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Intelligent multi-camera video surveillance is a multidisciplinary field related to computer vision, pattern
recognition, signal processing, communication, embedded computing and image sensors. This paper
reviews the recent development of relevant technologies from the perspectives of computer vision and
pattern recognition. The covered topics include multi-camera calibration, computing the topology of
camera networks, multi-camera tracking, object re-identification, multi-camera activity analysis and
cooperative video surveillance both with active and static cameras. Detailed descriptions of their techni-
cal challenges and comparison of different solutions are provided. It emphasizes the connection and inte-
gration of different modules in various environments and application scenarios. According to the most
recent works, some problems can be jointly solved in order to improve the efficiency and accuracy. With
the fast development of surveillance systems, the scales and complexities of camera networks are
increasing and the monitored environments are becoming more and more complicated and crowded. This
paper discusses how to face these emerging challenges.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Intelligent video surveillance has been one of the most active
research areas in computer vision. The goal is to efficiently extract
useful information from a huge amount of videos collected by sur-
veillance cameras by automatically detecting, tracking and recog-
nizing objects of interest, and understanding and analyzing their
activities. Video surveillance has a wide variety of applications
both in public and private environments, such as homeland secu-
rity, crime prevention, traffic control, accident prediction and
detection, and monitoring patients, elderly and children at home.
These applications require monitoring indoor and outdoor scenes
of airports, train stations, highways, parking lots, stores, shopping
malls and offices. There is an increasing interest in video surveil-
lance due to the growing availability of cheap sensors and proces-
sors, and also a growing need for safety and security from the
public. Nowadays there are tens of thousands of cameras in a city
collecting a huge amount of data on a daily basis. Researchers are
urged to develop intelligent systems to efficiently extract informa-
tion from large scale data.

The view of a single camera is finite and limited by scene struc-
tures. In order to monitor a wide area, such as tracking a vehicle
traveling through the road network of a city or analyzing the global
activities happening in a large train station, video streams from
multiple cameras have to be used. Many intelligent multi-camera
ll rights reserved.
video surveillance systems have been developed (Collins et al.,
2001; Aghajan and Cavallaro, 2009; Valera and Velastin, 2004). It
is a multidisciplinary field related to computer vision, pattern rec-
ognition, signal processing, communication, embedded computing
and image sensors. This paper reviews the recent development of
relevant technologies from the perspective of computer vision.
Some key computer vision technologies used in multi-camera sur-
veillance systems are shown in Fig. 1.

1. Multi-camera calibration maps different camera views to a sin-
gle coordinate system. In many surveillance systems, it is a key
pre-step for other multi-camera based analysis.

2. The topology of a camera network identifies whether camera
views are overlapped or spatially adjacent and describes the
transition time of objects between camera views.

3. Object re-identification is to match two image regions observed
in different camera views and recognize whether they belong to
the same object or not, purely based the appearance informa-
tion without spatio-temporal reasoning.

4. Multi-camera tracking is to track objects across camera views.
5. Multi-camera activity analysis is to automatically recognize

activities of different categories and detect abnormal activities
in a large area by fusing information from multiple camera
views.

Different modules support one another and the arrows in Fig. 1
show the information flow between them.

