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Hybrid Deep Learning for Face Verification
Yi Sun, Xiaogang Wang, Member, IEEE, and Xiaoou Tang, Fellow, IEEE

Abstract—This paper proposes a hybrid convolutional network (ConvNet)-Restricted Boltzmann Machine (RBM) model for face
verification. A key contribution of this work is to learn high-level relational visual features with rich identity similarity information.
The deep ConvNets in our model start by extracting local relational visual features from two face images in comparison, which
are further processed through multiple layers to extract high-level and global relational features. To keep enough discriminative
information, we use the last hidden layer neuron activations of the ConvNet as features for face verification instead of those of
the output layer. To characterize face similarities from different aspects, we concatenate the features extracted from different
face region pairs by different deep ConvNets. The resulting high-dimensional relational features are classified by an RBM for
face verification. After pre-training each ConvNet and the RBM separately, the entire hybrid network is jointly optimized to
further improve the accuracy. Various aspects of the ConvNet structures, relational features, and face verification classifiers
are investigated. Our model achieves the state-of-the-art face verification performance on the challenging LFW dataset under
both the unrestricted protocol and the setting when outside data is allowed to be used for training.

Index Terms—Convolutional networks, deep learning, face recognition
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1 INTRODUCTION

FACE recognition has gained great progress in
recent years due to better design and learning of

features [54], [1], [55], [33], [10], [58], [56], [17], [4],
[13], [37], [61], [47] and face recognition models [53],
[14], [57], [25], [60], [52], [12], [28], [9], [49]. This paper
focuses on the task of face verification, which aims
to determine whether two face images belong to the
same identity. This problem is challenging when faces
are acquired in unconstrained conditions, given their
large intra-personal variations in poses, illuminations,
expressions, ages, makeups, and occlusions. Existing
methods generally address the problem in two steps:
feature extraction and recognition. In feature extrac-
tion, existing approaches design or learn features from
each individual face image separately to acquire a
better representation, while recognition is to calculate
the similarity score between two compared faces by
using the feature representation of each face. Since
face recognition involves comparing two faces, it is
interesting to explore the usefulness of features jointly,
instead of separately, extracted from two faces in
comparison. These features would reflect the relation
between the two compared faces and may be easier
for the following face recognition model to calculate
similarity scores.

Deep models have been popular in computer vision
in recent years [21], [22], [45], [35], [32], [15], [19],
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Fig. 1. The hybrid ConvNet-RBM model. The blue
arrows show the forward propagation directions. Best
viewed in color.

[6]. With large learning capacity, they can learn fea-
ture representations from large-scale data and model
complex data variations. Therefore, they are suitable
to address the large face variations in unconstrained
conditions. We propose to learn relational features
with a hybrid deep network. A high-level illustration
of our model is shown in Figure 1. The lower part
of our model contains multiple deep convolutional
networks (deep ConvNets) [36], each of which takes
two face regions in comparison. By taking the two face
regions as two input maps of the deep ConvNet, its
first convolutional layer compares the corresponded
local areas between the two faces to extract the
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initial low-level relational features with learned filter
pairs. These low-level features are further processed
through multiple feature extraction stages to extract
the high-level relational features, which more explic-
itly reflect the identity relations of the two compared
faces. These high-level relational features are readily
to be used for the final face recognition model.

Recent high-performing face recognition algorithms
typically extract their features densely in locations
and scales [25], [13], [47], [9], which indicates that
face regions in different locations and scales contain
rich complementary information. For this reason, we
extract the high-level relational features from various
face region pairs. Each region pair covers a particular
region of the two faces, from which a particular set of
ConvNets are learned for feature extraction. Unlike
[49] which used the ConvNet output vector as fea-
tures, we propose to use the last hidden layer neuron
activations as features instead. This is because features
in the last hidden layer are pooled to a single output
element of the output vector. In this process feature
dimensions are reduced significantly and the output
feature may lose much discriminative information.
We further concatenate the last hidden layer features
of multiple ConvNets to form the high-dimensional
relational features, which would contain much richer
information related to the identity relations compared
to [49] while still being high-level.

The extracted high-level relational features already
reflect the identity similarities to a certain degree,
which makes it easier for the face recognition model
to compute the final face similarity scores. So we
choose a shallow classification restricted Boltzman-
n machine (classification RBM) [34] model for the
final face verification. In previous methods, feature
extraction and recognition are generally two separate
stages, which cannot be jointly optimized. Once useful
information is lost in feature extraction, it cannot be
recovered in recognition. On the other hand, without
the guidance of recognition, the best way to design
feature descriptors to capture identity information
is not clear. In contrast, our multiple ConvNets
and RBM can be unified into a single hybrid deep
network, which conducts feature extraction and face
verification simultaneously. The parameters of the
entire network can be jointly optimized for the task
of face verification. Compared with the conference
version [49] of this work, the new contributions of
this submission are summarized below.
• High-dimensional high-level relational features

for face verification, which significantly out-
perform the low-dimensional version in [49].

• Detailed validation of the use of the ConvNet
structures, high-dimensional features, and face
verification classifiers.

• State-of-the-art performance on LFW under both
the unrestricted protocol and the setting when
outside data is allowed to be used for training.

2 RELATED WORK

Existing methods for face verification extract features
from two faces in comparison separately, and then
computes the similarity scores between the features.
The low-level hand-crafted features are commonly
used in face recognition as the first step of feature
extraction [33], [20], [42], [56], [25], [38], [12], [4],
[7], [13], [37], [5], [47], [9], [8], [2], like LBP and
its variants, SIFT, and Gabor. Some methods learned
features in an unsupervised way using models like
decision trees [10], [59], convolutional DBN [26], or
sparse coding [16]. Both the hand-crafted features
and features learned in this way encode large intra-
personal variations. While they could be used for
those face verification models that explicitly models
the intra- and inter-personal variations [38], [12], [13],
[9], it is inadequate and generally need to be further
processed for other models like SVMs or those directly
computing the Euclidean or cosine distances.

