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Abstract We propose a novel framework of using a nonparametric Bayesian model,

called Dual Hierarchical Dirichlet Processes (Dual-HDP) [2], for unsupervised trajec-

tory analysis and semantic region modeling in surveillance settings. In our approach,

trajectories are treated as documents and observations of an object on a trajectory are

treated as words in a document. Trajectories are clustered into different activities. Ab-

normal trajectories are detected as samples with low likelihoods. The semantic regions,

which are subsets of paths commonly taken by objects and are related to activities in

the scene, are also modeled. Under Dual-HDP, both the number of activity categories

and the number of semantic regions are automatically learnt from data. In this paper,

we further extend Dual-HDP to a Dynamic Dual-HDP model which allows dynamic

update of activity models and online detection of normal/abnormal activities. Exper-

iments are evaluated on a simulated data set and two real data sets, which include

8, 478 radar tracks collected from a maritime port and 40, 453 visual tracks collected

from a parking lot.
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(a)

(b) (c)

Fig. 1 Trajectories in our two data sets. (a) Radar tracks collected from a port. (b) Some
examples of paths in the parking lot scene. They are manully drawn for the illustration purpose.
(c) Tracks collected from a parking lot scene within one week.

1 Introduction

Activity analysis has long been one of the foci of research in surveillance. Over the

past decade significant works [3]-[21] have been reported on this topic. Many of these

approaches assumed that objects and/or their constituents were first detected and

tracked throughout the scene and activities were modeled as sequences of movements

of objects. In near-field settings, the features of gestures, poses, and appearance play

an important role in explaining activities. However, in many far-field settings (i.e. wide

outdoor areas), the captured videos are of low resolution and poor quality or even no

videos are available (e.g. in some maritime surveillance, only radar signals are avail-

able). In these scenarios, it is difficult to compute more complicated features. Usually

only positions of objects are recorded along the tracks, which are called trajectories.

The majority of visible activities are distinguished by the patterns of objects mov-

ing from one location to another. In this work, our surveillance system is based on

trajectory analysis.

Activities are closely related to scene structures, such as paths, entry and exit

points, since they regularize the motion of objects. Some examples of paths can be

found in Figure 1(b). One the one hand, these structures can be identified from tra-

jectories related to particular activities [10,11,22,17,23,19,20,24]. On the other hand,

the knowledge of scene structures help to classify trajectories into activities, since it

provides prior information on activities happening in a scene. In this paper the two

related problems of activity analysis and scene modeling will be jointly solved. Devel-

oping algorithms automatically solving these two problem without human intervention
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will save a lot of man power in surveillance applications. In same cases, it is very diffi-

cult for human beings to tell how many activity categories and scene structures exist in

the scene, especially when the data sets are in large scale and activities are complicated

(see examples shown in Figure 1 (a) and (c)), and therefore the assistance of computing

algorithms becomes even more important1. The knowledge of the learnt scene struc-

tures is very useful in many surveillance tasks. It can support activity descriptions with

spatial context, such as “a car moving off the road” and “a person waiting at a bus

stop”, and improves low-level tracking and classification [25]. For example, if an object

disappears, but not at an exit point, then it is likely to be a tracking failure instead of

a true exit. In classification, people can leverage the fact that vehicles are much more

likely than pedestrians to move on the road.

In surveillance, it is easy to collect a huge amount of data over weeks, months or

even years, as more and more cameras are installed in urban settings. People expect

that the surveillance system can deal with a huge amount of data, process the data with

as little human effort as possible, store and query data in an efficient way, and provide

statistical summaries of activities. So an unsupervised or semi-supervised framework is

preferred. In this paper, we propose an surveillance system with the following features:

– Cluster trajectories into different activities without supervision.

– Detect abnormal trajectories.

– Model semantic regions, which are subsets of paths in the scene.

– Online dynamically update the models of activities. Instead of keeping all the data

for clustering purposes as existing methods do, in our system old trajectories can

be replaced overtime.

– Handle a huge amount of data.

We propose a framework of using a nonparametric Bayesian model, Dual Hierarchi-

cal Dirichlet Processes (Dual-HDP), which was proposed in [2], for trajectory analysis.

Dual-HDP advances the existing language processing model, Hierarchical Dirichlet Pro-

cesses (HDP) [26] . HDP is a nonparametric Bayesian model. It clusters words often

co-occurring in the same documents into one topic and automatically decides the num-

ber of topics. Dual-HDP co-clusters words and documents, and it automatically decides

the numbers of both word topics and document clusters. Dual-HDP is similar to the

nonparametric model, called Nested Dirichlet Process, proposed by Rodriguez et al.

[27]. It is also closely related to the Transformed Dirichlet Process proposed by Sud-

derth et al. [28] applied to object recognition. Under our framework, trajectories are

treated as documents and the observations (positions and moving directions of objects)

on the trajectories are treated as words. Topics model the semantic regions, which are

subsets of paths commonly taken by objects, in the scene, and trajectories are clustered

into different activities. HDP can only cluster observations into semantic regions. Since

trajectories have different combinations of semantic regions, Dual-HDP has an extra

layer of hierarchical Dirichlet processes to model the clusters of trajectories on the top

of semantic regions. In this paper we further extend Dual-HDP to dynamic Dual-HDP

which allows the models of activities and semantic regions to be online dynamically

updated. Dynamic Dual-HDP is related to the dynamic topic model proposed by Blei

et al. [29], which was a parametric model assuming that the number of topics are fixed.

1 Some scene structures cannot be identified from the appearance of the scene, such as the
path crossing the grass field in Figure 1 (b). In some cases, the background image of the scene
is even not available (for example, as shown in Figure 1 (a), in maritime surveillance, only
radar tracks are available).
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We evaluate our approach on a simulated data set and two real data sets (see

Figure 1), which include 8, 478 radar tracks collected from a port under maritime

surveillance and 45, 453 video tracks collected from a parking lot scene. In maritime

surveillance, trajectory analysis is a natural way to analyze activities especially when

only radar signals are available. Without expert knowledge, it is very difficult for hu-

mans to discover transportation structures on the sea, such as shipping fairways, since

the appearance of the scene does not help. The tracks from the parking lot scene are

obtained from far-field videos recorded by a fixed camera. We use the Stauffer-Grimson

tracker [12] to obtain tracks in this data set. Both data sets have tracking errors. For

example, a long track may be broken into segments because of occlusion and different

objects are linked as one track because of incorrect data association.

2 Related Work

Probabilistic approaches were widely applied to object detection, tracking and event

detection in visual surveillance [15,30–35]. Nillius et al. [34] used a Bayesian network

to associate the identities of isolated tracks. Oliver et al. [31] used Coupled HMM to

model the interaction between two objects. However, there are few studies on using

graphical models to cluster tracks of objects into motion patterns. Pang et al. [35]

proposed a Bayesian filtering framework to group targets which are moving together

in similar directions and are close in space. It was evaluated on a very small data

set only including four trajectories. This approach did not cluster whole trajectories

since the group identities of targets might change dynamically. It only grouped targets

moving at the same time, which means that trajectories were temporally aligned. In

order to group targets observed at different time using this approach, trajectories have

to be first aligned, which is one of the major difficulties in clustering trajectories since

targets might be misdetected during some time windows and trajectories might be

broken or associated incorrectly because of tracking errors. Our models do not require

the alignment of trajectories.

Many of the existing trajectory analysis approaches cluster trajectories and detect

abnormal trajectories by defining the pairwise similarities between trajectories. The

proposed trajectory similarities or distances include Euclidean distance [36,37], Haus-

dorff distance and its variations [23,19], and Dynamic TimeWarping (DTW ) [38]. Some

approaches required that two trajectories are aligned when computing their distance.

An alignment method, long common subsequence (LCSS) were proposed in [39]. Based

on the computed similarity/distance matrix, some standard clustering algorithms such

as spectral clustering [40], agglomerative and divisive hierarchical clustering [41], and

fuzzy c-means [20] were used to group trajectories into different activity categories. A

comparison of different distance measurements and clustering methods can be found in

[42]. These similarity/distance-based approaches have several drawbacks. First, there

is no global probabilistic framework to model activities happening in the scene. They

have an ad hoc nature especially on the definitions of distance measures. Abnormal

trajectories are usually detected as those with a larger distance to other trajectories.

Their abnormality detection lacks a probabilistic explanation. Second, they usually do

not provide a solution to the number of clusters. They often require that the cluster

number is known in advance. Third, some approaches required that two trajectories

were temporally aligned when their distance was computed, which is difficult because of

misdetection and tracking errors. Fourth, calculating the similarities between all pairs
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of samples is computationally inefficient, with a complexity of O(N2) in both time

and space, where N is the number of trajectories. Although some approaches, such

as the Nyström method, approximate some clustering methods, such as spectral clus-

tering, with fewer samples [43], if the selected samples are not representative enough,

the approximation result may not be good. Some other approaches were proposed in

recent years. For example, Anjum and Cavallaro [44] extracted a set of representative

features from trajectories, clustered feature vectors using mean-shift, and merged sim-

ilar adjacent clusters. Zhang et al. [45] used a quadratic curve to fit a trajectory. The

parameters of the quadratic curve form a feature vector to represent the trajectory.

