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Abstract

In this work we develop appearance models for com-

puting the similarity between image regions containing de-

formable objects of a given class in realtime. We introduce

the concept of shape and appearance context. The main

idea is to model the spatial distribution of the appearance

relative to each of the object parts. Estimating the model

entails computing occurrence matrices. We introduce a

generalization of the integral image and integral histogram

frameworks, and prove that it can be used to dramatically

speed up occurrence computation. We demonstrate the abil-

ity of this framework to recognize an individual walking

across a network of cameras. Finally, we show that the pro-

posed approach outperforms several other methods.

1. Introduction

A typical way of building appearance models is by first

computing local descriptors of an image, and then by ag-

gregating them using different strategies. Bag-of-features

approaches [20, 12, 14, 23, 26, 4], represent images, or

portions of images, by a distribution/collection of, possi-

bly densely computed, local descriptors, vector-quantized

according to a predefined appearance dictionary (made of

appearance labels). These rather simple models perform

remarkably well in both specific object (intra-category) and

object category (inter-category) recognition tasks, and are

robust to occlusions, illumination, and viewpoint variations.

We are interested in the intra-category recognition prob-

lem, where we have to describe and match the appearance

of deformable objects such as people in video surveillance

footage, where geometric deformations and photometric

variations induce large changes in appearance. Unfortu-

nately, under these challenging conditions a local descriptor

matching approach performs poorly [6], mainly due to the

failure of capturing higher-order information, such as the

relative spatial distribution of the appearance labels. Some

approaches address exactly this issue [11, 27, 21, 19], but

they mainly focus on inter-category discrimination, as op-

posed to recognizing specific objects. We refer to those as

multi-layer approaches.

In this work we propose a multi-layer appearance model-

ing framework for extracting highly distinctive descriptors

of given image regions containing deformable objects of a

known class. We are interested in realtime applications and

computational complexity is one of our major concerns. In

addition, the model should be robust to illumination, view-

point changes, as well as object deformations. This is a tall

order, and the challenge is to strike a balance between dis-

tinctiveness, computational complexity, and invariance of

the model.

The first layer of the model densely computes a local de-

scription of the image1. More precisely, we propose to com-

pute histograms of oriented gradients2 (HOG) in the Log-

RGB color space [5] (Section 4). The second layer aims at

capturing the spatial relations between appearance labels.

We explore two approaches, the appearance context (Sec-

tion 5), and the shape and appearance context (Section 6).

The former model encapsulates information similar to the

co-occurrence of appearance labels. The latter model ex-

tends the former by using object parts explicitly to improve

distinctiveness. Parts identification is done by a modified

shape context [1] algorithm, which uses a shape dictionary

learnt a priori. This effectively segments the image into re-

gions that are loosely associated with specific object parts.

The proposed models entail computing several statistics

over image subregions. We will first introduce integral com-

putations (Section 2), a generalization of the integral image

[25] and integral histogram [18] frameworks, and show how

to perform fast computations of statistics (e.g. mean and co-

variance) of multidimensional vector-valued functions over

(discrete) domains of arbitrary shape. Based on this frame-

work, we present a fast algorithm to compute occurrence,

and co-occurrence (Section 3), which enables realtime per-

formance by providing a dramatic speed up when compared

with the state-of-the-art approach [19]. The resulting occur-

rence matrix will be the descriptor of a given object.

1In challenging situations a dense representation has been found out-

performing the sparse one also by other authors [6, 24].
2Different flavors of HOG’s have proven to be successful in several

settings [12, 2, 10].



We apply our appearance models to the challeng-

ing appearance-based person reidentification3 problem [6],

which is the ability to recognize an individual across a net-

work of cameras based on appearance cues. We show that

this framework can perform recognition of people appear-

ing from three different viewpoints using a k-nearest neigh-

bor approach, and achieve a significant performance in-

crease over the state-of-the-art approach [6].

Related prior art. In [6] the authors consider a sparse

local descriptor matching approach, and a dense approach

where body parts are automatically extracted and compared.

The dense approach outperforms the sparse one. In [9]

the inter-camera brightness transfer functions is learnt to

perform people track-linking across multiple cameras. Al-

though it would be beneficial, our work does not use this

information. Related work also includes vehicle reidentifi-

cation [7], tracking [28], and category recognition [17, 13].