Ideally, features extracted from individual faces
should be discriminative between different identi-
ties while consistent for the same identity. For this
purpose, a variety of metric learning methods may
be applied to further process the initially extracted
features [20], [42], [25], [26], [7], [16], [47], [8], [2], or
learn the metric directly from pixels by deep learning
[14], [41], [24]. Another way is to learn identity-
related features [33], [56], [59], [4], [5], [61], [30],
[51], [50]. These identity-related features are outputs
of classifiers which distinguish different identities or
predict the identity-related attributes. Among these
methods, Zhu et al. [61] and Kan et al. [30] learned to
predict faces of frontal poses for each person. In this
way it effectively distinguished multiple identities.
Taigman et al. [51] and Sun et al. [50] learned identity
features with the face identification task as the super-
visory task, while our approach learns the identity
features with the verification task as the supervisory
signals. Both supervisory signals are complementary
and could be combined. The other methods learned
binary classifiers to distinguish a person with the
background [33], [56], [59], every two people [4],
[5], or the binary attributes [33]. In contrast to all
the previous methods which learned features from
each face separately to reflect the identity of each
individual face, our relational features are jointly
extracted from two compared faces to reflect the
identity relations of the two faces.

Our work is derived from [49] but with significant
improvement. In [49], ConvNet outputs are used as
features. The output of each ConvNet is a single
similarity score of the two input face regions it
compares. It suffers from severe information loss since
from the last hidden layer to the output, the feature
dimension is reduced for 80 times. [49] further pooled
the features with high correlations, resulting in a short
12 dimensional feature vector, before passing them



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2015.2505293, IEEE Transactions on Pattern Analysis and Machine Intelligence

3

to the final face verification model. Though pooling
improves prediction accuracies when looking at each
individual feature, it further loses the discriminative
information and the face verification model learned
from the combination of pooled features may be even
worse than that learned from the original features.
With the above considerations, we take the last hidden
layer, instead of the output layer, neuron activation-
s as features without pooling. After concatenating
features from multiple ConvNets with various face
region pairs under multiple input modes as input (ex-
plained in Section 3.1), we form a 38, 400-dimensional
high-level relational feature vector, which significantly
out-performs the low-dimensional version in [49].
Concatenating low-level hand-crafted features extract-
ed from dense locations and multiple scales have
been the starting point of many high-performance face
recognition algorithms [25], [13], [47], [9], while there
are relatively few studies of concatenating high-level
features in a similar way. We give the first attempt
based on the high-level relational features.

Deep learning has been extremely successful in
computer vision since the large learning capacities
of deep models meet the abundant data and com-
puting resources gradually available in recent years.
It has significantly improved previous state-of-the-
art in a variety of challenging tasks [32], [35], [15],
[6], [46], [43], [31]. It is also becoming popular in
face recognition [14], [41], [44], [26], [49], [61], [30],
[51], [50] and other face related tasks [39], [48],
[40], where deep models have demonstrated strong
abilities in modeling large face variations due to
poses, illuminations, occlusions, and other factors in
unconstrained conditions [39], [48], [49], [61], [40],
[30].

The multi-column deep neural network proposed
by Ciresan et al.[15] is one of the earliest study
of using deep ConvNet ensembles to improve the
performance over a single deep ConvNet. In their
work the classification scores of multiple deep Con-
vNets are averaged to make the final decision. Deep
ConvNets in an ensemble could take either the same
or different input images. The deep ConvNet as-
senbles were also successfully applied to ImageNet
classification by Krizhevsky et al.[32]. The assembling
of 60 deep ConvNets in our proposed deep model is
partially inspired by these early works. One important
improvement is that, instead of simply averaging the
ConvNet output scores, we merge the last hidden
layer features by further learning a classifier such as
the RBM.

Most existing face recognition pipelines include two
or more processing steps, each of which is either hard-
coded or optimized independently. For example, Cao
and Chen et al. [12], [13], [9] fist extracted hand-
crafted features, then did PCA, and finally learned the
joint Bayesian model for face verification. Simonyan
et al. [47] first extracted hand-crafted features, then

encoded them into fisher vectors, and finally learned
a linear metric for face verification. In [33], [4], [5]
hand-crafted features were first extracted, and then
identity-related features were learned as the outputs
of multiple identity/attribute classifiers. Finally face
verification was performed with an additional SVM
classifier based on these identity-related features. The
common problem in the existing pipelines is that
their feature extraction process lacks the guidance of
the face verification target. In contrast, our hybrid
ConvNet-RBM model can be jointly optimized after
pre-training each part separately. Therefore, the fea-
ture extraction and face verification modules can best
cooperate with each other, which further improves its
performance.

3 HYBRID CONVNET-RBM MODEL

The following subsections explain the structures of the
hybrid ConvNet-RBM model and its learning proce-
dure. Section 3.1 gives the big picture of the whole
system. The detailed explanations of the ConvNets
and RBM are given in Section 3.2 and Section 3.3,
respectively. Section 3.4 discusses their interactions.

3.1 Architecture overview
Figure 2 is an overview of our hybrid ConvNet-
RBM model, which contains two processing steps,
i.e., extracting relational features with multiple deep
ConvNets and face verification with the classification
RBM [34]. In the first step we use 60 deep ConvNets,
each extracting relational features hierarchically from
a particular pair of aligned face regions from two
images in comparison. The input region pairs for
different ConvNets differ in locations, scales, and
color channels to make their features complementary.
Part of the 60 regions taken from a particular face is
shown in Figure 4. Each region pair further gener-
ates eight different input modes by exchanging the
two regions and horizontally flipping each region as
shown in Figure 5. When the eight input modes ikn
for k = 1, 2, . . . , 8 of the n-th region pair are input
to the n-th deep ConvNet Cn, respectively, eight 80-
dimensional high-level relational feature vectors xkn
for k = 1, 2, . . . , 8 are generated. When concatenating
the feature vectors extracted from all the 60 region
pairs with all the eight input modes for each pair,
we get a long 80 × 8 × 60 = 38, 400-dimensional
feature vector. To make full use of the discriminative
information it contains, we do not pool the features
as did in [49]. Instead, the high-dimensional feature
vector is directly used for face verification.

Face verification is conducted by a classification
RBM, which takes the 38, 400-dimensional relation-
al feature vector as its input layer, followed by a
short eight-dimensional hidden layer and a two-class
probability output layer indicating whether the two
compared faces are from the same person. The deep
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Fig. 4. Top: ten color face regions of medium scales.
The five regions in the top left and top right are the so-
called global and local regions, respectively. Bottom:
three scales of two particular regions. The region
sizes, after being re-scaled to fit the ConvNet input
dimensions, are marked above each region.