Under this representation, motion patterns within each spatial block were learned by

the Gaussian mixture model and motion patterns were clustered by a graph-cut al-

gorithm. Saleemi et al. [46] modeled the motion patterns of objects in the form of a

multivariate nonparametric probability density function of spatiotemporal variables.

The model was learned using kernel density estimation.

Many other trajectory clustering approaches [47–50] have been proposed and ap-

plied to motion segmentation and object counting. In their applications, these ap-

proaches assumed that the trajectories were temporally aligned and the correspondence

of points between trajectories were automatically established. However, this assump-

tion does not hold in activity analysis and semantic region modeling, and therefore

they cannot be directly applied to solve our problem.

Trajectory clustering is also related to the problem of modeling semantic regions in

the scene. It takes a lot of effort to manually input these structures, and they cannot

be reliably detected based on the appearance of the scene.

There has been a lot work [51–54] on time dependent Dirichlet Process (DP) models

published in recent years. Griffin et al. [52] proposed a framework, called Order-Based

Dependent Dirichlet Processes (DDP), to model time series data. Caron et al. [53]

introduced a class of time-varying DP mixture models using a generated polya urn

scheme. These works modeled time dependency of DP mixtures without more compli-

cated hierarchical structures (such as HDP). The work most relevant to us is [55] and

[56]. Ren et al. [55] proposed a Dynamic Hierarchical Dirichlet Process model which

was applied to music segmentation and analysis of gene expressions. Srebro et al. [56]

integrated Ordered-Based DDP [52] into hierarchical topic models. Both [55] and [56]

assumed that the data of different time slices all share the same set of topics, which are

fixed over time and they only modeled the dynamic change of the mixture weights of

topics. However, in our problem it is important to model the dynamic change of topics,

which reveals the change of the spatial distribution of semantic regions over time. This

will be shown by our experimental results. Thus although the models in [55] and [56]

achieved success when modeling music and genes, they are not suitable for trajectory

analysis and semantic region modeling. Our dynamic Dual-HDP model allows to dy-

namically update both the models of topics (semantic regions in our problem) and the

mixture weights over topics, and it can better fit data at different time slices. Another

importance difference is that learning the models in [55] and [56] require loading the

data observed in all the time slices altogether and running in a batch mode, because

they assumed that all the time slices share the same set of topics. However, our dy-

namic Dual-HDP is learned incrementally and runs in an online mode. The historical

data is replaced by new data observed in the current time slice wihout being kept in

the memory. Its complexity is much lower. Furthermore, dynamic Dual-HDP with two

layers of hierarchical Dirichlet processes has a more complicated hierarchical structure

than dynamic HDP in [55,56].
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In the computer vision field, hierarchical Bayesian models [57,58,26,59,60] have

been widely applied with success in recent years. They were used to solve the problems

of scene categorization [61,28], object recognition [62,28,60], human action recogni-

tion [63,64] and video analysis [2]. Fox and Willsky et al. [32] used Dirichlet process

to solve the problem of data association for multi-target tracking in the presence of

an unknown number of targets. In this paper, we use a nonparametric Hierarchical

Bayesian model for trajectory analysis and scene modeling.

Our framework differs from previous trajectory analysis and scene modeling ap-

proaches:

– Different from existing distance-based clustering approaches, it clusters trajecto-

ries using a generative model. There is a natural probabilistic explanation for the

detection of abnormal trajectories.

– Previous approaches first clustered trajectories into activities and then segmented

semantic regions. Our approach simultaneously learns activities and semantic re-

gions, which are jointly modeled in Dual-HDP.

– Using Dirichlet Processes, the numbers of activity categories and semantic regions

are automatically learnt from data instead of being manually set.

– It does not require trajectories to be temporally aligned.

– The space complexity of our algorithm is O(N) instead of O(N2) in the number of

trajectories.

– Using dynamic Dual-HDP, the models of activities and semantic regions can be

dynamically updated, and clustering trajectories and detecting abnormal trajec-

tories can be done in an online mode. Compared with Dual-HDP, trajectories are

processed incrementally. Old trajectories are replaced over time. The space and

time complexities are further reduced. It can process data over a very long period.

– Our approach clusters trajectory through modeling semantic regions. Different from

distance-based methods, which cluster trajectories close in space, in our model two

locations are in the same semantic region if they are connected by many trajectories.

Considering the case when vehicles move on two side-by-side lanes in the same

direction, some distance-based methods may group trajectories of these vehicles

into one cluster while our approach will learn the two lanes as different semantic

regions and separate trajectories into two clusters since locations on different lanes

are rarely connected by trajectories.

3 Modeling Trajectories

We treat a trajectory as a document and the observations on the trajectory as words.

The positions and moving directions of observations on a trajectory are computed

as features which are quantized according to a codebook. The codebook uniformly

quantizes the space of the scene into small cells and the velocity of objects into several

directions. A trajectory is modeled as a bag of quantized observations without temporal

order. In language processing, some topic models, such as LDA [58] and HDP [26],

cluster co-occurring words into one topic. Each topic has a discrete distribution over

the codebook. A document is modeled as a mixture of topics and documents share

topics. If some words, such as “professor” and “university”, often but not necessarily

always occur in the same documents, a topic related to “education” will be learnt and

its distribution has large weights on both “professor” and “university”.
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Fig. 2 An example to explain the modeling of semantic regions and activities. See details in
text.

In the physical world, objects move along some paths. We refer to the subsets 2

of paths as semantic regions, i.e. two paths may share one semantic region as shown

in Figure 2. When topic models are used to model trajectories, topics reveal semantic

regions shared by trajectories, i.e. many trajectories pass through one semantic region

with common directions of motion. A semantic region is modeled as a discrete distribu-

tion over the space of the scene and moving directions. If two trajectories pass through

the same combination of semantic regions, they are on the same path and thus they

belong to the same activity category. In our Dual-HDP model, each activity category

corresponds to a path and has a prior distribution over semantic regions. It is learnt

in an unsupervised way. All the trajectories clustered into the same activity category

share the same prior distribution. Using Dirichlet Processes, Dual-HDP can learn the

number of semantic regions and the number of activities from data.

In Figure 2, an example is shown to explain the modeling. There are three semantic

regions (indicated by different colors) which form two paths. Both trajectories A and

C pass through regions 1 and 2, so they are clustered into the same activity. Trajectory

B passes through regions 1 and 3, so it is clustered into a different activity. To help

readers better understand our approach, the concept mapping between surveillance

and language processing is summarized in Table 1.

With the “bag-of-words” assumption, our approach does model the first order tem-

poral information among observations since the codebook encodes the moving direc-

tions. If the locations of observations keep unchanged but their temporal orders are

permuted, the observations will be assigned to different words because their moving

directions are changed. It can distinguish some activities related to temporal features.

For example, if objects visit several regions in opposite temporal order, they must pass

through the same region in opposite directions. In our model, that region splits into two

topics because of the velocity difference. So these two activities can be distinguished

by our model, since they have different topics.

In Section 5 and 6, we will explain the HDP model proposed by Teh et al. [26]

and Dual-HDP model [2], which is actually used for trajectory analysis. In Section 7

a new dynamic Dual-HDP model will be proposed. We will describe them as language

models. However, remember that in our problem documents are trajectories, words are

2 If a path is viewed as a set of quantized spatial locations and moving directions, semantic
regions are subsets of paths and they can obtained through the operations of intersection and
set difference between paths.
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Trajectories Documents
Observations on trajectories words

Semantic regions Topics
Activity (path) models Combinations of topics

Table 1 Concept mapping between surveillance and language processing.

observations, and topics are semantic regions. Clusters of trajectories (activities) are

explicitly modeled in Dual-HDP and dynamic HDP but not in HDP.

4 Dirichlet Process

Dirichlet Process (DP) [65] is used as a prior to sample probability measures in non-

parametric Bayesian methods. It is defined by a concentration parameter α, which is a

positive scalar, and a base probability measure H (for example H is a Dirichlet distri-

bution in our case). A probability measure G randomly drawn from DP (α,H) is always

a discrete distribution and it can be obtained from a stick-breaking reconstruction [66],

G =

∞∑
k=1

πkδφk
. (1)

φk is a multinomial parameter vector sampled from Dirichlet distribution H , φk ∼ H .