In [19] the authors use the local descriptors of [26],

learnt to maximize intra-category invariance, and add an-

other layer that captures the co-occurrence between appear-

ance labels. They show an improved inter-category dis-

crimination over [26]. Note that our appearance models

are meant to maximize intra-category discrimination rather

than invariance.

2. Integral computations

In this section we introduce the unified framework of the in-

tegral computations, show how it specializes to the integral

image [25], and integral histogram [18], show his power in

computing statistics over rectangular domains, and extend

its applicability to general, non-simply connected rectangu-

lar domains.

Given a function f(x) : R
k → R

m, and a rectangular

domain D = [u1, v1] × · · · × [uk, vk] ⊂ R
k, if there exists

an antiderivative4 F (x) : R
k → R

m, of f(x), then

∫
D

f(x) dx =
∑

ν∈Bk

(−1)ν
T
1F (ν1u1+ν̄1v1,· · ·, νkuk+ν̄kvk) ,

(1)

where ν = (ν1, · · · , νk)T , ν
T1 = ν1 + · · · + νk, ν̄i =

1 − νi, and B = {0, 1}. If k = 1, then
∫

D f(x) dx =
F (v1)−F (u1), which is the Fundamental Theorem of Cal-

culus. If k = 2, then
∫

D f(x) dx = F (v1, v2)−F (v1, u2)−
F (u1, v2) + F (u1, u2), and so on.

Equation (1) defines a class of operations that we call

integral computations. They are very attractive for at least

three reasons. First, in the discrete domain one specification

of F (x) can always be found, e.g.5 F (x) =
∑

u≤x f(u).
Second, F (x) can be computed from a single pass inspec-

3If we were to apply the model to the people track-linking problem, it

would be more appropriate to talk about person reacquisition.
4If the Fubini’s theorem for indefinite integrals holds, then F (x) exists.
5Here u ≤ x is intended as u1 ≤ x1, · · · , uk ≤ xk .
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Figure 1. Generalized rectangular domain and corner types.

Left: Example of a generalized rectangular domain D, partitioned

into simple rectangular domains {Ri}. Right: Function αD(x).

It assumes values different then zero only if x is a corner of D.

The specific value depends on the type of corner. For the planar

case there are only 10 types of corner, depicted here along with the

corresponding values of αD.

tion6 of f(x), i.e. with computational cost O(Nk), where

Nk represents the dimension of the discrete domain where

f(x) is defined. Finally, we will see that Equation (1) en-

ables the computation of statistics over the rectangular do-

main D in constant time O(1), regardless of the size of D.

Specific cases. If k = 2 and m = 1, and f(x)
.
= I(x),

a grayscale image, then F (x) in Computer Vision is now

referred to as the integral image of I(x) [25]. If f(x)
.
=

e ◦ q ◦ I(x), where q : R → A is a quantization (labeling)

function, with quantization levels A = {a1, · · · , am}, and

e : A → N
m is such that ai 7→ ei, where ei is the unit vector

with only the i-th component different then 0, then F (x) is

the so called integral histogram of I(x) with respect to q
[18]. In general, one has the freedom to design f(x) ad

libitum, in order to take advantage of the properties of the

integral computations.

Computing statistics. If x is a uniformly distributed ran-

dom variable, and E[·|D] denotes the expectation where x

is constrained to assume values inD, then one can write the

expression of simple statistics, such as the mean7 of f(x)
over D

E[f(x)|D] =
1

|D|

∫
D

f(x) dx , (2)

or the covariance of f(x) over D

E[(f(x) − E[f(x)|D])(f(x) − E[f(x)|D])T |D] =

1

|D|

∫
D

g(x) dx −
1

|D|2

∫
D

f(x) dx

∫
D

f(x)
T

dx , (3)

where g(x) : R
k → R

m×m is such that x 7→ f(x)f(x)
T

.

Similarly, higher-order moments can be written in this man-

ner. What those expressions share is the fact that the integral

operation can be substituted with the result of Equation (1).

Therefore, given F (x), their computation cost is O(1), in-

dependent from the size of D.

6The single pass inspection of f(x) is the k-dimensional extension of

the 2-dimensional version described in [25, 18].
7The operation | · | applied to a domain or a set indicates the area or the

cardinality, respectively.



The expressions (2) and (3) assume very different mean-

ings according to the choice of f(x). For instance, for the

integral image they represent mean and covariance of the

pixel intensities over the region D. On the other hand, for

the integral histogram, (2) is the histogram of the pixels of

the region D, according to the quantization q. Recently,

[22] used (3) as a region descriptor to perform object detec-

tion and texture classification, where f(x) was the output

of a bank of filters applied to the input image I(x).
Domain generalization. To the best of our knowledge the

integral computations have been used only when the region

D is rectangular. On the other hand, Equation (1) can be

generalized to domains defined as follows (see Figure 1).