Fig. 5. Eight possible input modes for a pair of face
regions.

and wide network structure means that our model
has a high capacity. Directly optimizing the whole
network would lead to over-fitting. Therefore, we first
train each ConvNet separately under the supervision
of whether two faces in comparison belong to the
same person. Then, by fixing all the ConvNets, the
RBM is trained. These two steps initialize the model
to a good point. Finally, the whole network is fine-
tuned by back-propagating errors from the top-layer
RBM to all the lower-layer ConvNets.

3.2 Deep ConvNets

Our deep ConvNets contain four convolutional layers
(the first three followed by max-pooling) and two
fully-connected layers. Figure 3 shows the structure of
one particular ConvNet with two gray face regions as
input. When the size of the input region changes, the
map sizes in the following layers of the ConvNets will
change accordingly. The last hidden layer contains the
high-level relational features to be learned for face
verification. The single output neuron is used to add
the binary supervision signals for face verification
when pre-training each ConvNet separately, and is

discarded later when incorporating the ConvNet into
the hybrid network.

Input maps. We detect five facial landmarks, i.e.,
the two eye centers, the nose tip, and the two mouth
corners, with the facial point detection method in [48].
Faces are first aligned by similarity transformation
according to the two eye centers and the mid-point
of the two mouth corners. We then crop two kinds
of regions from the aligned faces. One is called the
global regions, which are cropped from fixed regions
on faces as did in [49]. The other is the local regions,
which are centered around one of the five facial
landmarks similar to [13]. For either the global or
local regions, there are three scales, two different types
of colors (RGB or gray), and five different regions
for each scale and type of color, making a total of
60 different regions. The color regions are illustrated
in Figure 4. A pair of gray regions forms two input
maps of the ConvNet, while a pair of color regions
forms six input maps, replacing each gray map with
three maps from RGB channels. The region pairs are
resized to 39 × 31 × k, 31 × 39 × k, or 31 × 31 × k,
depending on their original shapes, before input to
the ConvNets, where k = 2, 6 for gray and color
region pairs, respectively. To precisely describe the
ConvNet structure, we take symbols similar to [48].
In particular, the input layer is denoted by I(h,w, t),
where h and w are the height and width of the input
region, and t is the number of input maps. The input
regions are stacked into multiple maps instead of
being concatenated to form one map, which enables
the ConvNet to model the relations between the two
regions from the first convolutional layer.

Convolution. The operation in each convolutional
layer can be expressed as

yj(r) = f

(
bj(r) +

∑
i

kij(r) ∗ xi(r)
)

, (1)

where ∗ denotes convolution, xi and yj are the i-
th input map and the j-th output map respectively,
kij is the convolution kernel (or filter) connecting
the i-th input map and the j-th output map, and bj

is the bias for the j-th output map. f(·) is a non-
linear activation function, which is operated element-
wise for each neuron. We take max (0, ·) as the non-
linear function, which has been shown to have better
fitting abilities than the traditionally used tanh(·) [32].
Neurons with such non-linearities are called rectified
linear units (ReLU) [32]. Moreover, weights of neurons
(including convolution kernels and biases) in the same
map may be locally shared, as suggested by Huang
et al.[26]. The superscript r in Equation (1) indicates a
local region where weights are shared. Since faces are
structured objects, locally sharing weights in higher
layers allows the network to learn different high-level
features in different locations. A convolutional layer
is denoted by C (s, n, p, q). s is the convolution kernel
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Fig. 2. Architecture of the hybrid ConvNet-RBM model. For the convenience of illustration, we show the input
and output layers of the RBM as two separate layers instead of a single visible layer.

Fig. 3. Structure of one ConvNet. The map numbers and sizes are illustrated as the length, width, and height
of cuboids for the input layer and all the convolutional and max-pooling layers, respectively. The 3D convolution
kernel sizes of the convolutional layers and the 2D pooling region sizes of the max-pooling layers are shown
as the small cuboids and squares inside the large cuboids of maps, respectively. Neuron numbers of the fully-
connected layers are marked beside each layer.

size (the side length of the square kernels kij). n
is the number of maps. p and q are weight sharing
parameters. Each map in the convolutional layer is
evenly divided into p by q regions, and weights are
locally shared in each region. We find that locally
sharing weights in higher convolutional layers can
significantly improve the fitting and generalization
abilities of ConvNets.

Convolution is the feature extraction process,
through which relations between the two face regions
are modeled hierarchically. For example, operations in
the first convolutional layer (omitting the superscript
r) can be reformulated as

yj = f
(
bj + k1j ∗ x1 + k2j ∗ x2

)
, (2)

where x1 and x2 denote the two face regions com-
pared, which are convolved by the two kernels k1j

and k2j , respectively, and the results are added. So
yj reflects a kind of relation between the two face
regions x1 and x2. The relation type is decided by the
two kernels k1j and k2j . See Figure 6 for examples.
As the network goes deeper, more global and higher-
level relations between the two regions are modeled.
These high-level relational features make it possible

for the top layer output neuron to predict the high-
level concept of whether the two input regions come
from the same person.

Pooling. The first three convolutional layers are
followed by max-pooling for feature reduction and in-
creasing their robustness to distortions of face images.
Max-pooling is formulated as

yij,k = max
1≤m,n≤s

{
xi(j−1)·s+m, (k−1)·s+n

}
, (3)

where each neuron in the i-th output map yi pools
over an s× s non-overlapping local region in the i-th
input map xi. Pooling layer is denoted by P (s).