δφk
is a Dirac delta function centered at φk. πk is a non-negative scalar satisfying∑∞

k=1 πk = 1, and it is constructed by πk = π′
k

∏k−1
l=1 (1−π′

l), π
′
k ∼ Beta(1, α). G often

serves as a prior for infinite mixture models, which can be used to cluster data. Let

{wi} be a set of observed data points. Under an infinite mixture model, wi is sampled

from a density function p(·|θi), which is one of the φks in Eq (1) and is sampled from

G. Data points sharing the same parameter vector φk are clustered together under

this mixture model. Given parameter vectors θ1, . . . , θN of N data points w1, . . . , wN ,

the parameter vector θN+1 of a data point wN+1 can be sampled from a posterior by

integrating out G,

θN+1|θ1, . . . , θN , α,H ∼

K∑
k=1

nk

N + α
δθ∗

k
+

α

N + α
H. (2)

There areK distinct values {φk}Kk=1 (identifyingK components) among the θ1, . . . , θN .

nk is the number of points whose parameter vectors are φk. θN+1 can be assigned to

one of the existing components {φk}Kk=1 (wN+1 is assigned to one of the existing

clusters) or can sample a new component φK+1 from H (a new cluster is created for

wN+1). The posterior of θN+1 is

p(θN+1|wN+1, θ1, . . . , θN , α,H) ≈ p(wN+1|θN+1)p(θN+1|θ1, . . . , θN , α,H). (3)

It is likely for the infinite mixture model with DP prior to create a new component

if existing components cannot well explain the data wN+1. There is no limit to the

number of components. These properties make DP ideal for modeling data clustering

problems where the number of mixture components is not well-defined in advance. A

more detailed description of DP can be found in [69].
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Fig. 3 The graphical model of HDP.

5 HDP

HDP proposed by Teh et al. [26] is a nonparametric hierarchical Bayesian model used

to cluster co-occurring words in documents into topics (in our problem it clusters

observations on trajectories into semantic regions).

The graphical model of HDP is shown in Figure 3. There are M trajectories. Each

trajectory j has Nj quantized observations of positions and moving directions of ob-

jects. In HDP, a prior distribution G0 over the whole data set is sampled from a

Dirichlet process, G0 ∼ DP (γ,H). G0 =
∑∞

k=1 π0kδφk
is an infinite mixture in which

{φk}∞k=1 (discrete distributions over quantized locations and moving directions) are

the models of semantic regions and {π0k}∞k=1 are the mixture weights over semantic

regions. Therefore, a scene is modeled as an infinite mixture of semantic regions. Obser-

vations on trajectories will be clustered into semantic regions. Each trajectory j sam-

ples a distribution Gj over semantic regions from Dirichlet process, Gj ∼ DP (α,G0).

Gj =
∑∞

k=1 πjkδφk
share the same set of semantic region models {φk} as G0. How-

ever, they have different mixture weights {πjk} over semantic regions. For each ob-

servation i on trajectory j, a semantic region model θji, which is one of the φk’s, is

sampled from Gj . The value of the observation wji is sampled from the semantic region,

wji ∼ Discrete(θji). The observations sampled from the same semantic region model

φk are grouped into the same cluster k. The concentration parameters are sampled

from some gamma priors, γ ∼ Gamma(a1, b1), α ∼ Gamma(a2, b2), such that α and

γ do not have to be manually tuned. As the hierarchical levels increase, hierarchical

Bayesian models become more insensitive to the choice of hyperparameters [67]. That

is the reason of introducing hyperparameters a1, b1, a2 and a2 on the top of α and γ.

In HDP, all the trajectories share semantic regions and the number of semantic

regions, i.e. the number of non-zero elements of {π0k} is automatically learnt from

data. HDP has high data likelihood if the distribution {πjk} of each trajectory con-

centrates on a few semantic regions instead of being uniform over all the semantic

regions. Therefore, the quantized locations and moving directions which often co-occur

on the same trajectories tend to be grouped into the same semantic regions in order

to maximize the data likelihood. In Figure 3, {wji} are observed. a1, b1, a2, b2 and H

are hyperparameters to be set. All the others are hidden variables to be inferred.
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6 Dual-HDP

Unfortunately, HDP does not cluster trajectories. We used a Dual-HDPmodel proposed

in [2] to co-cluster both observations and trajectories. A trajectory is modeled as a

distribution over semantic regions. Thus trajectories with similar distributions over

semantic regions can be grouped into one cluster. Such a cluster corresponds to a path

(a path may have more than one semantic regions) commonly taken by objects. There

are two hierarchical Dirichlet processes modeling both semantic regions and paths. The

graphical model of Dual-HDP and an exemplary illustrations are shown in Figure 4.

In Dual-HDP, each trajectory j is from one of the trajectory clusters. All the

trajectory in cluster c pass through the same path and have the same prior distribution

G̃c over semantic regions. G̃c =
∑∞

k=1 π̃ckδ˜φck
, the model of path c, is an infinite

mixture of semantic regions. Since the number of trajectory clusters is unknown in

advance, we model the clusters of trajectories as an infinite mixture,

Q =

∞∑
c=1

εcδ
˜Gc
. (4)

When a DP was first developed by Ferguson [65], the components (such as φk in

Eq (1)) could only be scalars or vectors. MacEachern [68] generalized this to Dependent

Dirichlet Process (DDP). In DDP, components could be stochastic processes. In our

model, the parameters {(π̃ck, φ̃ck)}∞k=1 of G̃c can be treated as a stochastic process

with index k. As shown in Figure 4, Q is generated from DDP (μ, ρ,G0). In Eq (4),

εc = ε′c
∏c−1

l=1 (1− ε′l), ε
′
c ∼ Beta(1, μ), G̃c ∼ DP (ρ,G0).

As explained in Section 5, G0 ∼ DP (γ,H) is the prior distribution over the whole

data set. {G̃c}∞c=1, models of the paths, all share the same set of semantic regions as

in G0. i.e. φ̃ck = φk. However they have different mixture weights {π̃ck} over semantic

regions. Each trajectory j samples a pathway model G̃cj from Q as its prior. Different

trajectories may choose the same pathway model G̃c, and thus they form one cluster

c. Then trajectory j generates its own probability measure Gj from Gj ∼ DP (α, G̃cj )

where the base measure is provided by cluster cj instead of the corpus prior G0 (as

HDP did). The following generative procedure is the same as HDP. Observation i in

trajectory j samples a semantic region θji from Gj and samples its observation value

wji from Discrete(θji). The concentration parameters are also sampled from gamma

priors.

Collapsed Gibbs sampling is used to do inference in three steps.

1. Given the path assignment {cj} of trajectories, sample the semantic region as-

signment {zji} (zji = k indicates θji = φk) of observations, and semantic region

mixtures {π0k} and {π̃ck}. Given {cj}, Dual-HDP is simplified as HDP, and thus

the sampling scheme proposed by Teh et al. [26] can be used. They showed that

{φk} and {πjk} can be integrated out without being sampled.

2. Given {zji}, {π0k} and {π̃ck}, sample the path assignment cj of trajectories. cj
can be assigned to one of the existing paths or to a new path. We use the Chinese

restaurant franchise for sampling. See details in [2].

3. Given other variables, sample the concentration parameters using the sampling

scheme proposed in [26].

In order to detect abnormal trajectories, we need to compute the likelihood of

trajectory j given other trajectories, p(wj |w−j), where wj = {wji}Nj

i=1 is the set
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Fig. 4 Dual-HDP. (a) Graphical model. (b) Illustration of modeling semantic regions, paths,
trajectories and observations. Semantic regions 1 and 2 form a path where objects enter the
parking lot, make a u-turn and leave. Semantic regions 2 and 3 form another path where
objects enter the parking lot, move upward and leave in a different direction. Semantic region
2 is the overlap region of the two paths. Path 1 has large distribution over the first two semantic
regions. Trajectory j belongs to path 1. It samples its distribution Gj over semantic regions
from the prior given by its path model. Observation i on trajectory j belongs to semantic
region 1 and its value is sampled from the model of its semantic region.
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observations in trajectory j and w−j represents the remaining trajectories excluding

j. It can be approximated using the samples obtained during collapsed Gibbs sampling

and a variational method. Computing p(wj |w−j) only needs some sufficient statistics

of w−j without comparing wj with all other other trajectories. So the computation is

efficient. See details in [2]. Besides the offline mode, activity analysis and abnormality

detection can also be done in an online mode and run in realtime. Once Gibbs sampling

on the training set converges, {φk}, {π0k} and {π̃ck} can be esimated from the samples.

A new trajectory outside the training set can be detected as abnormality by computing

the likelihood p(wj |{φk}, {π0k}, {π̃ck}). It also can be classified as one of the pre-

learned clusters by computing the posteriors p(cj |wj , {φk}, {π0k}, {π̃ck}).

7 Dynamic Dual-HDP

Under Dual-HDP, when the models of activities and semantic regions are learnt

and fixed, classifying observed new trajectories into existing activity categories and

detecting abnormal trajectories can be done in an online mode. However, there are

still some reasons to extend the Dual-HDP model to a dynamic Dual-HDP model.

