated by GNet highlights both the target and

background distracters with similar appearances.

To prevent the tracker from drifting to background, we

further promote a distracter detection scheme to determine

the final target location. Denote the target location predict-

ed by GNet as X̂G, the corresponding target region in the

heat map as RG. The probability of distracter occurring

in background is evaluated by the proportion between the

confidence values outside and inside the target region

Pd =

∑

j∈M̂G−RG
M̂G(j)

∑

k∈RG
M̂G(k)

, (9)

where M̂G −RG represents the background region on heat

map M̂G. When the proportion Pd is less than a thresh-

old (0.2 in all the experiments), we assume no co-occurring

distracter and use the target location predicted by GNet as

the final result. Otherwise, the same target localization pro-

cedure described above is performed on the heat map M̂S

predicted by SNet to determine the final target location.

4.3. Online Update

To avoid the background noise introduced by online up-

date, we fix GNet and only update SNet after the initial-

ization in the first frame. SNet is updated following two

different rules: the adaptation rule and the discrimination

rule, which aim to adapt SNet to target appearance varia-

tion and improve the discriminative power for foreground

and background, respectively. According to the adaptation

rule, we finetune SNet every 20 frames using the most con-

fident tracking result within the intervening frames. Based

on the discrimination rule, when distracters are detected us-

ing (9), SNet is further updated using the tracking results in

the first frame and the current frame by minimizing

minβ‖WS‖
2

F +
∑

x,y

{

[

M̂
1

S(x, y)−M
1(x, y)

]2

+
[

1−Φ
t(x, y)

]

[

M̂
t
S(x, y)−M

t(x, y)
]2
}

, (10)

where WS denotes the convolutional weight of SNet; (x, y)
are spatial coordinates; M̂t

S and M
t represent the heat map

for the t-th frame predicted by SNet and the heat map
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Figure 6. The precision plots and success plots of OPE for the top 10 trackers. The performance score for each tracker is shown in the

legend. The performance score of precession plot is at error threshold of 20 pixels while the performance score of success plot is the AUC

value.

Table 2. Average precision scores on different attributes: illumination variation (IV), out-of-plane rotation (OPR), scale variation (SV),

occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background cluttered

(BC) and low resolution (LR). The best and the second best results are in red and green colors, respectively.
SCM Struck TLD DLT ASLA CXT MEEM KCF TGPR FCNT FCNTG FCNTS FCNT512 FCNT256 FCNT128 FCNT64

IV 0.594 0.558 0.537 0.534 0.517 0.501 0.778 0.728 0.687 0.830 0.776 0.731 0.791 0.758 0.760 0.787

OPR 0.618 0.597 0.596 0.561 0.518 0.574 0.838 0.729 0.741 0.831 0.820 0.775 0.789 0.779 0.758 0.751

SV 0.672 0.639 0.606 0.590 0.552 0.550 0.787 0.679 0.703 0.830 0.806 0.762 0.799 0.787 0.755 0.785

OCC 0.640 0.564 0.563 0.574 0.460 0.491 0.801 0.749 0.708 0.797 0.745 0.764 0.740 0.730 0.740 0.707

DEF 0.586 0.521 0.512 0.563 0.445 0.422 0.859 0.740 0.768 0.917 0.917 0.884 0.919 0.857 0.896 0.850

MB 0.339 0.551 0.518 0.453 0.278 0.509 0.740 0.650 0.578 0.789 0.666 0.737 0.734 0.712 0.743 0.729

FM 0.333 0.604 0.551 0.446 0.253 0.515 0.757 0.602 0.575 0.767 0.686 0.727 0.725 0.671 0.731 0.713

IPR 0.597 0.617 0.584 0.548 0.511 0.610 0.790 0.725 0.705 0.811 0.797 0.749 0.778 0.824 0.750 0.751

OV 0.429 0.539 0.576 0.444 0.333 0.510 0.730 0.650 0.576 0.741 0.636 0.641 0.648 0.520 0.650 0.554

BC 0.578 0.585 0.428 0.495 0.496 0.443 0.807 0.753 0.761 0.799 0.722 0.679 0.722 0.741 0.674 0.727

LR 0.305 0.545 0.349 0.396 0.156 0.371 0.494 0.381 0.539 0.765 0.577 0.633 0.747 0.740 0.761 0.750

Overall 0.649 0.656 0.608 0.587 0.532 0.575 0.828 0.740 0.766 0.856 0.794 0.801 0.824 0.817 0.800 0.798

generated according to the predicted target location (a 2-

dimensional Gaussian centered at the target location), re-

spectively; the foreground mask Φ
t indicates the predicted

target bounding box, i.e., Φt(x, y) = 1 if the location (x, y)
belongs to the target region and Φ

t(x, y) = 0, otherwise.