Definition 1. D ⊂ R
k is a generalized rectangular domain

if his boundary ∂D is made of a collection of portions of

a finite number of hyperplanes perpendicular to one of the

axes of R
k.

If ∇·D indicates the set of corners of a generalized rect-

angular domain D, then the following result holds.

Theorem 1.∫
D

f(x) dx =
∑

x∈∇·D

αD(x)F (x) , (4)

where αD : R
k → Z, is a map that depends on k. For k = 2

it is such that αD(x) ∈ {0,±1,±2}, according to which of

the 10 types of corners depicted in Figure 1, x belongs to.

Theorem 1 (proved in the Appendix), says that if D is a

generalized rectangular domain, one can still compute the

integral of f(x) overD in constant time O(1). This is done

by summing up the values of F (x), computed at the corners

x ∈ ∇ ·D, and multiplied by αD(x), which depends on the

type of the corner. For the planar case the types of corners

are depicted in Figure 1. Therefore, given any discrete do-

main D, by simply inspecting the corners to evaluate αD ,

one can compute statistics over D in constant time O(1).
This simple and yet powerful result enables designing fast,

more flexible and sophisticated region based features, like

the one of the following Section.

3. Occurrence computations
In this section we define the concept of occurrence, pro-

pose a new algorithm based on Theorem 1 to compute it,

analyze the computational complexity of the algorithm, and

compare it to the state-of-the-art approach.

Let S : Λ → S, and A : Λ → A be two functions de-

fined on a discrete domain Λ of dimensionsM×N , and as-

suming values in the label sets S = {s1, · · · , sn} and A =
{a1, · · · , am} respectively. Also, let P = {p1, · · · , pl} be a

partition such that
⋃

i pi represents the plane, and pi ∩ pj =
∅, if i 6= j (see Figure 2 for an example). Given p ∈ P , and

a point on the plane x, we define p(x)
.
= {x + y|y ∈ p},

and we indicate with h(a, p(x))
.
= P [A(y) = a|y ∈ p(x)]

the probability distribution8 of the labels of A over the re-

8P [·] indicates a probability measure.
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Figure 2. Partition and occurrence definition. From left to right.

Example of a generic partition P . Example of a function S, and

of a function A. Representation of Θ. If h(a, p4(x)) is the

normalized count of the labels of A in p4(x) (the partition ele-

ment p4 translated at x), then by averaging h(a, p4(x)) over all

x ∈ {y|S(y) = s3}
.
= Ds3 , we obtain Θ(a, s3, p4) (red line).

The dots over S highlight the corner points ∇ · Ds3 .

gion p(x). In other words, for a given A, if we randomly

select a point y ∈ p(x), the probability that the label at

that point will be a is given by h(a, p(x)). If we now set

Ds
.
= {x|S(x) = s}, s ∈ S, we define the occurrence

function as follows (see Figure 2).

Definition 2. The occurrence function Θ : A × S × P →
R+, is such that the point (a, s, p) maps to

Θ(a, s, p) = E[h(a, p(x))|Ds] . (5)

The meaning of the occurrence function is the following:

Given S and A, if we randomly select a point x ∈ Ds, the

probability distribution of the labels A over the region p(x)
ofA is given by Θ(·, s, p). One special case is when S = A,

and S(x) = A(x), and Θ is typically referred to as co-

occurrence. When Θ is intended as a collection of values

corresponding to all the points of the domain A × S × P ,

we refer to it as the occurrence, or co-occurrence matrix.

3.1. Fast occurrence computation

In this section we present a novel result that allows a fast

computation of the occurrence function. The derivation is

based on the fact that the occurrence is computed over a dis-

crete domain Λ, where every possible sub-domain is a (dis-

crete) generalized rectangular domain, and all the results of

Section 2 can be applied.

Theorem 2. The occurrence function (5) is equal to

Θ(a, s, p) = |Ds|
−1|p|−1

∑
x∈∇·Ds,y∈∇·p

αDs
(x)αp(y)G(a,x+y) ,

(6)

where G(·,x) =

∫ x

−∞

∫ u

−∞

e ◦A(v) dv du , (7)

and9 e : A → N
m is such that the inner integral is the

integral histogram of A.