First, people have interest in the dynamic change of models of activities over time. For

example, exploring when a new mode of activity appears, when an old mode of activity

disappears, and when a particular kind of activity becomes more dominant than other

activities in the scene is of interest in surveillance applications. Abnormality detection

may also change over time. An activity may be detected as an abnormality when it

first appears in the scene. However, when more and more instances occur, it becomes

typical. Similarly, a typical activity at an earlier time may become abnormal when it

rarely happens later. Second, when a surveillance system monitors an area over months

or even years, it is difficult to load all the huge amount of data once into memory and

process it. Dynamic Dual-HDP learns the models of activities incrementally over time

and does not have to keep old data.

In order to learn the models of activities dynamically, one option is to divide the

entire data set into subsets according to the temporal order and learn the activity

models of each subset independently using Dual-HDP. This method has two problems.

First, the activity models learnt in different subsets are not aligned. Without manually

permuting the activity models properly, people cannot observe how these models change

over time. Second, since the models different subsets do not share data, if there is not

enough data in a subset, the activity models cannot be well learnt from it. Blei et al. [29]

proposed a model which allowed the topics to be dynamically updated. However, it

assumed that the number of topics was fixed. Allowing the addition of new emerging

activity models over time is of considerable interest in surveillance applications.

The graphical model of the dynamic Dual-HDP is shown in Figure 5. The data is

divided into subsets according to the temporal order (e.g. a subset includes trajectories

happening within one hour). Both models {φt
k} of semantic regions and the prior

distribution {πt
0k} over semantic regions are dynamically updated. Gt−1

0 is the mixture

of semantic regions learnt up to time t− 1, and is used as prior to predict Gt
0, which is

the mixture of semantic regions learnt at the next time interval t. Assume that Kt−1

semantic regions have been learned from the data up to t − 1. Then Gt−1
0 can be
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Fig. 5 Dynamic Dual-HDP. (a) Graphical model. (b) Illustration of the dynamic update of
the Dual-HDP model. (i) Kt−1 models of semantic regions learned up to time t − 1. (ii) The
Kt−1 old models of semantic regions are updated given new data observed at time t. (iii) The
models of Kt −Kt−1 new semantic regions are created at time t. (iv) Prior distribution over
semantic regions learned up to time t. (v) Prior distribution over semantic regions updated
given new data observed at time t.

represented as

Gt−1
0 =

Kt−1∑
k=1

πt−1
0k δφt−1

k
+ πt−1

0u Gt−1
0u (5)

where the first Kt−1 semantic regions have been assigned to the data observed up to

time t−1, and πt−1
0u Gt−1

0u =
∑∞

k=Kt−1+1 π
t−1
0k φt−1

k is the remaining part of the infinite
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mixture of semantic regions, none of which is assigned to any data observed up to time

t− 1 [26]. Both {πt−1
0k }Kt−1

k=1 and {φt−1
k }Kt−1

k=1 can be sampled from the data observed

up to t− 1. We assume that they are learnt and fixed when predicting Gt
0.

In order to use the mixture of semantic regions learnt up to t − 1 as the prior of

Gt
0, we first normalize {πt−1

0k }Kt−1

k=1 to {π̂t−1
0k }Kt−1

k=1

π̂t−1
0k =

πt−1
0k∑Kt−1

k′=1 πt−1
0k′

.

Then a base probability measure F t is generated from Gt−1
0 ,

F t = ωt
Kt−1∑
k=1

π̂t−1
0k δφt

k
+ (1− ωt)H, (6)

where

φt
k ∼ Dir(ξtk · φt−1

k +H), (7)

H is the same Dirichlet distribution as in Section 6 without changing over time, ωt

is a scalar between 0 and 1, and ξtk is a positive scalar. During the generation of F t,

the models {φt
k} of semantic regions are updated. {φk} are sampled from priors given

by {φt−1
k } and are updated given the data observed at t, instead of being fixed over

time as in [55] and [56]. ξt controls the temporal smoothness of the models of semantic

regions. The larger is ξt, the more similar is φt
k to φt−1

k .

Gt
0 is sampled from a Dirichlet process choosing F t as the base measure and γt as

the concentration parameter,

Gt
0 ∼ DP (γt, F t). (8)

By introducing this step, the models of new semantic regions not seen before can be

created given new data observed at t and the prior distribution {πt
0k} over semantic

regions is also updated. From Eq (6) and (8), we observe that the random measure Gt
0

at time t includes the Kt−1 semantic regions generated before t and also some new

semantic regions. Some existing works such as [55] directly added dependency between

Gt−1
0 and Gt

0 without introducing Ft, because they only needed to model the dynamic

variation of mixture weights πt
0k but not the topic models φt

k. Our dynamic Dual-HDP

models the dynamic variations of both πt
0k and φt

k by introducing F t. When F t is

generated from Gt−1
0 , φt

k is generated from φt−1
k and thus can be dynamic updated.

In the following, we explain the inference by collapsed Gibbs sampling.

Suppose that at a sampling step there are Kt topics assigned to the data up to

t (Kt changes during collapsed Gibbs sampling on the subset of t). Then an explicit

construction for Gt
0 is given as,

Gt
0 =

Kt−1∑
k=1

πt
0kδφt

k
+

Kt∑
k=Kt−1+1

πt
0kδφt

k
+ πt

0uG
t
0u. (9)

{φt
k}K

t−1

k=1 are the models of semantic regions existing before t. They are updated using

the data observed at t. They are the same variables as in Eq (6). {φk}K
t

k=Kt−1+1

are the models of new semantic regions assigned to the data observed at t. πt
0uG

t
0u =∑∞

k=Kt+1 π
t
0kφ

t
k is the remaining part of the infinite mixture of semantic regions, none
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Algorithm 1 Inference under the dynamic Dual-HDP

1: Input trajectories collected from T time slices, {wt
ji}, t = 1, . . . , T.

2: Output models of activities and semantic regions and cluster labels of trajectories at
different times.

3: Initialization K0 = 0, n0
k = 0, s0 = 0.

4: for t = 1 to T do
5: repeat
6: given other variables, sample the semantic region assignment {zji} of the observations

{wt
ji} obtained at time t, and sample the semantic region mixture weights {π̃ck} of

trajectory clusters using the Chinese restaurant franchise sampling scheme proposed
in [26].

7: given other variables, sample the cluster labels cj of trajectories observed at time t,
and sample the mixture weights {εc} of trajectory clusters inEq (4) using the Chinese
restaurant franchise sampling proposed in [2].

8: given other variables, sample semantic region models {φt
k} and mixture weights {πt

0k}
from the models {φt−1

k } and {πt−1
0k } learnt at time t − 1 and the data observed at

time t using Eq (23) and (24).
9: until converge
10: update nt

k and st using Eq (21) and (22).
11: end for

of which is signed to any data up to time t. From Eq (6) and (8), Gt
0u ∼ DP (γt(1 −

ωt),H). πt
0 = (πt

01, . . . , π
t
0Kt , π

t
0u) and {φt

k}K
t

k=1 are the variables to be sampled. Given

πt
0 and {φt

k}, the sampling of other variables is the same as Dual-HDP. We use the

Chinese Restaurant Franchise sampling scheme to sample πt
0 and {φt

k} given other

variables. Details can in found in the appendix. The inference under dynamic Dual-

HDP is summarized in Algorithm 1. The choice of parameters ωt, ξt and γt controls

how much the models learned from data observed before t affect the models to be

learned at t. The two extreme cases are that the pre-learned models have on effect on

clustering new data (ωt = 0, ξt = 0) and that the models learned at t are exactly the

same as those learned at t− 1 (ωt = 1, ξt = ∞, γ = ∞). However, we do not have to

tune these parameters individually. As shown in the appendix, these parameters can

be replaced by a single decreasing rate parameter r (0 ≤ r ≤ 1) during sampling. As

data becomes older, its influence on the current model becomes weaker. r controls how

fast the influence decreases.

In our problem, dynamic Dual-HDP is applied to online learning of activity models

and online abnormality detection, where we assume that data in the future is unknown.

Thus in Eq (15) and (16), πt
0 and φt

k are sampled from the posteriors given π̂t−1
0 and

φt−1
k without knowing π̂t+1

0 and φt+1
k . If we assume that data both in the past and in

the future is known, the posteriors become more complicated than Eq (15) and (16),

and the collapsed Gibbs sampling inference may require keeping all data collected from

the whole period in the memory. In the current sampling algorithm, we only need to

keep the data observed at the current time slice for inference. All the old data can

be replaced from memory, as its information has been included in the activity models

{πt−1
0k } and φt−1

k and some sufficient statistics described in the appendix. When t = 0

or there is no data observed before t, the posteriors of πt
0 and φt

k are the same as in

Dual-HDP.
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8 Experimental Results

8.1 Trajectory Analysis without Dynamic Modeling

Our nonparametric hierarchical Bayesian models are evaluated on radar tracks collected

from a maritime port, visual tracks collected from a parking lot, and a simulated

data set. The results of the Dual-HDP model without dynamic modeling will be first

presented. The results of the Dynamic Dual-HDP model will be reported in 8.2. Under

the Dual-HDP model shown in Figure 4, hyperparameters a1, b1, a2, b2, a3, b3, a4,

b4 and H = (u1, . . . , uW ) are hyperparameters to be set. We choose u1 = . . . =

uW = 0.001 as a small number to avoid singularity during inference. The gamma

prior parameters a1 . . . a4 and b1 . . . b4 are all set equal to one, the same as used in

[26,2]. As the increase of hierarchical levels, hierarchical Bayesian models become less

sensitive to hyperparameters [67]. This is one of the major advantages of employing

hierarchical Bayesian models. Therefore we do not need to spend a lot of effort on

tuning parameters. By adding gamma priors over concentration parameters α, γ, μ and

ρ, these concentration parameters do not need to be manually specified. Our model is

more robust to the choice of a1 . . . a4 and b1 . . . b4 than directly tuning α, γ, μ and ρ.