Full connection. The fourth convolutional layer is
followed by two successive fully-connected layers. A
fully-connected layer with n neurons is denoted by
F (n) with function

yj = f

(
m∑
i=1

xi · wi,j + bj

)
, (4)

for j = 1, . . . , n, where n and m are neuron numbers
of the current and previous layers, respectively. f(·)
is an element-wise nonlinear function. We use ReLU
nonlinearity for the first fully-connected layer (of the
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Fig. 6. Examples of the learned 20 4 × 4 filter pairs
of the first convolutional layer of ConvNets taking
color (line 1,2) and gray (line 3,4) input region pairs,
respectively. The upper and lower filters in each pair
convolve with the two face regions in comparison,
respectively, and the results are added. We use line
1-4 and column a-j to indicate each filter pair. For filter
pairs in which one filter varies greatly while the other
remains near uniform (1c, 1g, 1h, 2e, 2i, 3h, 3i, 4g, 4i,
4j), features are extracted from the two input regions
separately. For those filter pairs in which both filters
vary, some kind of relations between the two input
regions are extracted. Among the latter, many filter
pairs extract simple relations such as addition (1b, 1f,
3g, 4f) or subtraction (1i, 2b, 2c, 2d, 2f, 3c, 3e, 3f, 4b,
4c, 4d), while others extract more complex relations.
Interestingly, we find that filters in some filter pairs are
similar to those in some others, except that the order
of the two filters are inversed (1a vs. 1e, 1h vs. 2g, 2c
vs. 2d, 1i vs. 2b, 3j vs. 4b, 4i vs. 4j). This makes sense
since face similarities should be invariant with the order
of the two face regions in comparison. Best viewed in
color.

relational features) as did for the previous convo-
lutional layers, and tanh nonlinearity for the single
output neuron to obtain a probability output of face
similarities. The ConvNet parameters are initialized
by small random numbers and learned by minimizing
the squared loss 1

2 (o − t)2, where o is the ConvNet
output and t = ±1 is the binary face verification
target. The loss is minimized by stochastic gradient
descent, where the gradient is calculated by back-
propagation [36].

3.3 Classification RBM

Classification RBM models the joint distribution be-
tween its output neurons y (one out of C classes),
input neurons x (binary), and hidden neurons h

(binary), as p(y, x, h) ∝ e−E(y,x,h), where E(y, x, h) =
−h>Wx−h>Uy−b>x−c>h−d>y. Given input x, the
conditional probability of its output y can be explicitly
expressed as

p(yi | x) =
edi
∏
j

(
1 + ecj+Uji+

∑
k
Wjkxk

)
∑
i e
di
∏
j

(
1 + ecj+Uji+

∑
k
Wjkxk

) , (5)

where i = 1, . . . , C are class indices. We discrimi-
natively train the Classification RBM by minimizing
− log p(yt | x), where t is the target class, which is
also optimized by stochastic gradient descent as the
ConvNets. Due to the closed form expression of the
likelihood, the gradient −∂ log p(yt|x)

∂θ can be computed
exactly, where θ ∈ {W,U, c, d} are parameters to be
learned.

3.4 Fine-tuning the entire network
The single ConvNet output is discarded when learn-
ing the RBM and fine-tuning the entire network.
Therefore, each ConvNet Cn maps the n-th pair of
face regions under the k-th input mode ikn to an 80-
dimensional relational feature vector xkn, i.e.,

xkn = Cn
(
ikn
)

, (6)

for n = 1, . . . , 60 and k = 1, . . . , 8. The feature vectors
xkn for all n and k are concatenated into a long feature
vector x. The RBM takes the feature vector x as input
and predicts the class label as

argmaxi∈{1,2}p(yi | x), (7)

with p(yi | x) defined in Equation (5). The RBM
is first trained based on the feature vector x with
the ConvNet parameters fixed. Then error is back-
propagated from the RBM to all the ConvNets and
the whole model is fine-tuned. Let L = − log p(yt | x)
be the RBM loss function, where t is the target class,
and αn be the parameters of the n-th ConvNet. The
gradient of the loss w.r.t. αn is

∂L

∂αn
=

8∑
k=1

∂L

∂xkn

∂xkn
∂αn

=
8∑
k=1

∂L

∂xkn

∂Cn
(
ikn
)

∂αn
. (8)

∂L
∂xk

n
is calculated by the closed form expression of L,

and
∂Cn(ikn)
∂αn

is calculated by back-propagation in the
ConvNet.

4 EXPERIMENTS

We evaluate our algorithm on LFW [27], which has
been used extensively to evaluate algorithms of face
verification in the wild. We conduct evaluation under
two different settings: (1) 10-fold cross validation
under the unrestricted protocol of LFW without using
data outside LFW to train the model, and (2) cross-
dataset validation in which a typically larger, external
dataset exclusive to LFW is used for training. The
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identities of people in the external dataset are mu-
tually exclusive to those in LFW. The former shows
the performance with a limited amount of training
data, while the latter shows the ability to learn from
extra data and also the generalization across different
datasets. Section 4.1 explains the experimental settings
in detail, Section 4.2 and Section 4.3 validate various
aspects of model design, and Section 4.4 derives our
final results and compares them with the previous
state-of-the-art results in literature.

4.1 Experiment settings

LFW is divided into 10 folds of mutually exclusive
people sets. For the unrestricted setting, performance
is evaluated by using the 10-fold cross-validation.
Each time one fold is used for testing and the other
nine for training. Results averaged over the 10 folds
are reported. The 600 testing pairs in each fold are
predefined by LFW and fixed, whereas training pairs
can be generated using the identity information in the
other nine folds and the number is not limited. We
refer to this as the LFW training setting.

For the cross-dataset setting, we use outside data
exclusive to LFW for training. PubFig [33] and WDRef
[12] are two large datasets other than LFW with
faces in the wild. However, PubFig only contains 200
people with a large number of images for each person.
Therefore the inter-personal variations are quite limit-
ed. WDRef contains both a large number of identities
and a modest number of images for each identity, but
the images or image URLs are not publicly available.
Accordingly, we created a new dataset, called the
Celebrity Faces dataset (CelebFaces) [49]. It contains
87, 628 face images of 5, 436 celebrities from the web,
and was assembled by first collecting the celebrity
names that do not exist in LFW, then searching
for the face images for each name on the web. To
avoid any overlap between the identities in LFW and
CelebFaces, we manually checked people in these two
datasets with similar face images and removed the
identity in CelebFaces which exists in LFW but taking
a different name in CelebFaces. The similarity score
was calculated by a preliminary version of our deep
model. To conduct cross-dataset evaluation, the model
is trained on CelebFaces and tested on the predefined
6, 000 test pairs in LFW. We refer to this setting as the
CelebFaces training setting.