While some existing reviews Valera and Velastin (2004) and
Aghajan and Cavallaro (2009) tried to cover all the aspects of
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Fig. 1. Some technologies in intelligent multi-camera video surveillance. The arrows indicate the information flow between different modules.
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architectures, technologies and applications, this paper empha-
sizes the connection and integration of these key computer vision
and pattern recognition technologies in various environments and
application scenarios and reviews their most recent development.
Many existing surveillance systems solve these problems sequen-
tially according to a pipeline. However, recent research works
show that some of these problems can be jointly solved or even
be skipped in order to overcome the challenges posed by certain
application scenarios. For example, while it is easy to compute
the topology of a camera network after cameras are well calibrated,
some approaches are proposed to compute the topology without
camera calibration, because existing calibration methods have var-
ious limitations and may not be efficient or accurate enough in cer-
tain scenarios. On the other hand, the topology information can
help with calibration. If it is known that two camera views have
overlap, the homography between them can be computed in an
automatic manner. Therefore, these two problems are jointly
solved in some approaches. Multi-camera tracking requires match-
ing tracks obtained from different camera views according to their
visual and spatio-temporal similarities. Matching the appearance
of image regions is studied in object re-identification. The spatio-
temporal reasoning requires camera calibration and the knowledge
of topology. Some studies show that the complete trajectories
across camera views can be used to calibrate cameras and to com-
pute the topology. Therefore, multi-camera tracking can be jointly
solved with camera calibration and inference of the topology. Mul-
ti-camera tracking is often a pre-step for multi-camera activity
analysis, which uses the complete tracks of objects over the camera
network as features. It is also possible to directly model activities
in multiple camera views without tracking object across camera
views. Once the models of activities are learned, they can provide
useful information for multi-camera tracking, since if two tracks
are classified as the same activity category, it is more likely for
them to be the same object. A good understanding of the relation-
ship of these modules helps to design optimal multi-camera video
surveillance meeting the requirements of different applications.

Intelligent multi-camera video surveillance faces many chal-
lenges with the fast growth of camera networks. A few of them
are briefly mentioned below. More detailed discussions are found
in later sessions.

� A multi-camera video surveillance system may be applied to
many different scenes and have various configurations. As the
scales of camera networks increase, it is expected that the
multi-camera surveillance systems can self-adapt to a variety
of scenes with less human intervention. For example, it is very
time consuming to manually calibrate all the cameras on a large
network and the human effort has to be repeated when the con-
figuration of the camera network changes. Therefore, automatic
calibration is preferred. Object re-identification and multi-
camera activity analysis prefer unsupervised approaches in
order to avoid manually labeling new training samples scenes
and camera views change.
� The topology of a large camera network could be complex and

the fields of views of cameras are limited by scene structures.
Some camera views are disjointed and may cover multiple
ground planes. These bring great challenges for camera calibra-
tion, inference of topology and multi-camera tracking.
� There are often large changes of viewpoints, illumination condi-

tions and camera settings between different camera views. It is
difficult to match the appearance of objects across camera
views.
� Many scenes of high security interest, such as airports, train sta-

tions, shopping malls and street intersections are very crowded.
It is difficult to track objects over long distances without failures
because of frequent occlusions among objects in such scenes.
Although some existing surveillance systems work well in
sparse scenes, there are many challenges unsolved in their
applications to crowded environments.
� In order to monitor a wide area with a small number of cameras

and to acquire high resolution images from optimal viewpoints,
some surveillance systems employ both static cameras and
active cameras, whose panning, tilting and zooming (PTZ)
parameters are automatically and dynamically controlled by
the system. Calibration, motion detection, object tracking and
activity analysis with hybrid cameras face many new challenges
compared with only using static cameras.

This paper reviews the five key computer vision and pattern
recognition technologies (i.e., multi-camera calibration, computing
the topology of camera views, multi-camera tracking, object re-
identification and multi-camera activity analysis) from Sections
2–6. Cooperative video surveillance both with static and active
cameras is discussed in Section 7. Detailed descriptions of their
technical challenges and comparison of different solutions are
provided under each topic. Finally some unsolved challenges and
future research directions are discussed in Section 8.
2. Camera calibration

Camera calibration is a fundamental problem in computer vision
and is indispensable in many video surveillance applications. There
has been a huge literature on calibrating camera views with respect
to a 3D world coordinate system (Faugeras, 1993; Triggs, 1999;
Jones et al., 2002; Hartley and Zisserman, 2004). They estimate both
the intrinsic parameters (such as focal length, principal point, skew
coefficients and distortion coefficients) and extrinsic parameters
(such as the position of the camera center and the camera’s orien-
tation in world coordinates) of cameras. In video surveillance, it
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often assumes that objects move on a common ground plane. These
approaches require manually labeling salient points in the scene
and recording their real coordinates in the 3D world. The required
wide site survey is time-consuming, especially when the number
of cameras is large. It is also difficult to measure 3D points which
are not laid on the ground plane in wide surveillance scenes.