8.1.1 Results on Radar Tracks

In this section, experiments are done on a relatively small data set which has 577

radar tracks collected from a maritime port data set. They were acquired by multiple

collaborating radars along the shore and recorded the locations of ships on the sea.

Many existing approaches were evaluated on data sets with similar sizes as this one.

In order to build the codebook, the spatial region is quantized into 75 × 42 cells and

the moving directions are quantized into four. The choice of quantization parameters

depends on the size of the data set and application requirements. A larger codebook can

describe the models of scene structures at a higher resolution but it also requires a larger

data set for the models of clusters to well learned. 23 semantic regions are discovered

by our model. In Figure 6, we display the distributions of semantic regions (sorted

by the number of observations assigned to semantic regions) over space and moving

directions. As shown in Figure 6, the 1st, 4th, 6th, 8th and 15th semantic regions are

five side by side shipping fairways, where ships move in two opposite directions. For

comparison, we segment the five fairways using a threshold on the density, and overlay

them in Figure 6 (c) in different colors, green (1st), red (4th), black (6th), yellow

(8th), and blue (15th). Since they are so close in space, they may not be separated

using some spatial distance based trajectory clustering approaches, such as Euclidean

distance [37], as an example shown in Figure 7 3. In Figure 6 (d), we compare the 7th,

11th, and 13th semantic regions also by overlaying the segmented regions in red, green,

and black colors. This explains the fact that ships first move along the 7th semantic

region and then diverge along the 11th and 13th semantic regions 4.

3 Here, we emphasize different behaviors of clustering algorithms. Our clustering algorithm
does not depend on spatial distance between trajectories, but on the connectivity of spatial
locations. Even if two pathways are very close to each other but there are no trajectories
crossing between them, they will not be merged into one cluster. Whether clustering algorithms
are successful or not on this data set also depends on the requirements of applications. In some
applications, it may be expected to cluster trajectories of neighboring lanes together.

4 This is interpreted by a maritime surveillance expert who is familiar with activities in this
area. 11 and 13 are not the same semantic region with large variance.
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Our approach groups trajectories into 16 clusters 5. In Figure 7, we plot the eight

largest clusters and some smaller clusters. Clusters 1, 4, 6 and 7 are close in space

and their trajectories move along different shipping fairways. Trajectories in clusters

1 and 6 move along in one direction. Trajectories in clusters 4 and 7 move along in

another direction. Clusters 3 and 5 occupy the same region, but ships in the two clusters

moves in opposite directions. Clusters 2 and 5 partially overlap in space. As shown in

Figure 6(d), ships first move along the same way and then diverge in different directions.

Clusters 2 and 5 share the same semantic region. Only modeling semantic regions using

HDP cannot separate these two clusters. According to a map 6 of shipping fairways

in this area, most clusters, such as cluster 1, 2 and 3, have proper semantic meanings.

Although some clusters, such as cluster 14 and 15, are not on the map, they do reveal

some interesting activity patterns after interpreted by experts. For comparison, in the

last two sub-figures of Figure 7 we also show two clusters of the result using Euclidean

distance and spectral clustering [37] and setting the number of clusters as 16. In this

approach a similarity matrix is computed by comparing the distance between each

pair of trajectories. Then spectral clustering is used to compute an embedded space.

Trajectories are projected to the embedded space and clustered by k-means. Some

fine structures of shipping fairways are not separated using a spatial distance based

clustering method. One of the advantages of our approach is that it learns the number

of clusters from data. When spatial distance based clustering methods are evaluated on

this data set, choosing an improper cluster number, say 8 or 25, causes the clustering

performance to significantly deteriorate. In those cases, trajectories of different fairways

are grouped into one cluster, or trajectories on the same fairway are split into many

clusters.

In Figure 8, we display the top 20 abnormal trajectories based on their normalized

log-likelihoods log(p(wj |w−j))/Nj . There are two possible reasons for the abnormality.

(1) The trajectory does not fit any major semantic regions. Many examples can be

found in Figure 8. (2) The trajectory fits more than one semantic region, but the

combination of the semantic regions is uncommon. Remind that a semantic region is

a part of a pathway. This means that although these semantic regions are commonly

seen, the whole pathway formed by them is abnormal. The red trajectory in Figure 8

(a), and the red and green trajectories in Figure 8 (b) are such examples 7. In Figure

7 it is observed that some clusters include abnormal trajectories. Under Dual-HDP, a

cluster is created if there are a significant amount of trajectories with similar motion

patterns. Based on our experience through experiments, if a single abnormal trajectory

is dissimilar with any other trajectories, it is likely to be assigned to one of the closest

existing clusters instead of creating a new cluster only containing itself. There is another

possibility that many abnormal trajectories form one cluster like background noise in

some sense. This can be observed in the parking lot data set (cluster 22 in Figure 10).

8.1.2 Results on tracks from a parking lot

There are N = 40, 453 trajectories in the parking lot data set collected over one week

and they are plotted in Figure 1. Because of the large number of samples, if some

5 A cluster corresponds to a type of activities, which are characterized by the pathway where
objects pass through with similar motion patterns. A pathway covers a few semantic regions.

6 The map cannot be shown for the security reason.
7 Some abnormal tracks may be caused by tracking errors. However, it is hard to tell since

we only have radar tracks without image and video data.
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8th 1th 6th 15th

4th 2nd 3rd 5th

7th 9th 11th 13th

14th 12th 10th 16th

17th 18th 19th 20th

21th 22th 23th

(a) (b) (c) (d)

Fig. 6 Semantic regions at a maritime port learnt from the radar tracks. Distributions of
semantic regions over space and moving directions are shown (for easier comparison, they
are not shown in order). Colors represent different moving directions: → (red), ← (cyan), ↑
(magenta), and ↓ (blue). (a) Histogram of observations assigned to different semantic regions.
(b) All of the radar tracks. (c) Compare the 1st (green), 4th (red), 6th (blue), 8th (yellow),
and 15th semantic regions. (d) Compare the 7th, 11th, and 13th semantic regions (see details
in text).
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cluster 1 cluster 2 cluster 3 cluster 4

cluster 5 cluster 6 cluster 7 cluster 8

cluster 9 cluster 10 cluster 11 cluster 12

cluster 13 cluster 14 cluster 15 cluster 16

(a)

cluster 1 (Euclidean distance) cluster 2 (Euclidean distance)
(b)

Fig. 7 Clusters of trajectories. Random colors are used to distinguish individual trajectories.
For comparison the last two sub-figures show some trajectory clusters of the result using
Euclidean distance and spectral clustering [37], which also chooses the cluster number of 16.

(a) Top 1− 10 (b) Top 11 − 20

Fig. 8 Top 20 abnormal trajectories are plotted in different colors. Other trajectories are
plotted in cyan color.
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1st 2nd 3rd 4th

5th 6th 7th 8th

9th 10th 11th 12th

13th 14th 15th 16th

17th 18th 19th 20th

Fig. 9 Some semantic regions learnt from the parking lot data set. The meaning of colors is
the same as Figure 6.

similarity based clustering methods require the similarity/distance matrix, it needs

both large amounts of space (6GB) to store the 40, 453 × 40, 453 similarity matrix

and high computational cost to compute the similarities of around 800, 000, 000 pairs

of trajectories. If spectral clustering is used, it is quite challenging to compute the

eigenvectors of such a huge matrix without doing approximation by subsampling [43].

It is difficult for many existing approaches to work on this large data set. The space

complexity of our nonparametric Bayesian approach is O(N) instead of O(N2). The

time complexity of each collapsed Gibbs sampling iteration is O(N). It is difficult to

provide theoretical analysis on the convergence of collapsed Gibbs sampling. However,

we can gather empirical observations by plotting the likelihoods of data sets over Gibbs

sampling iterations. On the smaller radar data set, the likelihood curve converges after

1, 000 iterations. This takes around 1.5 minutes running on a computer with 3GHz
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cluster 1 cluster 2 cluster 3 cluster 4

cluster 5 cluster 6 cluster 7 cluster 8

cluster 9 cluster 10 cluster 11 cluster 12

cluster 13 cluster 14 cluster 15 cluster 18

cluster 19 cluster 20 cluster 21 cluster 22

Fig. 10 Some clusters of trajectories from the parking lot data set.