Theorem 2 (proved in the Appendix) leads to the Algo-

rithm 1. We point out that even though the occurrence has

been introduced for S and A defined on a two-dimensional

9Note that a ∈ A is intended to index one of the elements of the m-

dimensional vector G(·,x).



Algorithm 1: Fast occurrence computation

Data: Functions A and S

Result: Occurrence matrix Θ
begin1

Use (7) to compute G from a single pass inspection of A2

// Compute |Ds| αDs and ∇ ·Ds

foreach x ∈ Λ do3

|DS(x)| ←− |DS(x)|+ 14

if IsCorner (x) then5

Set αDS(x)
(x)6

∇ ·DS(x) ←− ∇ ·DS(x)

S

{x}7

// Use (6) to compute Θ
// |p| αp and ∇ · p known a priori

foreach s ∈ S do8

foreach p ∈ P do9

foreach x ∈ ∇ ·Ds do10

foreach y ∈ ∇ · p do11

Θ(·, s, p)←− Θ(·, s, p)+12

αDs
(x)αp(y)G(·, x + y)13

Θ(·, s, p)←− |Ds|−1|p|−1Θ(·, s, p)14

return Θ15

end16

domain, the definition can be generalized to any dimension,

and Theorem 2 still holds.

Complexity analysis. Given S andA, the na¨ive approach

to compute Θ costs O(N4) in time (we assume M ∼ N ),

which is too much for real-time applications, even if N is

not very large. In [8] a dynamic programming approach

reduces the cost to O(N3). In [19] a particular partition P
where every p ∈ P is a square ring defined by |∇ · p| = 8
corners enables a computation cost10 of O(N2l|∇ · p|) =
O(N2CP), whereCP

.
= l|∇·p| represents the total number

of corners of P .

We now calculate the computational cost of Algorithm 1.

Line 2 can be evaluated by a single pass inspection ofA, and

has the same computational cost of an integral histogram,

i.e. O(N2). Line 3-7 is another single pass inspection of S
with costO(N2). Line 12 costsO(1). Line 11 is an average

multiplying factor of CP/l, where CP
.
=

∑
i |∇ · pi|. Line

10 is an average multiplying factor of CS/n, where CS
.
=∑

i |∇ · Dsi
|. Line 8 and 9 are multiplying factors of n

and l respectively. Therefore, the cost of 8-13 is O(CSCP).
Finally, the total cost of Algorithm 1 is O(N2 + CSCP).
In practice we have CsCP ∼ N2. Therefore, Algorithm 1

has an effective cost ofO(N2), which is CP (the number of

corner points of the partition P) times faster then the state-

of-the-art [19]. It is interesting to note that Algorithm 1 is

only marginally sensitive to the choice of the partition P ,

which, as opposed to [19], here is allowed to be arbitrary.

10In [19] |∇ · p| is part of the hidden constants. Here we make the

dependency explicit to better compare their approach with ours.

4. Bag-of-features modeling
In this section, as well as in Sections 5 and 6, we are in-

terested in designing a highly distinctive descriptor for an

image I , belonging to I, the space of all the images de-

fined on a discrete domain Λ of dimensions M ×N pixels.

To this end we process the image by applying an operator

Φ : I × Λ → R
r, such that (I,x) is mapped to a local de-

scriptor ϕ(x)
.
= Φ(I,x). The operator Φ could be a bank

of linear filters, as well as any other non-linear operation.

Once ϕ is available, the descriptor is computed in two

steps. The first one performs a vector quantization of ϕ,

according to a quantization function q : R
r → A, with

quantization levels A = {a1, · · · , am}. This produces the

appearance labeled image A(x)
.
= q ◦ ϕ(x) (see Figure 3

for an example). We refer to A as the appearance dictio-

nary, made of appearance labels learnt a priori. The second

step computes the histogram of the labels h : A → [0, 1],
such that the label a maps to

h(a)
.
= P [A(x) = a] . (8)

The image descriptor is defined to be the histogram h.

HOG Log-RGB operator. In Section 7 we experiment

with several operators Φ, such as different color spaces and

filter banks, and test their matching performance with the

descriptor (8). The best performer operates in the RGB

color space, and is such that ϕ(x)
.
= (HOG(∇ log(IR),x);

HOG(∇ log(IG),x); HOG(∇ log(IB),x)), where IR, IG,

IB , are the R, G, and B channels of I respectively. The

operator HOG(·,x) computes the ℓ bins histogram of ori-

ented gradients of the argument, on a region of w × w pix-

els around x. The gradient of the Log-RGB space has an

effect similar to the homomorphic filtering, and makes the

descriptor robust to illumination changes.