The second term in (10) corresponds to loss for locating

the target in the first frame. When distracters appear or the

target undergoes severe occlusion in the current frame, the

estimated target region is not reliable for learning target ap-

pearance. Therefore, we choose a conservative scheme by

adding the first frame to supervise update so that the learned

model still captures the appearance in the first frame. Mean-

while, the third term in (10) removes the loss in the unreli-

able target region and only considers those within the back-

ground region in the current frame. It enforces the model

to put more efforts on assigning the co-occurring distracter-

s as background. The combination of the second term and

the third term in (10) can help SNet to better separate the

target from background and alleviate the model degradation

caused by occlusion or distracters.

5. Experiments

Setup. The proposed FCNT tracker is implemented in

MATLAB based on the wrapper of Caffe framework [14],

and runs at 3 fps on a PC with a 3.4GHz CPU and a TI-

TAN GPU. The source code is publicly available2. Both the

sel-CNN for feature map selection and the GNet and SNet

for target localization are trained in the first frame using

back-propagation for 50 iterations. Afterwards, SNet are

finetuned for 3 iterations at each update step. The learning

rates are set to 1e − 9 for the sel-CNN and 1e − 7 for the

GNet and SNet. The number of feature maps selected by

the proposed feature selection method is set to K = 384 for

both the conv4-3 and conv5-3 layers. The size of the input

ROI region centered at target location is 386 × 386 pixel-

s. The weight decay parameter β in (7) and (10) is set to

0.005. At each frame, 600 target candidates are randomly

sampled. The variance of location parameters in (8) are set

to {10, 10, 0.004} for x, y translation and scale, respective-

ly. All the parameters are fixed through the experiment.

Evaluation Methodology. We evaluate the proposed FC-

NT tracker on the benchmark data set [36] which includes

50 sequences and the results of 29 trackers. In addition, we

also compare our method with three recent state-of-the-art

methods MEEM [38], TGPR [7] and KCF [11] for a more

thorough comparison. The sequences are further tagged

with 11 attributes according to different challenging factors.

We use the precision plot and the success plot to evaluate

all the trackers. The precision plot demonstrates the per-

2http://ice.dlut.edu.cn/lu/index.html

http://ice.dlut.edu.cn/lu/index.html


Table 3. Average success scores on different attributes: illumination variation (IV), out-of-plane rotation (OPR), scale variation (SV),

occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background cluttered

(BC) and low resolution (LR).The best and the second best results are in red and green colors, respectively.
SCM Struck TLD DLT ASLA CXT MEEM KCF TGPR FCNT FCNTG FCNTS FCNT512 FCNT256 FCNT128 FCNT64

IV 0.473 0.428 0.399 0.405 0.429 0.368 0.548 0.493 0.486 0.598 0.519 0.546 0.565 0.546 0.558 0.565

OPR 0.470 0.432 0.420 0.412 0.422 0.418 0.562 0.495 0.507 0.581 0.532 0.548 0.550 0.544 0.539 0.529

SV 0.518 0.425 0.421 0.455 0.452 0.389 0.503 0.427 0.443 0.558 0.507 0.527 0.531 0.525 0.515 0.519

OCC 0.487 0.413 0.402 0.423 0.376 0.372 0.559 0.514 0.494 0.571 0.491 0.557 0.528 0.519 0.540 0.515

DEF 0.448 0.393 0.378 0.394 0.372 0.324 0.582 0.534 0.556 0.644 0.605 0.638 0.649 0.618 0.643 0.614

MB 0.293 0.433 0.404 0.363 0.258 0.369 0.565 0.497 0.440 0.580 0.452 0.563 0.524 0.518 0.539 0.532

FM 0.296 0.462 0.417 0.360 0.247 0.388 0.568 0.459 0.441 0.565 0.496 0.545 0.523 0.493 0.534 0.513

IPR 0.458 0.444 0.416 0.411 0.425 0.452 0.526 0.497 0.487 0.555 0.510 0.519 0.532 0.561 0.520 0.520

OV 0.361 0.459 0.457 0.367 0.312 0.427 0.597 0.550 0.431 0.592 0.478 0.498 0.502 0.419 0.514 0.430

BC 0.450 0.458 0.345 0.339 0.408 0.338 0.574 0.535 0.543 0.564 0.494 0.510 0.514 0.527 0.498 0.517

LR 0.279 0.372 0.309 0.346 0.157 0.312 0.367 0.312 0.351 0.514 0.416 0.452 0.495 0.497 0.520 0.483

Overall 0.499 0.474 0.437 0.436 0.434 0.426 0.567 0.514 0.529 0.599 0.524 0.574 0.575 0.570 0.568 0.559