CPU. On the parking lot data set, which is 70 times larger than the radar data set

in the number of trajectories, the likelihood curve converges after 6, 000 iterations.

It takes around 6 hours. According to our experiments, the time complexity of our

approach is much smaller that O(N2).

The scene is in size of 360×480. In order to build the codebook, the spatial region is

quantized into 72× 96 cells and moving directions are quantized into four. 30 semantic

regions and 22 clusters of trajectories are learnt from this data set. Some of them are

shown in Figures 9 and 10. The first and fifth semantic regions explain vehicles enter-

ing and exiting the parking lot. Most other semantic regions are related to pedestrian

activities. Because of opposite moving directions, some region splits into two semantic
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Top 1− 20 Top 21 − 40 Top 41− 60

Top 61− 80 Top 81− 100

Fig. 11 Top 100 abnormal trajectories in the parking lot data set.

cluster number 5 10 15 20 22 25 30 35
Euclidean rcomplete 0.92 0.90 0.86 0.80 0.78 0.65 0.47 0.27

rcorrect 0.30 0.43 0.51 0.65 0.71 0.76 0.79 0.85
Modified rcomplete 0.94 0.93 0.88 0.82 0.80 0.75 0.53 0.41
Hausdorff rcorrect 0.40 0.46 0.55 0.78 0.79 0.83 0.89 0.91
LCSS rcomplete 0.95 0.93 0.90 0.86 0.84 0.78 0.56 0.38

rcorrect 0.37 0.51 0.59 0.75 0.78 0.85 0.93 0.94
Dual-HDP rcomplete - - - - 0.91 - - -

rcorrect - - - - 0.86 - - -

Table 2 Accuracies of completeness and correctness of different clustering methods: Euclidean
distance [37], modified Hausdorff distance [19], LCSS [39] and Dual-HDP, on the parking lot
data set.

regions, such as semantic regions 3 and 4, 6 and 7, 13 and 14. Similarly objects on

trajectories (see Figure 10) in clusters 2 and 3, 7 and 8 are moving in opposite direc-

tions. Cluster 19 is not as clean as some other clusters. It mainly includes horizontal

trajectories along the grass field, trajectories crossing the grass field and some outlier

trajectories. Many outlier trajectories are in small clusters, such as clusters 20, 21 and

22. The top 100 abnormal trajectories are shown in Figure 11. Some horizontal trajec-

tories on the grass field are detected as abnormalities. They were caused by a worker

shearing the grass, which happened only once.

We also quantitatively compare our method with three distance-based trajectory

clustering methods which use Euclidean distance [37], modified Hausdorff distance [19]

and long common subsequence (LCSS) [39] to compute distance between two trajec-

tories. These three were among the top trajectory clustering methods according to a

recent comparison study [42]. In our implementations, the modified Hausdorff distance

and LCSS compare both spatial distance and velocity difference of observations on

the trajectories. The velocity helps to resolve the ambiguity caused by spatial overlap

between some clusters. The three distance-based methods adopt spectral clustering,

and the Nyström method [43] is used for approximation in order to handle the large
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scale data set. The results are shown in Table 2. In this experiment, the accuracies of

correctness and completeness are used to evaluate cluster performance and it was also

in used in other clustering works [70]. Correctness means that trajectories of different

activity categories are not clustered together. Completeness means that trajectories of

the same activity categories are clustered together. To measure correctness, we asked

subjects who were familiar with this scene to label 1, 000 pairs of trajectories and each

pair of trajectories are from different activity categories. rcorrect is calculated as the

accuracy that they are also in different clusters based on the results of clustering algo-

rithms. To measure completeness, 1, 000 pairs of trajectories by are labeled by subjects

and each pair of trajectories are from the scame cativity category. rcomplete is cal-

culated as the accuracy that they are also in the same clusters based on the results

of clustering algorithms. The subjects only need to tell whether a pair of trajectories

are from the same cluster or not and do not have to estimate the number of clus-

ters during labeling (which is difficult when the data set is large and activities are

complicated). In the meanwhile, correctness and completeness can be used to evaluate

whether a proper cluster number has been chosen. Grouping all the trajectories in the

same cluster results in 100% completeness and 0% correctness. Putting every trajectory

into a singleton cluster results in 100% correctness and 0% completeness. In Table 2,

the three distance-based methods are allowed to manually choose different numbers of

clusters for spectral clustering, while our Dual-HDP automatically learns the cluster

number (22) from data. It is observed that the correctness and completeness of the

three distance-based methods in comparison are significantly affected by the chosen

cluster number, which is difficult to know in advance. Overall our Dual-HDP has bet-

ter accuracies than other methods. For example, in order to achieve a completeness

higher than ours, LCSS has to choose a cluster number smaller than 15 and in those

cases it correctness is 27% lower than ours. In order to achieve a correctness higher

than ours, LCSS has to choose a cluster number larger than 25, and its completeness

is 13% lower than ours.

8.1.3 Evaluation on Simulated Data

In this section, we simulate trajectories to evaluate how robust our model is to tracking

errors. As shown in Figure 12 (a), eight paths are manually drawn on a scene. Some

paths share the same semantic regions. A trajectory is randomly assigned to one of the

eight predefined activities. A trajectory samples the location of its starting point from

a Gaussian distribution centered at the starting point of its path with variance σ1 =

5. It samples the remaining points sequentially following the direction specified by the

path, with additive Gaussian noise of variance σ2 = 2. The simulated trajectories are

shown in Figure 12 (b). In reality, some trajectories are broken because of occlusions

and scene clutter during tracking. In our simulation, we decide whether a trajectory

is broken in a random way with probability r (0 ≤ r ≤ 1). If a trajectory is broken,

the breaking point is uniformly sampled along the trajectory. A larger r simulates the

case when there are more tracking errors. There are other types of tracking errors, such

as wrong associations, not simulated in this experiment. However, breaking is one of

the most common tracking errors, since some other tracking errors can be transferred

to breaking errors by simply stopping tracking when the tracker is confused or there

is not enough evidence to support the hypothesis. After the trajectories are clustered

by our algorithm, we manually specify each of the clusters as an activity category,

so each trajectory is assigned an activity label by our algorithm. By comparing with
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(a) (b)

Fig. 12 Simulate trajectories of different activities. (a) The central lines of eight paths manu-
ally drawn in the scene. They are distinguished by different colors. (b) Trajectories simulated
from the eight paths. They are also displayed in the eight colors.

the ground truth, the accuracy of activity classification is computed. Figure 13(a)

plots the activity classification accuracies with different r. In this experiment, our

algorithm always successfully converges to the right number of clusters according the

ground truth. It is observed that the performance does not significantly drop when

tracking errors increase. This shows that our algorithm is robust to tracking errors to

some extent. We also compare our algorithm with Euclidean distance [37], modified

Hausdorff distance [19] and long common subsequence (LCSS) [39]. The method using

Euclidean distance requires that trajectories are temporally aligned. If two broken

trajectories are on the same path but they only partially overlap or even have no

overlap because of breaking errors, then their Euclidean distance is large. The modified

Hausdorff distance encounters the similar problem, although working better than the

Euclidean distance. The performance of these three distance-based methods, especially

when using Euclidean distance, drops significantly when the trajectory data set has

tracking errors. Our approach can well cluster trajectories with the existence of such

tracking errors because it models the global pathways and cluster trajectories based

on path models. Even if a broken trajectory only partially passes through a pathway,

it still can be properly classified by the path model. Our learning process does not

require trajectories are complete. Suppose broken trajectories have partial overlap.

Some trajectories connect locations L1 and L2, some connect locations L2 and L3.

Even if L1 and L3 are not directly connected, they are connected through L2 and

still can grouped into the same path model. In Figure 13 (a), each trajectory has

at most one breaking point. Figure 13 (b) shows more challenging cases, where each

trajectory is certainly broken and has more than one breaking points. The performance

of our method drops as the number of breaking points increases. When there are more

than one breaking points per trajectory, our methods does not exactly find the right

number of clusters. However, its performance is still better than the other distance-

based methods in comparison.
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Fig. 13 Activity classification accuracies of Dual-HDP and three distance-based methods
(Euclidean distance [37], modified Hausdorff distance [19] and LCSS [39]) when the simulated
trajectories are broken. (a) A trajectory is broken with different probabilities from 0 to 1. (b)
A trajectory is certainly broken and has multiple breaking points. In our implementations, the
modified Hausdorff distance and LCSS compare both spatial distance and velocity difference
of observations on the trajectories.

8.2 Trajectory Analysis with Dynamic Modeling

In this section, the results of the dynamic Dual-HDP model will be presented. The

hyperparameters a1 . . . a4, b1 . . . b4 and H under dynamic Dual-HDP are set the same

as those in Dual-HDP. The decreasing rate r controls how fast the influence of old data

decreases and it is equal to 0.7 in our experimental settings. It is adjustable in practical

applications. If r is large, the temporal variation of the learned cluster models is small.