5. Appearance context modeling
The main drawback of the bag-of-features model is that im-

ages of different objects that share the same appearance la-

bel distribution h(a), share also the same descriptor, annihi-

lating the distinctiveness that we are seeking. This is due to

the fact that (8) does not incorporate any description of how

the object appearance is distributed in space. On the other

hand, this information could be captured by computing the

spatial co-occurrence between appearance labels.

Appearance context. More precisely, the co-occurrence

matrix Θ, computed on the appearance labeled image A(x)
with the plane partition P depicted in Figure 4, will be re-

ferred to as the appearance context descriptor of I , which

is an m×m× l matrix.

Appearance context vs. bag-of-features. Note that the

information carried by the descriptor (8) is included in the

appearance context descriptor. In fact, by using (6) one can

show that Θ reduces to (8), in particular, for every b ∈ A
we have h(a) = 1/|Λ|

∑
p∈P |p|Θ(a, b, p).



Figure 3. Data set and shape and appearance labeled images.

From left to right. Two samples from the data set of 143 differ-

ent individuals, recorded from 3 different viewpoints, with corre-

sponding shape labeled image S, and appearance labeled image

A. Note that the decomposition into parts performed by S tries

to compensate the misalignment induced by pose and viewpoint

changes, as well as person bounding box imprecisions.

Plane partition. P is made of p1, · · · , pl, L-shaped re-

gions. Every quadrant is covered by l/4 regions. Every

L-shape is 4N/l and 4M/l thick along the x1 and x2 di-

rections, respectively. Therefore, the set {pi} can be parti-

tioned into groups of 4 elements forming l/4 corresponding

concentric square rings.

Invariance. It is known that the co-occurrence matrix is

translation invariant, rotation invariant if the {pi} are con-

centric circular rings, and shows robustness to affine and

pose changes [8, 19]. It is not invariant with respect to the

size of I . In order to have this property, before computing

the appearance context we will normalize the size of I . The

morphology of the partition P makes the appearance con-

text non-rotation invariant. In our application this is a de-

sired property as it increases distinctiveness. In fact, lack of

rotation invariance allows us to distinguish between a per-

son wearing a white T-shirt and black pants vs. a person

wearing a black T-shirt and white pants.

6. Shape and appearance context modeling

Let’s now consider a toy example to highlight an important

weakness of the appearance context descriptor, and exam-

ine the appearance labeled image of a person depicted in

Figure 4 (right). We indicate with Df and Dh the face and

hand regions respectively, and notice that these are the only

regions that have been assigned the label a1 ∈ A. Using the

notation introduced in Section 3, we also haveDa1 = Df ∪
Dh. The region of the torso, arm, and hair has been assigned

the label a2 ∈ A. For a1 and a2 the appearance context

can be rewritten as Θ(a2, a1, p) =
Df

Da1
E[h(a2, p)|Df ] +

Dh

Da1
E[h(a2, p)|Dh]

.
= hf (p) + hh(p). Note that hf (p),

(hh(p)), is the occurrence of a2 at a given distance and ori-

entation from Df , (Dh), defined by p. Figure 4 sketches

hf(p), hh(p), and their sum. hf (p) highlights that a2 is

mostly present in the blue and yellow quadrants of the par-

tition P . hh(p) highlights that a2 is mostly present in the

red and green quadrants of the partition P . hf (p) + hh(p)
shows that a2 is uniformly distributed over all the quadrants.

We point out that averaging hf and hh has caused a loss

of information, and therefore descriptive power. From an

γ
2

γ
1

x
1

x
2

+

=

a1 =

a2 =
hf

hh

Figure 4. L-shaped partition and appearance context averaging

effect. From left to right. Sketch of the L-shaped plane partition

used in Section 5 (γ1 = 4N/l, γ2 = 4M/l), and 6 (γ1 = 4Nd/t,
γ2 = 4Md/t). Illustration of the averaging effect when appear-

ance context descriptors are pooled from the entire object region.

information theoretic point of view, two unimodal distribu-

tions have been merged to obtain an almost uniform distri-

bution, with a significant increase of entropy. To prevent

such a situation, this toy example suggests that if we could

identify the parts of a given object, it would be more de-

scriptive to capture the spatial occurrence of the appear-

ance labels with respect to each of the parts rather then to

each of the appearance labels.