Besides manually selecting 3D points, there are other automatic
ways of calibrating cameras. Cameras can be calibrated with ob-
jects whose 3D geometry is known (Tsai, 1986; Sturm and May-
bank, 1999; Liebowitz and Zisserman, 1999; Heikkila, 2000;
Zhang, 2000; Faugeras and Luong, 2001; Teramoto and Xu, 2002;
Agrawal and Davis, 2003). Zhang (2000) proposes an approach of
easily calibrating a camera by observing a known planar template
with unknown motion. Both the camera and the planar template
can be freely moved. It has a closed-form solution with good accu-
racy. Although this approach has been widely used in many appli-
cation scenarios, calibrated templates are not available in wide-
field surveillance scenes because their projections are of very small
sizes on the image plane and supply poor accuracy for calibration.
Some approaches (Beardsley and Murray, 1992; Cipolla et al.,
1999; Liebowitz et al., 1999; Caprile and Grimson, 1990; Deutscher
et al., 2002; Wong et al., 2003; Colombo et al., 2005; Krahnstoever
and Mendonca, 2005) use vanishing points (which are points onto
which parallel lines appear to converge in a perspective projected
image) from static scene structures, such as buildings and land-
marks, to recover intrinsic parameters from a single camera and
extrinsic parameters from multiple cameras. They employ con-
straints from geometric relationships, such as parallelism and
orthogonality, which commonly exist in architectural structures.
In the absence of inherent scene structures, Lv et al. (2002, 2006)
estimate vanishing points from object motions. They obtain the
needed line segments by tracking the head and feet positions of
a walking person. Zhang et al. (2008) assume the camera height
and estimate three vanishing points corresponding to three
orthogonal directions in the 3D world coordinate system based
on motion and appearance of moving objects. It can recover both
intrinsic and extrinsic camera parameters. Bose and Grimson
(2003) track vehicles and detect constant velocities along linear
paths to realize ground plane rectification instead of recovering
the intrinsic and extrinsic parameters of cameras. Solar shadows
of objects are commonly observed in natural environments and
they can also be used to estimate the intrinsic and extrinsic param-
eters of cameras as well as the orientation of the light source (An-
tone and Bosse, 2004; Lu et al., 2005; Cao and Foroosh, 2006;
Junejo and Foroosh, 2008). Cao and Foroosh (2006) use multiple
views of objects and their shadows for camera calibration. Junejo
and Foroosh (2008) use the shadow trajectories of two stationary
objects during the course of a day to locate the physical location
of the camera (GPS coordinates) and the date of image acquisition.

If two camera views have substantial overlap, a homography
between them can be computed with calibration (Stein and Medi-
oni, 1992; Thompson et al., 1993; Cozman and Krotkov, 1997;
Stein, 1999; Lee et al., 2000; Black et al., 2002; Brown and Lowe,
2003; Baker and Aloimonos, 2003; Stauffer and Tieu, 2003; Lowe,
2004; Jannotti and Mao, 2006; Sheikh and Shah, 2008). Many ap-
proaches manually or automatically select and match static fea-
tures from 2D images to compute an assumed homography
between two camera views and calibrate multiple camera views
to a single global ground plane (Brown and Lowe, 2003; Baker
and Aloimonos, 2003; Jannotti and Mao, 2006). The selected fea-
tures are typically corner points, such as Harris corners (Harris
and Stephens, 1988) and Scale-Invariant Feature Transform (SIFT)
points (Lowe, 2004). They are matched by local descriptors which
characterize texture or shape of their neighborhoods to establish
correspondences. Comparisons of various keypoint detectors and
local descriptors can be found in (Salti et al., 2011; Mikolajczyk
and Schmid, 2005). The matching needs to be robust to the varia-
tions of viewpoints and lightings between camera views. The auto-
matically obtained pairwise correspondences between feature
points may include a significant amount of false matches. RANSAC
Lacey et al., 2000 is used to find the homography that brings the
largest number of feature points into match. There are also ap-
proaches of computing the homography based on the tracks of ob-
jects (Caspi and Irani, 2000; Lee et al., 2000; Stauffer and Tieu,
2003; Sheikh and Shah, 2008; Pflugfelder and Bischof, 2010). Lee
et al. (2000) track objects simultaneously in partially overlapped
camera views and use the object centroids as potential point corre-
spondences to recover the homography between two camera
views with planar geometric constraints on the moving objects.
When the scene is sparse, the number of possible correspondences
is small according to a temporal constraint that two corresponding
tracked image centroids should be observed around the same time.
A robust RANSAC variant is used to find a subset of centroids that
best fits the homography. It faces problems when the scene is
crowded. It is assumed that all the objects move on a single ground
plane which is aligned with multiple camera views according to
the computed homographies of multiple camera pairs. The 3D
camera configuration and ground plane position and orientation
are recovered up to a scale factor. The cameras are not necessarily
well synchronized and the geometric constraints can align the
tracking data in time. Caspi et al. (2006) extend Lee’s method with-
out restricting objects to a single ground plane. They enforce con-
sistent matching of all the centroid points along track sequences
instead of only a few pairs of centroids. Stauffer and Tieu (2003)
jointly solve the problem of tracking objects across camera views
and computing the homographies between overlapping camera
views. An example of calibrated camera views from tracked objects
is shown in Fig. 2. Pflugfelder and Bischof (2010) propose an ap-
proach of simultaneously estimating the translations between
two synchronized but disjoint cameras and the track of a moving
object in the 3D space. It requires correspondences of tracks
observed in different camera views.
3. Computing the topology of camera views