If r = 0, the models of clusters for different time slices are learned independently.

8.2.1 Results on Radar Tracks

In this section we conduct experiments on a much larger data set than that used in

Section 8.1.1. It includes 8, 478 radar tracks collected from 304 hours. The trajectories

are divided into T = 304 slices by hours. In Figure 14, 15, 16, 17, and 18, we show

some semantic regions learnt at different time slices. The first subfigure shows when

this semantic region first appears as a new mode under the dynamic Dual-HDP model.

As shown in Figure 14, semantic region 1 first appears at the 35th hour and its shape

changes over time. As shown in Figure 15, semantic region 2 first appears at the 47th

hour. However, it appears noisy in the first few time slices. Its shape forms after the

112nd hour. This mode gradually disappears after 244 hours 8. Semantic region 3 and

4 are first coupled in the same topic at the early stage (see the first two subfigures in

Figure 17). They are well separated when more data is observed later on.

Figure 19 shows the abnormal radar tracks detected at different time. Since the

activity models and semantic regions change over time, the detected abnormal trajec-

tories are also different depending on the temporal context. Trajectories detected as

abnormal at some time slices may become normal when they appear at other time

slices. For example, as shown in Figure 19, some abnormal trajectories detected at the

8 If no observations belonging to a certain semantic region are obtained in a time slice, the
model of the semantic region will keep the same as the model, which is used as a prior, learned
from previous time slices. But the prior will become weaker and weaker if no more data of this
semantic region is observed. Eventually, it may be replaced by another new semantic region.
Figure 15 shows that after no data is observed for a long time the model of that semantic
region is degraded like a null region.
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the 35th hour the 121st hour the 171st hour the 305th hour

Fig. 14 The dynamic change of semantic region 1 over time learnt from the radar tracks. In
the first subfigure, we show when the semantic region first appears, i.e. semantic region 1 first
appears as a new mode learnt by the Dual-HDP model at the 35th hour. Figure 15, 16, 17, 18
follow the same convention.

the 47th hour the 113rd hour the 201st hour the 245th hour

Fig. 15 The dynamic change of semantic region 2 over time learnt from the radar tracks.

the 25th hour the 91st hour the 135th hour the 179th hour

Fig. 16 The dynamic change of semantic region 3 over time learnt from the radar tracks.

7th hour and the 9th hour actually pass through semantic regions 2, 3, 4, and 5. How-

ever, these modes are learnt later. In the first few hours, only a few trajectories passing

through these semantic regions are observed. So they are detected as abnormal. When

more trajectories of the same activities are observed and the activity models are well

learnt in the later time slices, they will not be detected as abnormal any more.

As a quantitative evaluation, in Figure 20, we compare the data likelihoods of

three methods: (1) dynamic Dual-HDP; (2) learning a different Dual-HDP from the

data subset within each time slice independently, and (3) learning a single Dual-HDP

model from the data in all the time slices. Half of the data is used to train the models,

which are used compute the log likelihood of the remaining testing data. The average

log likelihoods per trajectory within each time slice are shown in Figure 20. A higher

data likelihood indicates that the models learned can better explain the data. It is

observed that the dynamic Dual-HDP has a much better performance than the other

two approaches. When learning different Dual-HDP models for different time slices

independently, the data likelihood fluctuates dramatically because the data set within

each time slice is small and it is easy for the learned models to overfit. When learning

a single Dual-HDP model for all the time slices, the data likelihood is stable but lower

than dynamic Dual-HDP, since a single model cannot well explain the distribution of

data which change dynamically.
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the 25th hour the 157th hour the 267th hour the 305th hour

Fig. 17 The dynamic change of semantic region 4 over time learnt from the radar tracks.

the 15th hour the 93rd hour the 221st hour the 305th hour

Fig. 18 The dynamic change of semantic region 5 over time learnt from the radar tracks.

the 7th hour the 9th hour

the 115th hour the 299th hour

Fig. 19 Abnormal radar tracks detected at different time slices. The same threshold of data
likelihood is used for all the time slices.

8.2.2 Results on Tracks from a Park Lot

The 40, 453 trajectories of the parking lot data set are collected from one week. We

divide them into time slices by hours. Figure 22, 21, and 23 show the dynamic change of

some semantic regions over time. We can observe some cyclic change of the distributions

of semantic regions. There are fewer activities happening around midnight and early

in the morning. The distributions of semantic regions are sparser compared with those

in the afternoon and in the evening. The second column of Figure 21 shows pathways

crossing parking spaces. The reason is that early in the morning (before 8am), many

parking spaces were empty and some pedestrians took a short cut crossing empty
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Fig. 20 Data log likelihood of using three different approaches to learn activity models on
the radar data set. Dual-HDP (independent models): learn a Dual-HDP model for the data
in each time slice independently; Dual-HDP (uniform model): learn a single Dual-HDP model
for the data in all the time slices; Dynamic Dual-HDP: learn a dynamic Dual-HDP model.
Half of the data in each time slice is selected to learn the activity models as training data and
compute the average log-likelihood per trajectory (normalized by the lengths of trajectories)
of the remaining data as testing data.

parking spaces 9. As comparison, the third and the fourth columns of Figure 21 show

that the pathways are restricted by parking cars in other time slots. In Figure 21, the

shape of the semantic region at time slice between 13 o’clock and 14 o’clock on May

16 changes, because there are more people from the top entering the parking lot and

exiting from left at the particular time interval. In Figure 23, the shape of semantic

region 3 also changes over time. People may exit the parking lot from the left of the

scene or from a gate in the middle area of the scene (somewhere between two rows of

trees).

Figure 24 shows the abnormal trajectories detected at different time. Between 8

o’clock and 9 o’clock in the morning everyday, many trajectories passing through the

bottom right corner of the scene are detected as abnormal. As shown in Figure 22, there

are not many trajectories of this activity happening in the morning. When they start to

appear in a large number between 8 o’clock and 9 o’clock, they are detected as abnormal

since the algorithm have not seen this type of activities for a long time. In contrast,

these kinds of trajectories are not detected as abnormal between 14 o’clock and 15

o’clock in the afternoon. This phenomenon can be understood as a delay of learning

in some sense. Many trajectories detected as abnormal are those passing through the

grass field. An interesting example occurred between 13 o’clock and 15 o’clock on May

16th. A worker was mowing the grass around this time. Many trajectories moving back

and forth horizontally on the grass field are detected as an abnormality between 13

o’clock and 14 o’clock. However, after the model of this activity has been well learnt at

this time slice, similar trajectories 10 are not detected as abnormal in the next hour.

In Figure 25, we compare the data log likelihood of dynamic Dual-HDP compared

with the other two methods in the same way as described in Section 8.2.1. Dynamic

9 We used the same background image, which was taken during the day time, in all the
subfigures of Figure 21.
10 After checking the data set, it shows that there are trajectories of this type between 14
o’clock and 15 o’clock.
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Dual-HDP has a better performance, which is consistent with what we has observed

on the radar set in Figure 20.

We also use the accuracies of completeness and correctness to compare three dif-

ferent methods: dynamic Dual-HDP, learning different Dual-HDP models for different

time slices independently, and learning a single Dual-HDP model for all the time slices.

The results are shown in Table 3. For each of the three selected time slices, 100 pairs

of trajectories of the same activity categories and 100 pairs of trajectories of different

activity categories are randomly sampled and labeled by subjects as ground truth. On

the subset collected between 13 o’clock and 14 o’clock dynamic Dual-HDP has similar

performance as Dual-HDP. However on the other two subsets, Dual-HDP is not as

good as dynamic Dual-HDP because the subsets are smaller in size and the dynamic

change of activity models.

8.3 Discussion

Our experiments on both large (the parking lot data set) and small (the radar data

set) scale data sets have achieved good results. However, the Dual-HDP model may

encounter problems if the number of trajectories is too small because there may not

be enough trajectories connecting different locations of the same semantic region in

order to learn the model of the semantic region effectively. The minimum number of

trajectories sufficient for learning depends on the distributions of the trajectories, the

complexity of activities, and also the size of cells after quantization. This is an open

question left for the future work. Usually, if the size of cells is larger, a smaller number of

trajectories are needed. The dynamic Dual-HDP model works well even if there are only

a very small number of trajectories observed in a time slice, because the models learned

from previous time slices serve as prior and they effectively overcome the overfitting

problem. Even if there is only one trajectory in a time slice, this trajectory will be

classified into one of the clusters learned from previous time slices, and the models will

not be updated much by the data observed in this time slice. As shown in Figure 20

and 25, if trajectories within each time slice are clustered independently, the clustering

performance drops significantly because the data set is not large enough.