For both settings, we randomly choose 80% people
from the training data to train the deep ConvNets,
and use the remaining 20% people to train the top-
layer RBM and fine-tune the entire model. Since
stochastic gradient descent is used, we keep randomly
generating the positive and negative face pairs for
training. The positive training pairs are generated
such that, for each person, the sample number is
linearly proportional to the number of images avail-
able for that person. Generating in this way prevents

sample pairs generated from people with much more
images than average dominating the data, since the
total number of positive pairs that could be generated
by one person is the square of the number of images.
We generated an equal number of negative pairs
as the positive ones. The ConvNets are first trained
independently with eight times the available sample
pairs due to the eight possible input modes formed
by each pair. Then the RBM is trained and the whole
network is fine-tuned with two times the available
sample pairs by exchanging the two images in a pair.
In test, the two similarity scores calculated by the two
original and exchanged face images are averaged to
get the final score. Evaluation on the two exchanged
faces is achieved by reordering the feature vectors
xkn (Figure 2) extracted by each ConvNet without
recalculating these features. For example, (x1n, x2n, x3n,
x4n, x5n, x6n, x7n, x8n) would be reordered as (x5n, x6n,
x7n, x8n, x1n, x2n, x3n, x4n), for n = 1, 2, . . . , 60. Then
reevaluating the RBM based on the reordered feature
vectors.

A separate validation dataset is used during train-
ing to avoid over-fitting. After each training epoch,
we observe the errors on the validation dataset and
select the model that provides the lowest valida-
tion error. We randomly select 100 people from the
training people to generate the validation data. The
free parameters in training (the learning rate and its
decreasing rate) are selected using view 1 of LFW1

and are fixed in all the experiments. We report both
the accuracies and the ROC curves. Each face pair is
assigned to the class with higher probabilities without
further learning a threshold for the final classification.
We provide the detailed free parameters in training as
following.

First, each of the 60 deep ConvNets are trained
independently with an initial learning rate of 0.001.
The learning rate is decreased exponentially by multi-
plying a factor of 0.9 after each iteration. We generated
approximately 40 thousand and 240 thousand pairs
of training samples per iteration for the LFW and
CelebFaces training settings, respectively, using the
80% training identities. These sample pairs are then
augmented with the eight input modes and fed into
the deep ConvNets in a random order. Training takes
approximately 10 and 20 iterations for the LFW and
CelebFaces training settings, respectively. Weights in
the deep ConvNets are randomly initialized with a
uniform distribution between [−0.05, 0.05].

After the deep ConvNets are trained, we continue
to train the classification RBM with an initial learning
rate of 0.01, which is exponentially decreased by
multiplying a factor of 0.7 after each iteration. We
generated approximately eight thousand and 50 thou-
sand training sample pairs per iteration for the LFW

1. View 1 is provided by LFW for algorithm development and
parameter selection without over-fitting the test data. [27].
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and CelebFaces training settings, respectively, using
the remaining 20% training identities. Then we extract
the 38, 400 dimensional relational features using the 60
pre-trained deep ConvNets. The 38, 400 dimensional
feature vectors are augmented by reordering the
features, which corresponds to exchanging the order
of the two face images in a pair, as has been discussed.
The high-dimensional relational feature vectors are
fed into the classification RBM in a random order. The
weight matrix W and U in RBM (see Equation (5)) are
initialized randomly with a uniform distribution be-
tween [− 1√

m
, 1√

m
], where m is the maximum between

the number of rows and columns of the matrix [34].
The bias c and d are initialized with zeros. Training
takes approximately five iterations for both settings.

Finally the deep ConvNets and the RBM are jointly
fine-tuned. During the fine-tuning, the RBM takes the
same initial learning rate and its decreasing rate as in
the pre-training. For the deep ConvNets, we take an
initial learning rate of 0.0006 and decreases by a factor
of 0.7 after each iteration. The training sample pairs
are generated in the same way as in pre-training the
RBM for every iteration. The hybrid ConvNet-RBM
model is initialized with the pre-trained weights and
training takes approximately five iterations for both
training settings.

We use stochastic gradient descent in all training
stages. The hybrid ConvNet-RBM model is imple-
mented by C++ code written from scratch by us and
is run on a computer cluster of 60 CPUs with MPI
parallelism. It takes approximately ten days to train
the hybrid model. Testing takes approximately 0.12
second for comparing one pair of face images.

4.2 Deep ConvNet structure

We investigate the impact of network depth, weight
sharing schemes, and neuron activation functions
to performance. Table 1 summarizes the compared
network structures. The three structures in S0 are
adopted for our ConvNets, respectively, according
to their input region shapes, where k = 6 for
color pairs and k = 2 for gray pairs. We compare
different structures S1-S6 to S0 in experiments. For
S1-S6, only the network structure with input sizes
of 39 × 31 × k is given to save space. Structures for
other input sizes are similar. The superscripts r, t,
and a denote the neuron activation functions of ReLU,
tanh, and abstanh, respectively, which are used by the
corresponding layers.

Each time only one factor is changed and the 60
ConvNets trained on different face region pairs are e-
valuated separately for face verification. The ConvNet
is trained on 80% of the CelebFaces images and tested
on LFW. The test score of each face pair is derived
by averaging the eight scores (given by the output
neuron) calculated from the eight different input
modes. Since the output neuron predicts directly from

TABLE 2
Average test accuracies for ConvNets taking

structures S0-S6 specified in Table 1.

structure average accuracy (%)

S0 88.46
S1 88.11
S2 87.54
S3 85.75
S4 86.95
S5 87.41
S6 83.77

the last hidden layer features, better face verification
accuracy would mean better hidden features learned.

The eight modes of the input face pair are com-
plementary since our ConvNet is not designed to
be commutative to the input face pair, neither is
it symmetric with respect to the horizontal flipping
of each of the face images in the input face pair.
Given the structures in S0, the mean face verification
accuracy of the 60 ConvNets taking a single input
mode is 86.63%. When averaging the scores of four
input modes by allowing the image flipping but not
exchange, the mean accuracy increases to 88.01%. It
is further increased to 88.46% when averaging all the
eight ConvNet output scores from the eight input
modes by allowing both image flipping and exchange.
The complementarity of ConvNet output scores also
implies the complementarity of the hidden feature
representations.