Topology identifies camera views that are overlapped or spa-
tially adjacent. Spatial adjacency means that there is no other view-
field between the two camera views and hence there may
potentially exist an inter-connecting pathway directly connecting
tracks of objects observed in the two camera views. When an object
leaves a camera view, it may reappear in some of other adjacent
camera views with certain probabilities. Due to the constraints of
scene structures and the configurations of camera networks, the
topology of camera views could be complex. The camera views
can be overlapped or disjoint, adjacent or far away from each other.
There are ‘‘blind areas’’ between two adjacent but disjoint camera
views, which makes multi-camera tracking difficult. The scene of
a camera view can be modeled with structures such as source re-
gions (where objects enter camera views), sink regions (where ob-
jects exit from camera views), and the paths connecting sources and
sinks. Therefore, the topology can be described in a more detailed
way with a network, where nodes are sources and sinks and edges
are paths (within or across camera views) connecting sources and
sinks. An example is shown in Fig. 3. These scene structures can
be manually input or automatically learned from surveillance data
(Stauffer, 2003; Makris et al., 2004; Wang et al., 2008).

The knowledge of the topology is important to assist tracking
object across camera views (Kettnaker and Zabih, 1999). According
to the topology information, the tracker of one camera can ‘‘hand-
over’’ the track to the tracker in another adjacent camera view. The
topology network can be augmented by associating an edge with a



Fig. 2. (a) Four camera views. (b) The camera views are aligned to a ground plane after automatically computing the homographies between adjacent camera views using the
approach in (Stauffer and Tieu, 2003). The figure is reproduced from Stauffer and Tieu (2003).

Fig. 3. Example of the topology of camera views. (a) Three camera views, their sources and sinks (indicated by yellow circles with numbers), and the paths between sources
and sinks (the solid arrows indicate paths within camera views and the dash arrows indicate paths crossing camera views). (b) The topology of the three camera views. (c) The
topology of sources and sinks in multiple camera views. Nodes indicate sources and sinks and edges indicate paths. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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distribution of transition time between a sink and a source. These
distributions can be learned from training data in supervised or
unsupervised ways. When an object disappears from a sink region
in a camera view, we can predict when and where the object will
reappear in another camera view utilizing the topology network.
This spatio-temporal reasoning can solve a lot of ambiguity during
multi-camera tracking.