9 Conclusion and Future Work

We propose a nonparametric hierarchical Bayesian framework, which uses an existing

Dual-HDP model and a new dynamic Dual-HDP model to cluster trajectories, learn

the models of semantic regions, and detect trajectories related to abnormal activities.

Different from many existing spatial distance based trajectory clustering approaches

with ad hoc nature, we formulate these problems in a transparent probabilistic way.

The number of semantic regions and clusters of trajectories are learnt through the hier-

archical Dirichlet processes. The proposed dynamic Dual-HDP model uses the models

learned from historical data as priors to update the models of activities over time. It

can better explain activities at different time. It clusters trajectories incrementally and

does not have to keep old data in the memory. So it has much lower space and time

complexity than Dual-HDP. This feature is very important if we need to cluster data

collected over months or even years in surveillance applications.
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Dynamic Dual-HDP Dual-HDP
Dual-HDP (independent models) (uniform model)

Time slice rcomplete rcorrect rcomplete rcorrect rcomplete rcorrect
07-08, May 19 0.89 0.84 0.84 0.79 0.83 0.77
13-14, May 19 0.93 0.90 0.92 0.90 0.95 0.89
19-20, May 19 0.90 0.86 0.87 0.82 0.86 0.85

Table 3 Accuracies of completeness and correctness on the data subsets of three different time
slices using dynamic Dual-HDP, Dual-HPD (independent models), and Dual-HDP (uniform
model). The description of these models is the same as in Figure 20.

The collapsed Gibbs sampling algorithms used in this work are still computationally

expensive, especially for Dual-HDP. In the future work, we will explore more efficient

inference algorithms, such as variational inference. With the fast development of GPU

and multi-core processors, parallel computing has become an important way to enhance

the speed. Some parallel sampling algorithms have been developed for HDP [71]. We

will also explore parallel sampling algorithms for our models.

In our dynamic Dual-HDP model, a single point estimation of model parameters

is taken at a time slice and it is used as prior for the inference of the next time slice.

This model is greedy and information about the uncertainty of parameters is ignored.

One alternative is to use particle filtering to propagate uncertainty and to avoid local

minimum. This is another direction to be explored in the future work.

Our dynamic Dual-HDP models the temporal smoothness between two successive

time slices. There are other types of temporal correlations not modeled by dynamic

Dual-HDP. For example, the activity models for 8am-9am across different days should

share more similarity and some smoothness constraints could be added among them,

since they are all for rush hours. Similarly, activity models for Sundays may be more

correlated. In order to model these temporal correlations, more priors could be added

into the hierarchical Bayesian models at different levels.

A big challenge for research on trajectory clustering for activity analysis in video

surveillance is that it is difficult to obtain the ground truth, especially for large scale

data sets and complicated scenes. Although in this work we required subjects to label

a pair of trajectories as belonging to the same activity categories or not to measure

completeness and correctness, it does not reveal all the aspects of the desired ground

truth information. One possible solution is to use the simulated data with ground truth.

However, it has many open problems to be answered, such as how to simulate different

types of tracking errors happening in real surveillance scenarios, how to simulate outlier

trajectories and how to simulate the dynamic variations of activity models over time.

A good simulator in the future will help the evaluation of our algorithms and also the

development of new algorithms.

10 Appendix: Collapsed Gibbs Sampling for Dynamic Dual-HDP

Under dynamic Dual-HDP, πt
0 = (πt

01, . . . , π
t
0Kt , π

t
0u) and {φt

k}K
t

k=1 are the variables

to be sampled. Given πt
0 and {φt

k}, sampling other variables is the same as Dual-HDP.

We focus on sampling πt
0 and {φt

k} given other variables and suppose the semantic

region assignments to observations on trajectories at t are given. We use the Chinese
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02-03, May 15 07-08, May 15 13-14, May 15 19-20, May 15

02-03, May 16 07-08, May 16 13-14, May 16 19-20, May 16

02-03, May 19 07-08, May 19 13-14, May 19 19-20, May 19

Fig. 21 The dynamic change of semantic region 1 over time learnt from the trajectories
collected from a parking lot.

02-03, May 15 07-08, May 15 13-14, May 15 19-20, May 15

02-03, May 16 07-08, May 16 13-14, May 16 19-20, May 16

Fig. 22 The dynamic change of semantic region 2 over time learnt from the trajectories
collected from a parking lot.

Restaurant Franchise sampling 11, which was also used by HDP [26] and Dual-HDP [2].

Under the Chinese Restaurant Franchise samping scheme, let nkw be the number of

observations with value w assigned to semantic region k, nk be the total number of

observations assigned to semantic region k, sj be the number of big tables serving dish

(semantic region) k, and s be the total number of big tables. nkw , nk, sk, s are all

11 When we describe our sampling algorithm, some terminologies such as “table”, “big ta-
bles”, “dish” (dishes correspond to semantic regions) in Chinese Restaurant Franchise are used.
Because of space limit, their meanings cannot be well explain in this paper. Find their details
from [26] and [2].
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06-07, May 16 10-11, May 16 14-15, May 16 19-20, May 16

06-07, May 17 10-11, May 17 14-15, May 17 19-20, May 17

Fig. 23 The dynamic change of semantic region 3 over time learnt from the trajectories
collected from a parking lot.

08-09, May 15 08-09, May 16 08-09, May 17 08-09, May 18

14-15, May 15 14-15, May 16 14-15, May 17 14-15, May 18

13-14, May 19 14-15, May 19

Fig. 24 Abnormal trajectories of the parking lot data set detected at different time slices.
The same threshold of data likelihood is used for all the slices.

statistics from the data subset of time t. Since Gt−1
0 provides prior of Gt

0 as shown in

Eq (6) (7) (8),

p(πt
0|{π̂t−1

0k }Kt−1

k=1 ) = Dir(γtωtπ̂t−1
01 , . . . , γtωtπ̂t−1

0Kt−1 , 0, . . . , 0, γ
t(1− ωt)). (10)

When 1 ≤ k ≤ Kt−1,

p(φt
k|φt−1

k ) = Dir(ξtk · φt−1
k +H), (11)

and when Kt−1 < k ≤ Kt,

p(φt
k) = Dir(H). (12)
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Fig. 25 Data log likelihood of using three different approaches to learn activity models on the
parking lot data set. Dual-HDP (independent models): learn a Dual-HDP model for the data
in each time slice independently; Dual-HDP (uniform model): learn a single Dual-HDP model
for the data in all the time slices; Dynamic Dual-HDP: learn a dynamic Dual-HDP model.
Half of the data in each time slice is selected to learn the activity models as training data and
compute the average log-likelihood per trajectory of the remaining data as testing data.

The data likelihoods are

p(nk1, . . . , nkW |nk, φ
t
k) = Multinomial(nk , φ

t
k), (13)

where W is the size of the codebook, and

p(s1, . . . , sKt |s,πt
0) = Multinomial(s,πt

0). (14)

So πt
0 and φt

k can be sampled from posteriors,

πt
0|{sk}K

t

k=1, {π̂t−1
0k }Kt−1

k=1

∼Dir(s1 + γtωtπ̂t−1
01 , . . . , sKt−1 + γtωtπ̂t−1

0Kt−1 , sKt−1+1, . . . , sKt , γt(1− ωt)), (15)

when 1 ≤ k ≤ Kt−1,

φt
k|{nkw}Ww=1, φ

t−1
k ∼ Dir(nk1 + ξtk · φt−1

k1 + u1, . . . , nkW + ξtk · φt−1
kW + uW ), (16)

where H = (u1, . . . , uW ). When Kt−1 < k ≤ Kt,

φt
k ∼ Dir(nk1 + u1, . . . , nkW + uW ). (17)

Properly choosing ωt, γt and ξtk, we can control how much the old data up to t− 1

influences the inference of models of the current time t. In this work, we choose

ωt =
r · st−1

r · st−1 + γ
, (18)

γt = r · st−1, (19)

ξtk = r · nt−1
k . (20)

r is a scalar between 0 and 1 controlling how fast the influence of old data decrease.

nt
k and st are the accumulated effective numbers of words assigned to topic k and big

tables. They are updated over time,

nt
k = r · nt−1

k + nk, (21)
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st = r · st−1 + s. (22)

Remind that nk and s are the statistics obtained from the subset of t. At initialization

n0
k = 0 and s0 = 0. Then Eq 15 and 16 become

πt
0|{sk}K

t

k=1, {π̂t−1
0k }Kt−1

k=1

∼Dir(s1 + rst−1π̂t−1
01 , . . . , sKt−1 + rst−1π̂t−1

0Kt−1 , sKt−1+1, . . . , sKt , γ), (23)

φt
k|{nkw}Ww=1, φ

t−1
k ∼ Dir(nk1+rnt−1

k φt−1
k1 +u1, . . . , nkW +rnt−1

k φt−1
kW +uW ). (24)

When the data becomes older, its influence on the current models is weaker. The

decreasing rate is r. The inference under dynamic Dual-HDP is summarized in Algo-

rithm 1.
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