Network depth. We compare ConvNets with in-
creasing depth from containing one to four convo-
lutional layers. The resulting network structures are
S3, S2, S1, and S0 as shown in Table 1. S0 is the
structure used by our system. The averaged accuracies
are shown in Table 2. Adding the k-th convolutional
layer increases 1.79%, 0.57%, and 0.35% accuracies on
average, respectively, for k = 2, 3, 4, which verifies
the deep structures used. It also shows that larger
improvement is achieved in earlier convolutional
stages.

Weight sharing. Our ConvNets locally share
weights in higher convolutional layers. S0 specifies
the weight sharing scheme taken by our ConvNets. In
general, the higher the layers, the fewer the neurons
which share weights, which helps to learn diverse
high-level features. In the first two convolutional
layers of S0, weights are either globally shared or
shared by halves of the feature maps. In the third con-
volutional layer, weights are shared among neurons
in every 2 × 2 local region. In the last convolutional
layer (more appropriately called the locally-connected
layer), weights are completely unshared. We compare
S0 to S4, which globally share weights in all convo-
lutional layers. Table 1 shows the performance gap
between S0 and S4. Local weight sharing increases
1.51% face verification accuracy on average.
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TABLE 1
Summary of network structures.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

S0 I(39,31,k) Cr(4,20,1,1) P(2) Cr(3,40,2,1) P(2) Cr(3,60,3,2) P(2) Cr(2,80,2,1) Fr(80) Ft(1)
I(31,39,k) Cr(4,20,1,1) P(2) Cr(3,40,1,2) P(2) Cr(3,60,2,3) P(2) Cr(2,80,1,2) Fr(80) Ft(1)
I(31,31,k) Cr(4,20,1,1) P(2) Cr(3,40,1,1) P(2) Cr(3,60,2,2) P(2) Cr(2,80,1,1) Fr(80) Ft(1)

S1 I(39,31,k) Cr(4,20,1,1) P(2) Cr(3,40,2,1) P(2) Cr(3,60,3,2) P(2) Fr(80) Ft(1)
S2 I(39,31,k) Cr(4,20,1,1) P(2) Cr(3,40,2,1) P(2) Fr(80) Ft(1)
S3 I(39,31,k) Cr(4,20,1,1) P(2) Fr(80) Ft(1)

S4 I(39,31,k) Cr(4,20,1,1) P(2) Cr(3,40,1,1) P(2) Cr(3,60,1,1) P(2) Cr(2,80,1,1) Fr(80) Ft(1)

S5 I(39,31,k) Ct(4,20,1,1) P(2) Ct(3,40,2,1) P(2) Ct(3,60,3,2) P(2) Ct(2,80,2,1) Ft(80) Ft(1)
S6 I(39,31,k) Ca(4,20,1,1) P(2) Ca(3,40,2,1) P(2) Ca(3,60,3,2) P(2) Ca(2,80,2,1) Ft(80) Ft(1)

Activation function. We evaluate three activation
functions proposed in literature to replace the func-
tion f(·) in Equation 1, 2, and 4, that is, the ReLU
max (0, ·) [32], the hyperbolic tangent tanh(·) [36],
and the absolute value rectified hyperbolic tangent
abs(tanh(·)) [29]. See S0, S5, and S6 in Table 1 for the
corresponding structures. Table 1 shows their differ-
ences in performance. ConvNets with ReLU activation
functions perform 1.05% and 4.69% better on average
than those with tanh and abstanh activation functions,
respectively.

The performance differences between the three
nonlinear functions are due to their differences in
fitting abilities. ReLU has the strongest fitting ability
because its function value is unbounded while the
other two functions are bounded. abstanh has the
weakest fitting ability, even weaker than tanh, due to
the absolute value rectification. To illustrate this, we
plot the average verification accuracies on the training
data w.r.t. the training epochs (one training epoch is
a single pass of a given set of training samples) in
Figure 7, where higher accuracies mean better fitting
abilities. The figure confirms what we have argued
above. Since the number of face pairs formed for
training could be potentially large (proportional to
the squared image number), over-fitting is unlikely
to occur given a moderately large training set, e.g.,
the CelebFaces. Therefore, the fitting ability and test
accuracy are strongly correlated.

Regions versus accuracy. The face verification ac-
curacies of individual ConvNet vary for different
input face regions. Figure 8 shows the six input face
regions from which the ConvNet gives the highest
face verification accuracies (the first row) as well as
the six face regions with the lowest face verification
accuracies (the second row). The accuracy is labeled
below each face region, which is calculated from
the averaged scores of the eight input modes. The
ConvNets take structures in S0. It is shown that the
eye regions are more critical in face recognition than
the nose and mouth regions. Regions covering the
two eyes have over 90% face verification accuracies,
while those excluded the eye regions only have

Fig. 7. Training accuracies w.r.t. the number of training
epoches, averaged over the 60 ConvNets trained on
the 60 different region pairs, with ReLU (S0), tanh
(S5), and abstanh (S6) neuron activation functions,
respectively. Best viewed in color.

Fig. 8. Face regions with the highest and lowest face
verification accuracies, respectively.

approximately 85% verification accuracies.

4.3 Learning from the relational features

We investigate the discriminative power and com-
plementarity of the relational features, as well as
the performance of a few commonly used classifiers
learned on these features. The ConvNets extracting
these features are pre-trained and their weights are
fixed without jointly fine-tuning the entire network.
Classifiers in this section are trained with the re-
maining 20% CelebFaces images and tested on LFW.
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Fig. 9. Average RBM prediction accuracies based
on features extracted from 1, 5, 15, 30, and 60 face
region pairs. The accuracy is consistently improved
when concatenating more features.

In each experiment the classifier training process is
repeated for five times. For each time we randomly
choose the validation people from the training people,
and randomly generate the training/validation sam-
ple pairs. The averaged test results over the five trials
are reported.