Shape and appearance context. Given I containing an

object of a given class, let A be its appearance labeled im-

age, and let S (defined over Λ) be its shape labeled image,

where pixel labels are meant to identify regions of I occu-

pied by specific parts of the object (see Figure 3 for exam-

ples). We define the shape and appearance context descrip-

tor of I , the occurrence matrix Θ, computed over S and A,

which is an m × n × l matrix. Similarly to the appearance

context descriptor, the information carried by the descriptor

(8) is included in the shape and appearance context descrip-

tor.

Shape labeled image. We propose to compute the shape

labeled image with a procedure that is inspired by the idea

of shape context [1, 16]. Given the image I ∈ I, we pro-

cess it according to an operator Ω : I × Λ → R
d, such

that I is mapped to ω(x)
.
= Ω(I,x). In Section 7 we con-

sider different operators Ω. A fast and reliable choice is

such that ω(x) = HOG(∇IL,x), where IL is the L chan-

nel of the Lab color space of I . From ω, at every pixel

we compute a form of shape context descriptor ψ, defined

as ψ(x)
.
= (E[ω|p1(x)]; · · · ; E[ω|pt/d(x)]) ∈ R

t. Here

{p1, · · · , pt/d} indicates a plane partition of the same kind

used for the appearance context descriptor, but with t/d
L-shaped regions rather then l (see Figure 4). Once ψ is

available, we vector quantize it according to a quantization

(labeling) function q : R
t → S, with quantization levels

defined by a shape dictionary S = {s1, · · · , sn}, made of

shape labels learnt a priori. This produces the shape labeled

image S(x)
.
= q ◦ ψ(x).

Neighboring pixels have similar shape context descrip-

tors. Therefore, the quantization process produces a

“piecewise-like” segmentation of the image into regions

Dsi
= {x|S(x) = si}, which are meant to always identify

the same region/part of the object of interest (see Figure 3).
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Figure 5. Bag-of-features: Color spaces and linear filters.

Matching comparison using different color spaces and quantiza-

tion schemes (left). Matching comparison of a linear filter bank

against appearance dictionary size (right).

As a welcome side effect, the occurrence computation takes

great advantage of this segmentation, as CS ends up being

very small.

Invariance. The shape and appearance context enjoys the

same invariance properties of the appearance context. How-

ever, it should be noted that translation invariance is lost if

the same parts of an object are labeled differently in dif-

ferent images, e.g. an arm labeled as a leg. This means

that using a fixed mask to identify object parts under pose

and viewpoint changes, as well as object bounding box im-

precisions, significantly decreases the performance of the

descriptor. The decomposition into parts with the shape

labeled image tries to compensate exactly those variations

(see Figure 3).

7. Experiments

Data set. The data set is composed by the one in [6], con-

taining 44 different individuals recorded from three differ-

ent non-overlapping camera views (see Figure 3), to which

we added new images of 99 individuals, recorded from three

very similar viewpoints. Every person in each view is rep-

resented by two to four images, of about 80 × 170 pixels

in size. In a video-surveillance system such images would

be cropped out of the full frames by a person detector, or

tracker module.

Matching. As in [6], for every pair person/camera view,

we compute the k-nearest people in the other views. Since

every pair is represented by a number of images, the dis-

tance between two pairs is the minimum distance between

two images (that do not belong to the same pair), mea-

sured according to a given distance between descriptors.

Identification results are reported in terms of cumulative

match characteristic (CMC) curves [15], which tell the rate

at which the correct match is within the k-nearest neighbors,

with k that varies from 1 to 20.

Training and testing. The appearance and shape dictio-

naries are learnt using simple k-means clustering after com-

puting ϕ and ψ on the training set, respectively. For train-

ing, we used the images of 30% of the individuals randomly

selected. The rest of the data set was used for testing.

Distances. Appearance labels are learned and assigned us-

ing L1 norm. Shape labels are learned and assigned using
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Figure 6. Bag-of-features: HOG Log-RGB. Matching compar-

ison by varying one of the operator parameters at a time, such

as the quantizing orientations ℓ (top-left), the image smoothing σ
(top-right), the patch size w (bottom-left), and the appearance dic-

tionary dimensionality m (bottom-right).

the χ2 distance11. Descriptor matching using (8) is done

with the intersection distance (used also in [6]). Descrip-

tor matching using appearance, and shape and appearance

context is done with L1 norm.