centage of frames where the distance between the predict-

ed target location and the ground truth location is within a

given threshold. All the trackers are ranked according to

the precision scores at the threshold of 20 pixels. Whereas

the success plot illustrates the percentage of frames where

the overlap ratio between the predicted bounding box and

the ground truth bounding box is higher than a threshold

τ ∈ [0, 1]. The area under curve (AUC) of each success

plot are used to rank the tracking algorithms. We report

the results of one pass evaluation (OPE) [36] for the pro-

posed FCNT tracker and the top 10 algorithms in each plot,

including MEEM [38], TGPR [7], KCF [11], SCM [40],

Struck [10], TLD [15], DLT [35], ASLA [13] and CXT [5].

Results. The precision plot and the success plot of the com-

pared trackers on 50 sequences are demonstrated in Fig-

ure 6. The proposed FCNT tracker outperforms all the other

trackers in terms of both average precision score and suc-

cess score. To facilitate better analysis on the tracking per-

formance, we further evaluate all the trackers on sequences

with 11 attributes. Table 2 and Table 3 demonstrate that the

proposed FCNT can well handle a variety of challenging

factors and consistently outperform state-of-the-art meth-

ods in almost all the challenges. To demonstrate the ro-

bustness of the features learned by DNNs from large scale

image classification, we also compare with [19] which use a

convolutional network for tracking without pre-training. On

the 16 adopted test sequences, the proposed FCNT achieves

a precision score of 0.88 and a success score of 0.85, where-

as the reported results in [19] are 0.83 and 0.83, respective-

ly. Our pre-trained network outperforms the method in [19]

with a large margin. We also note that the proposed FCNT

tracker has some failure cases in handling the low resolu-

tion (LR) challenge and achieves a relatively lower success

score on the LR attribute (Table 3). One reason is that the

VGG network is pre-trained on the Imagenet data set with

training images of high resolutions.

Ablation Study. To further investigate the effectiveness of

tracking by considering multiple layers and the proposed

feature map selection method, we report the performance of

different variants of the proposed algorithm in Table 2 and

3, where FCNTG and FCNTS denote the proposed method

using only GNet and SNet for tracking; FCNTK represents

the proposed method using K selected feature maps from

both the cnov4-3 and conv5-3 layers of VGG network, and

no feature map selection is conducted for K = 512. FCNTS

exploits more discriminative feature and with proper online

update it has higher performance than FCNTG. By consid-

ering both the higher layer and the middle layer, the pro-

posed FCNT can better deal with different challenging fac-

tors and outperform both FCNTG and FCNTS which only

use the feature maps of a single layer. The proposed FCNT

tracker uses less feature maps (386) achieves higher perfor-

mance than FCNT512. The FCNT64 tracker uses only 1/8

of all the feature maps and can still compare favorably a-

gainst state-of-the-art methods. This further demonstrate

that the proposed feature map selection method can effec-

tively remove unreliable and noisy feature maps and retain

relevant ones, which effectively avoids overfitting and im-

proves training convergence rate.

6. Conclusion

In this paper, we empirically present some importan-
t properties of CNN features under the viewpoint of visual
tracking. Based on these properties, we propose a tracking
algorithm using fully convolutional networks pre-trained on
image classification task. We observe that convolutional
layers at different levels have different properties. And we
jointly consider these properties in order to capture the se-
mantic information of the target and discriminate the target
from background distracters. We further develop a princi-
pled feature map selection method to select discriminative
features and discard noisy or unrelated ones. Our approach
is shown to effectively improve the tracking performance on
challenging scenarios.

Acknowledgements. This work is supported by the Natural

Science Foundation of China (NSFC) #61472060, the Funda-

mental Research Funds for the Central Universities under Grant

DUT14YQ101, Hong Kong Innovation and Technology Sup-

port Programme (ITS/221/13FP), and the Research Grants Coun-

cil of Hong Kong (CUHK 417011, CUHK 419412, CUHK

14207814).