Feature complementarity. We validate that the
relational features extracted from different face region
pairs are complementary, and evaluate how much
performance gain could be obtained by combining
those features. We discriminatively train the classifica-
tion RBM for face verification, based on the relational
features extracted from n region pairs, for n = 1, 5,
15, 30, and 60, respectively. For each region pair, given
its eight different input modes, eight 80-dimensional
feature vectors are extracted from the last hidden layer
of ConvNets. All the 8n feature vectors from the n
region pairs are concatenated to a long feature vector
for face verification. When n increases from 1 to 5, 15,
30, and 60, different variations are added in sequence.
For n = 1, we experiment with features from each
region pair, respectively. For n = 5, we concatenate
features from region pairs in different areas, but with
the same color type (RGB or gray), scale (small,
medium, or large), and region type (global or local
regions). For example, the five regions shown in the
top lest or top right in Figure 4. For n = 15, we
further include region pairs with all the three different
scales, but still with the same color type and region
type. For n = 30, we use all the color or gray region
pairs. For n = 60, all the 60 region pairs are used.
Figure 9 shows that the performance is significantly
improved whenever combining features from a richer
variety of region pairs. So all different region pairs
contain additional information. The total growth from
n = 1 to n = 60 is approximately 7%. The large
improvement is in consistency with that reported for
low-level features in [13].

RBM structure. Our classification RBM takes the
38, 400-dimensional feature vector as input and out-

Fig. 10. RBM prediction accuracies on LFW test data
w.r.t. the number of hidden neurons. The accuracy
keeps almost unchanged.

puts a two-dimensional probability distribution over
the two classes (being the same person or not), while
the number of hidden neurons is undetermined. We
choose it by maximizing the face verification accuracy
on the validation data. In fact, the RBM is very robust
on this parameter and the accuracy keeps almost
unchanged in a large range, as shown in Figure
10. The relational features are already near linearly
separable since a linear SVM also gives comparable
performance as shown in the next section. Therefore,
increasing the number of hidden neurons in RBM,
which means using functions which can fit more
complex distributions, does not help much. The RBM
could be very efficient by using only a few, eight
in our case, hidden neurons, since the efficiency is
proportional to the product of the number of input
and hidden neurons. The input features to RBM
are from the rectified linear units, which could be
approximated by the sum of an infinite number
of binary units with shared weights. Therefore the
mathematics derived in Section 3.3 remain unchanged
[41].

Feature discriminative power and classifier com-
parison. We compare a few commonly used classifiers
to the classification RBM, including PCA + LDA [3],
linear SVM [18], and SVM with RBF kernels [11]. The
feature dimension for PCA and the hyper-parameters
for SVMs are optimized on the validation data. More-
over, we compare features from the last hidden layer
of ConvNets (hid), the output of ConvNets (out), and
both of them (hid + out) based on the above classifiers.
To make a comparison with [49], we further evaluate
the pooled output features, including those pooled
from the outputs of the same ConvNet with different
input modes, or level one pooling (out + p1), and
those pooled from different ConvNets, or level two
pooling (out + p2). To acquire more complementary
features, we do not train multiple ConvNets with the
same input region pairs as did in [49]. Therefore, we
pooled the outputs of ConvNets taking similar input
region pairs, i.e., those with the three different scales
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TABLE 3
Test accuracies of various features and classifiers.

hid hid+out out out+p1 out+p2

dimension 38,400 38,880 480 60 20

per dim (%) 60.25 60.58 86.63 88.46 89.70
PCA+LDA (%) 94.55 94.42 93.41 93.20 92.60
SVM linear (%) 95.12 95.04 93.45 93.53 92.74
SVM rbf (%) 94.95 94.89 94.00 93.83 92.81
classRBM (%) 95.56 95.32 93.79 93.69 93.09

but being the same otherwise. For example, the three
regions in the bottom left or bottom right in Figure 4.

The comparison results are shown in Table 3. It also
shows the feature dimensions (dimension) and the av-
erage verification accuracy of directly comparing each
feature dimension to a threshold (per dim). Based
on these results, the following conclusions can be
drawn. First, classifiers learned from the output fea-
tures perform significantly worse than those learned
from the high-dimensional last hidden layer features.
The performance would decrease further when the
output features are pooled. Given the last hidden
layer features, there is no additional benefit by adding
the output features. This verifies the use of the last
hidden layer features, which contain much more dis-
criminative information than the output ones. Pooling
the output features further loses the information,
even though it increases the accuracy when looking
at the individual features. Second, the classification
RBM performs better than the other classifiers in
most cases, while the other classifiers also perform
reasonably well. For example, the simple linear SVM
model achieves 95.12% accuracy when learned on
the last hidden layer features. The relational features
extracted by our deep models more explicitly reflect
the high-level identity similarities. These features are
near linearly separable, which makes the following
face verification step easier. We choose the RBM as our
face verification model for its superior performance as
well as that it can be jointly optimized with the lower
ConvNet layers.

4.4 Final results and comparison

We evaluate the performance of our final system after
fine-tuning and compare it with the state-of-the-art
results. The evaluation is conducted on LFW and
CelebFaces training settings, respectively.

Fine-tuning. After separately learning each of the
60 ConvNets and the RBM, the whole model is fine-
tuned to jointly optimize all the parts. Fine-tuning is
conducted on the same 20% training data as used to
train the RBM, which aims to let the 60 ConvNets to
coordinate with each other for better face verification.
We find that the LFW training data is easily to be over-
fitted by our deep model due to the limited face pairs

TABLE 4
Accuracy comparison on each learning step of our

hybrid ConvNet-RBM model.

LFW CelebFaces
Single ConvNet (%) 85.05 88.46
RBM (%) 93.45 95.56
Fine-tuning (%) 93.58 96.60
Model averaging (%) 93.83 97.08

that could be formed. To alleviate over-fitting, we use
dropout learning [23] to pre-train the RBM and fine-
tune the entire network for the LFW training setting,
where 50% of the high-dimensional relational features
are randomly dropped each time during the online
learning process. There is no obvious over-fitting for
the CelebFaces training setting and dropout is not
used.