Bag-of-features: Color spaces and linear filters. Fig-

ure 5 (left) shows results where Φ is a color transforma-

tion and quantization. We tried the Lab, RGB, and HSV

color spaces, quantized along the three axes according to

the number of bins reported in the figure. The suffixes

“pls” and “mul” indicate whether channel quantization is

performed independently, or jointly. The Lab and the RGB

color spaces seem to perform better. In Figure 5 (right), Φ
is the linear filter (LF) bank used in [26]. It shows that lin-

ear filtering improves versus simple color quantization, and

that there is an optimal dimensionality for A, say around

m = 60.

Bag-of-features: HOG Log-RGB. Figure 6 summarizes

our search for optimal settings for computing HOG’s. We

optimize four parameters (one at a time): the number of

quantizing orientations ℓ, the prior Gaussian smoothing of

the image σ, the patch sizew, and the appearance dictionary

dimensionality m. We found a good operating point12 with

ℓ = 16, σ = 0, w = 11, and m = 60.

Shape descriptors. For computingω, the HOG uses d = 8
quantizing orientations, a patch size w = 11, and a shape

dictionary of dimension n = 18. Note that there might be

other ways to design the operator13 Ω.

11Note that ψ is a concatenation of histograms.
12We tested the HOG with other color spaces. The L channel and the

Log-RGB color space are the best options. They double the performance

with respect to the linear filter bank (CMC curves included in [3]).
13We experimented a Canny edge detector, where ψ does an edge pixels

count on the partition regions. This approach compares well with the HOG,
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Figure 7. Shape and appearance context. Left: Matching com-

parison between several approaches for computing appearance

labels. Approaches using HOG outperform the ones that do

not. Right: Matching comparison summary of several appearance

models. The shape and appearance context outperforms all others,

including the state-of-the-art model fitting [6]. Approaches that

capture spatial relationships outperform those that do not.

Shape and appearance context: Appearance compari-

son. Figure 7 (left) shows the results corresponding to

different choices of Φ. We tested the HOG in three differ-

ent color spaces. We also tested the linear filter bank (LF)

used in [26], and a combination of the LF and the HOG

of the L channel of the Lab color space. It is noticeable

how the configurations that include the HOG significantly

outperform the LF bank. The HOG in the Log-RGB color

space is the best performer.

Comparison summary. Figure 7 (right) compares the

matching performance of several approaches. Besides ap-

pearance and shape and appearance context, we have in-

cluded simple bag-of-features approaches where Φ is a

color transformation (to spaces such as RGB, HSV, Lab),

but also more sophisticated ones, where Φ is a LF bank

[26], or the HOG in the Log-RGB space. Results using

the histogram of correlatons,14 and his concatenation with

the histogram (8), where Φ is the LF bank [19] are also in-

cluded.

The results indicate that the shape and appearance con-

text is the best performing algorithm. Further, approaches

that capture the spatial relationships among appearance la-

bels significantly outperform the approaches that do not,

such as bag-of-features. Finally, the comparison with the

model fitting algorithm [6], shows that the matching rate of

the first neighbor is 59%, whereas for the shape and appear-

ance context it is 82%, which is a significant improvement

(see Figure 7).

8. Conclusions

We propose the shape and appearance context, an ap-

pearance model that captures the spatial relationships

among appearance labels. This outperforms other meth-

ods, especially in very challenging situations, such as the

with a slight advantage to the latter (CMC curves included in [3]).
14We have used our own implementation of the algorithm [19]. Learning

was done with k-means only. We warn the reader that their approach was

originally designed to solve the inter-category recognition problem, and

here we have tested it outside his natural domain.

appearance-based person reidentification problem. In this

scenario, our extensive testing to design several operators

has led to a method that achieves a matching rate of 82% on

a large data set.

The new algorithm to compute occurrence, which cuts

the computational complexity down to O(N2), enables the

computation of the shape and appearance context in real-

time,15 which is not possible using existing methods. The

computation of the occurrence is based on the proposed in-

tegral computations framework, which generalizes the ideas

of integral image and integral histogram to multidimen-

sional vector-valued functions, and allows computing statis-

tics over discrete domains of arbitrary shape.

The appearance variation of our testing data set shows

that our approach is robust to a great deal of viewpoint, il-

lumination, and pose changes, not to mention background

contamination. Future investigation will include methods

to remove this contamination, and testing the approach in

other scenarios, e.g. multiple hypothesis tracking.