References

[1] P. Agrawal, R. B. Girshick, and J. Malik. Analyzing the per-

formance of multilayer neural networks for object recogni-

tion. In ECCV, 2014. 1

[2] B. Babenko, M.-H. Yang, and S. Belongie. Robust objec-

t tracking with online multiple instance learning. TPAMI,

33(8):1619–1632, 2011. 2

[3] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust l1 track-

er using accelerated proximal gradient approach. In CVPR,

2012. 2

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 1, 3

[5] T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Ex-

ploring supporters and distracters in unconstrained environ-

ments. In CVPR, 2011. 8

[6] J. Fan, W. Xu, Y. Wu, and Y. Gong. Human tracking us-

ing convolutional neural networks. TNN, 21(10):1610–1623,

2010. 2

[7] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based

visual tracking with gaussian processes regression. In ECCV.

2014. 1, 7, 8

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1

[9] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised

on-line boosting for robust tracking. In ECCV, 2008. 2

[10] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011. 2, 8

[11] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015. 2, 7, 8

[12] S. Hong, T. You, S. Kwak, and B. Han. Online tracking

by learning discriminative saliency map with convolutional

neural network. In ICML, 2015. 2

[13] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive

structural local sparse appearance model. In CVPR, 2012. 8

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM Multimedia,

pages 675–678, 2014. 7

[15] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-

detection. TPAMI, 34(7):1409–1422, 2012. 8

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[18] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In NIPS, 1989. 6

[19] H. Li, Y. Li, and F. M. Porikli. Robust online visual tracking

with a single convolutional neural network. In ACCV, 2014.

2, 8

[20] X. Li, Z. Han, L. Wang, and H. Lu. Visual tracking via ran-

dom walks on graph model. IEEE Transactions on Cyber-

netics, PP(99):1–1, 2015. 2

[21] X. Mei and H. Ling. Robust visual tracking using l1 mini-

mization. In CVPR, 2009. 2

[22] W. Ouyang and X. Wang. Joint deep learning for pedestrian

detection. In ICCV, 2013. 1

[23] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li,

S. Yang, Z. Wang, C.-C. Loy, et al. Deepid-net: Deformable

deep convolutional neural networks for object detection. In

CVPR, 2015. 1

[24] X. Ren and J. Malik. Tracking as repeated figure/ground

segmentation. In CVPR, 2007. 2

[25] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental

learning for robust visual tracking. IJCV, 77(1-3):125–141,

2008. 2

[26] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep insid-

e convolutional networks: Visualising image classification

models and saliency maps. CoRR, abs/1312.6034, 2013. 3

[27] K. Simonyan and A. Zisserman. Very deep convolution-

al networks for large-scale image recognition. CoRR, ab-

s/1409.1556, 2014. 1, 2

[28] Y. Sun, X. Wang, and X. Tang. Deeply learned face rep-

resentations are sparse, selective, and robust. CoRR, ab-

s/1412.1265, 2014. 1

[29] D. Wang and H. Lu. Visual tracking via probability continu-

ous outlier model. In CVPR, 2014. 1

[30] D. Wang, H. Lu, Z. Xiao, and M.-H. Yang. Inverse s-

parse tracker with a locally weighted distance metric. TIP,

24(9):2646–2657, 2015. 2

[31] D. Wang, H. Lu, and M. Yang. Robust visual tracking via

least soft-threshold squares. TCSVT, PP(99):1–1, 2015. 2

[32] D. Wang, H. Lu, and M.-H. Yang. Online object tracking

with sparse prototypes. TIP, 22(1):314–325, 2013. 2

[33] L. Wang, H. Lu, X. Ruan, and M.-H. Yang. Deep networks

for saliency detection via local estimation and global search.

In CVPR, 2015. 1

[34] L. Wang, H. Lu, and D. Wang. Visual tracking via structure

constrained grouping. Signal Processing Letters, 22(7):794–

798, 2015. 2

[35] N. Wang and D. Yeung. Learning a deep compact image

representation for visual tracking. In NIPS, 2013. 2, 8

[36] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013. 1, 2, 4, 7, 8

[37] F. Yang, H. Lu, and M.-H. Yang. Robust superpixel tracking.

TIP, 23(4):1639–1651, 2014. 2

[38] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking

via multiple experts using entropy minimization. In ECCV.

2014. 1, 7, 8

[39] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection

by multi-context deep learning. In CVPR, 2015. 1

[40] W. Zhong, H. Lu, and M. Yang. Robust object tracking vi-

a sparse collaborative appearance model. TIP, 23(5):2356–

2368, 2014. 2, 8

[41] B. Zhuang, H. Lu, Z. Xiao, and D. Wang. Visual tracking via

discriminative sparse similarity map. TIP, 23(4):1872–1881,

2014. 2