Moreover, we find that the performance can be
further enhanced by averaging five different hybrid
ConvNet-RBM models. This is achieved by first train-
ing five RBMs (each with a different set of randomly
generated training data) with the weights of the
ConvNets pre-trained and fixed, and then fine-tuning
each of the whole ConvNet-RBM model separately.
Table 4 shows the accuracies of each learning step of
our model for the LFW and CelebFaces training set-
tings, respectively, including the (average) accuracies
of each single ConvNet by averaging its outputs from
the eight different input modes of each compared
face pair (single ConvNet), training a classification
RBM based on the last hidden layer features of the
60 ConvNets (RBM), fine-tuning the whole hybrid
ConvNet-RBM model (fine-tuning), and averaging
the predictions of five hybrid ConvNet-RBM models
(model averaging). We achieved our best results of
93.83% and 97.08% for the LFW and CelebFaces
training settings, respectively, with the averaging of
five hybrid ConvNet-RBM model predictions (model
averaging). The improvement of fine-tuning the entire
model on LFW is not obvious due to fast over-fitting
of the training data even though dropout learning is
used.

To further justify the use of the classification RBM as
the top classification layer of our hybrid deep model,
we replace the RBM with two perceptron networks
and compare their face verification accuracies with
that of the original hybrid deep model, respectively.
The first is a single-layer perceptron which linearly
combines the 38, 400-dimensional features of our deep
ConvNet assemble followed by a single sigmoid
output neuron for face verification. The second is a
multi-layer perceptron with a single hidden layer. The
dimension of the hidden layer is chosen to be the
same as the hidden layer of our classification RBM,
i.e., eight neurons, with ReLU nonlinearity, followed
by a single sigmoid output neuron.

Table 5 compares the single- and multi-layer per-
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TABLE 5
Accuracy comparison between the proposed
classification RBM and single- and multi-layer

perceptrons for face verification in the hybrid deep
model.

RBM single-layer
perceptron

multi-layer
perceptron

pre-training (%) 95.56 94.32 95.03
Fine-tuning (%) 96.60 95.07 96.02
Model averaging (%) 97.08 95.40 96.60

ceptron networks to our proposed classification RBM
for face verification on LFW under the CelebFaces
training settings. The two compared perceptron net-
works are learned in the same way as the classifi-
cation RBM. They are first pre-trained by fixing the
weights of the deep ConvNets (pre-training). Then
the entire hybrid deep model is fine-tuned (fine-
tuning). The averaging of five perceptron networks
is also compared (model-averaging). It is shown that
the non-linearity provided by the hidden layers of
the RBM and the multi-layer perceptron improves
the performance, compared to the linear single-layer
perceptron model. In case of the non-linear models,
the classification RBM is better than the multi-layer
perceptron. The single-layer perceptron model is infe-
rior to the linear SVM (94.32% versus 95.12% without
fine-tunining) probably due to different optimization
algorithms. However, the linear SVM is not readily to
be incorporated into deep neural networks.

Method comparison. We compare our best results
on LFW with the state-of-the-art methods in accura-
cies (Table 6 and 7) and ROC curves (Figure 11 and
12) respectively. ConvNet-RBM previous indicates our
previous method in [49]. Table 6 and Figure 11
are comparisons of methods that follow the LFW
unrestricted protocol without using outside data to
train the model. This protocol is difficult even for
models with learning capacities due to the limited
data in LFW. Therefore, the accuracies of previous
methods under this protocol increase much slower
than those using outside data to learn. We are the
best under this protocol and improve the previous
state-of-the-art significantly. Also, all the previous best
methods compared, except our previous method, used
hand-crafted low-level features. We are the only one
using deep models to learn such features.

Table 7 and Figure 12 report the results when
the training data outside LFW is allowed to use.
We compare with DeepID [50] by using the same
training data (CelebFaces) and the same 60 cropped
face regions, and surpass it by a large margin.
Although DeepFace [51] is marginally better than
our result, it used 4.4 million training data, two
orders of magnitude larger than ours. It also used
an accurate 67-point 3D face alignment, while we
only use five points and do not correct the out-of-

TABLE 6
The estimated mean accuracy and the standard error
of the mean of our hybrid ConvNet-RBM model and

the state-of-the-art methods under the LFW
unrestricted protocol.

Method Accuracy (%)
PLDA [38] 90.07± 0.51
Sub-SML [8] 90.75± 0.64
Joint Bayesian [12] 90.90± 1.48
ConvNet-RBM previous [49] 91.75± 0.48
VMRS [2] 92.05± 0.45
Fisher vector faces [47] 93.03± 1.05
High-dim LBP [13] 93.18± 1.07
ConvNet-RBM 93.83± 0.52

TABLE 7
The estimated mean accuracy and the standard error
of the mean of our hybrid ConvNet-RBM model and

the state-of-the-art methods that rely on outside
training data.

Method Accuracy (%)
Joint Bayesian [12] 92.42± 1.08
ConvNet-RBM previous [49] 92.52± 0.38
Tom-vs-Pete (with attributes) [4] 93.30± 1.28
High-dim LBP [13] 95.17± 1.13
TL Joint Bayesian [9] 96.33± 1.08
DeepID on CelebFaces [50] 96.05± 0.21
DeepFace [51] 97.35± 0.25
ConvNet-RBM 97.08± 0.28

plane rotations in the alignment step. Instead, we
let our deep networks to learn such pose variations.
Most previous best methods compared in Table 7 used
hand-crafted features as their base features [12], [4],
[13], [9], while deep learning has only shown recent
success on this problem [50], [51]. We believe our
unified deep network approach will promote more
face recognition solutions using deep learning.

5 CONCLUSION

This paper has proposed a new hybrid ConvNet-RBM
model for face verification. The deep ConvNets in
this model learn directly and jointly extracts relational
visual features from face pairs under the supervision
of face identities. Taking the last hidden layer features
instead of the output and concatenating features
extracted from various face region pairs are essential
to form discriminative and complementary features.
It it also important to select the appropriate ConvNet
structures and face verification classifiers. Both feature
extraction and face verification stages are unified
under a single deep network architecture and all the
components are jointly optimized for the target of face
verification. Joint optimization further improves the
performance compared to learning each part separate-
ly, especially when there is enough training samples.
Compared with other models, ours has achieved the
best face verification performance on LFW under both
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Fig. 11. ROC comparison of our hybrid ConvNet-RBM
model and the state-of-the-art methods under the LFW
unrestricted protocol. Best viewed in color.

Fig. 12. ROC comparison of our hybrid ConvNet-
RBM model and the state-of-the-art methods relying
on outside training data. Best viewed in color.

the unrestricted protocol and the setting when outside
data is allowed to be used for training.
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