Appendix

In this Appendix we first introduce some notation and then

give the proofs of Theorem1, and 2. The variable ν can

be interpreted as partitioning R
k into his 2k open orthants

Oν

.
= {x ∈ R

k|xi > 0 if νi = 1, or xi < 0 if νi = 0, i =
1, · · · , k}. We introduce the notationOν(x)

.
= {x+y|y ∈

Oν}. We also introduce a function βx(ν) : B
k → B, such

that: i) βx(ν) = 1 if x is an adherent point16 for the open

set D ∩ Oν(x); ii) βx(ν) = 0 otherwise. It is trivial to

prove that: I) x ∈ D \ ∂D ⇐⇒ βx(ν) = 1 ∀ν; II) x ∈\ D
⇐⇒ βx(ν) = 0 ∀ν. Finally, if νj represents j out of the

k components of ν, and if νk−j represents the remaining

k − j components, then we define edges and corners of the

boundary ∂D as follows: A point x ∈ ∂D lays on an edge

if there exist j components of ν, with 1 ≤ j ≤ k − 1, such

that βx(ν) does not depend on νk−j , i.e. βx(ν) = βx(νj),
∀ν. If x does not lay on an edge, it is a corner. We indicate

the set of corners with ∇ ·D.

Proof of Theorem 1. Let {ui,1, ui,2, · · · |ui,j ∈ R, ui,j <
ui,j+1, i = 1, · · · , k}, be the set of points along {xi}, such

that D is made of portions of hyperplanes passing through

these points. Figure 1 illustrates an example for k = 2.

The intersection of the hyperplanes with D defines a parti-

tion D
.
=

⋃
i Ri into rectangular regions {Ri}, which al-

lows us to write
∫

D
f(x)dx =

∑
i

∫
Ri
f(x) dx, and apply

Equation (1) to each term of the summation. By rearrang-

ing the terms, and using the function βx(ν), the integral can

be rewritten as
∑

x∈D αD(x)F (x), where D is the set of all

the corner points of the regions {Ri} (note that ∇·D ⊆ D),

15Our C++ implementation of the algorithm can run at 10fps on an im-

age region of 250× 100 pixels.
16A point x is an adherent point for an open set B, if every open set

containing x contains at least one point of B. A point x is an adherent

point for B if and only if x is in the closure of B.



and αD(x)
.
=

∑
ν
(−1)ν

T
1βx(ν). Now we recall that if

x ∈ D \ ∂D, then βx(ν) = 1, and this implies αD(x) = 0.

On the other hand, if x is on an edge, then we can write

αD(x) =
∑

νj
(−1)ν

T
j 1βx(νj)

∑
νk−j

(−1)ν
T
k−j1 = 0,

and Equation (4) is valid. When x is a corner described

by βx, one should proceed with a direct computation of

αD(x). For k = 2, αD(x) is different then zero only for

the 10 cases depicted in Figure 1, in which it assumes the

values indicated. �

Proof of Theorem 2. According to (5), Θ can be com-

puted by using Equation (2), and subsequently applying

Theorem 1, giving

Θ(a, s, p) = |Ds|
−1

∑
x∈∇·Ds

αDs
(x)H(a, p(x)) , (9)

where H(a, p(x)) =

∫ x

−∞

h(a, p(u)) du . (10)

Now we note that h(a, p(u)) can be computed through

the integral histogram of A, F (a, z) =
∫ z

−∞
e ◦ A(v) dv,

and by applying Theorem 1, resulting in h(a, p(u)) =
|p(u)|−1

∑
z∈∇·p(u) αp(u)(z)F (a, z). This equation, com-

bined with Equations (10) gives

H(a, p(x)) =

∫ x

−∞

|p(u)|−1
∑

z∈∇·p(u)

αp(u)(z)F (a, z) du . (11)

From the definition of p(u), it follows that |p(u)| = |p|,
and ∇ · p(u) = {u + y|y ∈ ∇ · p}, and also that

αp(u)(u+y) = αp(y). Therefore, after the change of vari-

able z = u + y, in Equation (11) it is possible to switch

the order between the integral and the summation, yielding

H(a, p(x)) = |p|−1
∑

y∈∇·p αp(y)
∫ x

−∞
F (a,u + y) du.

Substituting this expression in (9), and taking into account

the expression of F (a, z), proves Equations (6) and (7). �
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