If cameras are already calibrated with a single 3D world coordi-
nate system, the topology can be computed in a straightforward
way. The spatial adjacency can be found through geometric analy-
sis and the viewfields of cameras. Otherwise, it has to be inferred
from training data. The proposed approaches are in two categories:
correspondence-based (Kettnaker and Zabih, 1999; Javed et al.,
2003) and correspondence-free (Ellis et al., 2003; Makris et al.,
2004). Correspondence means the knowledge that tracks observed
in different camera views actually correspond to the same object. It
can be obtained manually or with some object identification tech-
nologies (such as a license plate reader or face recognition). Auto-
matic object identification may be difficult especially in far-field
video surveillance where objects are small in size. For the first cat-
egory, Javed et al. (2003) use Parzen windows to estimate the dis-
tribution of inter-camera transition time from some training tracks
with manually labeled correspondence. The learned distribution is
used to improve multi-camera tracking.
For correspondence-free approaches, Ellis et al. (2003), Makris
et al. (2004) learn the temporal transitions between sources and
sinks from the cross-correlation between disappearing events
and appearing events. Sources and sinks are not linked if their
appearing and disappearing events are statistically independent.
It assumes that if a sink and a source are adjacent, a pair of disap-
pearing and reappearing events observed from them and caused by
the same object should have a temporal difference less than T sec-
onds. It collects all pairs of disappearing and reappearing events
satisfying this temporal constraint and computes a distribution
of the transition time between the source and the sink. It also as-
sumes that this distribution only has a single mode and exhaus-
tively searches for the location of the mode. It does not work
well in the cases when the scene is busy or objects on the same
path travel with different speeds. Both cases lead to multi-modal
distributions of the transition time. Tieu et al. (2005) infer the
topology of non-overlapping camera networks by measuring sta-
tistical dependency between observations, such as transition time
and color appearance of objects, in different camera views under a
information-theoretic framework. It is assumed that adjacent cam-
era views have a large degree of dependence. The statistical depen-
dence is measured using non-parametric estimation and the
uncertainty of correspondence is integrated out in a Bayesian man-
ner. It can be applied to multi-modal transition distributions.
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4. Object tracking across camera views

Multi-camera tracking consists of two parts: (1) intra-camera
tracking, i.e. tracking objects within a camera view; and (2) inter-
camera tracking, i.e. associating the tracks of objects observed in
different camera views. There is a huge literature on intra-camera
tracking and a comprehensive survey can be found in (Yilmaz et al.,
2006). This section focuses on inter-camera tracking, which is
more challenging because (1) the prediction of the spatio-temporal
information of objects across camera views is much less reliable
than in the same camera view and (2) the appearance of objects
may undergo dramatic changes because of variations of many fac-
tors, such as camera settings, viewpoints and lighting conditions,
in different camera views.
4.1. Inter-camera tracking based on multi-camera calibration

The most typical way of multi-camera tracking is to track ob-
jects in a 3D coordinate system (Mikic et al., 1998; Dockstader
and Tekalp, 2001; Li et al., 2002; Focken and Stiefelhagen, 2002;
Mittal and Davis, 2003; Pflugfelder and Bischof, 2007) or on a sin-
gle global ground plane (Chang and Gong, 2001; Black et al., 2002;
Otsuka and Mukawa, 2004; Hu et al., 2006; Fleuret et al., 2008;
Straw et al., 2010) or based on the homography between camera
views (Lee et al., 2000; Caspi and Irani, 2000; Khan and Shah,
2006; Eshel and Moses, 2008) after calibration. Tracks of objects
observed in different camera views are stitched based on their spa-
tial proximity in the 3D coordinate system or on the common
ground plane. It is usually assumed that the topology of camera
views and the camera calibration are already solved before the
tracking stage (Cai and Aggarwal, 1996). However, there also exist
approaches which jointly infer the topology of camera views, cali-
brate cameras, and track objects across camera views (Stauffer and
Grimson, 2000; Rahimi et al., 2004). They assume that inter-cam-
era tracking can also help with the inference of topology and cam-
era calibration. Rahimi et al. (2004) simultaneously recover the
calibration parameters of cameras and track object across disjoint
camera views under a Bayesian formulation. Stauffer and Tieu
(2003) jointly infer the topology of camera views, estimate the
homography between camera views and establish the correspon-
dences of object tracks. If cameras are uncalibrated but have over-
lapping fields of views (FOV), finding the limits of FOV of each
camera as visible in the other cameras can help with association
of tracks. Khan and Shah (2003) propose a method to automatically
recover FOV lines, which are the boundaries of the FOV of a camera
in another camera views, by observing the motions of objects.
If the FOV lines are known, it is possible to disambiguate among
multiple possibilities for correspondence.

In some video surveillance scenarios, there is a need to track a
large number of objects in crowded environments, where occlu-
sions happen frequently due to the interactions among objects.
Multi-camera tracking can better solve the challenge of occlusions,
because it fuses the information from multiple camera views for ro-
bust tracking. For example, when an object is occluded in one of
camera views, tracking can be switched to a better view without
occlusions by predicting the existence of occlusions in camera
views (Utsumi et al., 1998; Sogo and Ishiguro, 2000; Dockstader
and Tekalp, 2001; Mittal and Davis, 2003). Cai and Aggarwal
(1996) measure the tracking confidence, which is low when an ob-
ject is occluded. When the tracking confidence is below a certain
threshold, tracking is switched to an optimal camera view with
the highest tracking confidence. Fleuret et al. (2008) predict occlu-
sions with a generative model and a probabilistic occupancy map.
Otsuka and Mukawa (2004) estimate the occlusion structures based
on an explicit model of the geometric structure of the process that
creates occlusions between objects. It is formulated as a recursive
Bayesian estimation problem and implemented by particle filtering.
With calibration, the observations from multiple camera views can
be mapped to points in a single 3D world coordinate system. Some
observations are missed if objects are occluded in some camera
views. The Kalman filter (Mikic et al., 1998; Black et al., 2002), the
extended Kalman filter (Straw et al., 2010) and the particle filter
(Otsuka and Mukawa, 2004; Perez et al., 2004; Kim and Davis,
2006) are used to track objects in the 3D world coordinate system
with occlusion handling. If the 3D coordinates are not available,
the homography constraint between camera views can also be used
to solve occlusions (Khan and Shah, 2006; Eshel and Moses, 2008).

4.2. Inter-camera tracking with appearance cues

Most of the approaches discussed above assume that adjacent
camera views have overlap and therefore the spatial proximity of
tracks in the overlapping area can be computed. In order to track
objects across disjoint camera views, appearance cues have to been
integrated with spatio-temporal reasoning (Alexander and Lucc-
hesi, xxxx; Huang and Russell, 1997; Pasula et al., 1999; Veenman
et al., 2001; Javed et al., 2003; Shafique and Shah, 2003; Morariu
and Camps, 2006; Jiang et al., 2007; Song and Roy-Chowdhury,
2008; Hamid et al., 2010; Kuo et al., 2010). Various frameworks
have been proposed. The Bayesian formulation is a natural way to
integrate multiple types of features. It computes the posterior of ob-
ject matching given evidence observed in different camera views.
Huang and Russell (1997) propose a Bayesian approach to integrate
the colors and the sizes of objects with velocities, arrival time and
lane positions to track vehicles between two camera views. It mod-
els the probabilities of predicting the appearance or spatio-tempo-
ral features of objects observed in one camera view conditioned on
their observations in the other camera view. Pasula et al. (1999) ex-
tend this approach to track objects across a large number of camera
views. Instead of modeling the conditional probabilities of features
between two camera views, it introduces hidden variables to char-
acterize the intrinsic properties of appearance and spatio-temporal
features in a Bayesian network. Javed et al. (2003) employ kernel
density estimators to estimate the probability of an object entering
a camera view with a certain travel time given the location and
velocity of its exit from another camera view. It requires training
data whose correspondences are labeled. The change of appearance
between camera views is computed as the distance between color
histograms. The probability of color distance is modeled as a Gauss-
ian distribution which is learned for each pair of camera views from
the training data. Matei et al. (2011) integrate appearance and spa-
tio-temporal likelihoods within a multi-hypothesis framework. In-
stead of adopting a Bayesian approach, Morariu and Camps (2006)
use manifold learning to match the appearance of objects across
camera views. High dimensional images are mapped to low dimen-
sional manifolds which are learned from sequences of observations.
The manifolds of different camera views are aligned by capturing
the temporal correlations between sequences. With the aligned
manifolds, it extracts the intrinsic coordinates of the observed
objects and establishes their correspondences.

The spatio-temporal relationships and appearance relationships
between camera views may change dynamically and therefore
their models need to be updated adaptively. For example, the light-
ing conditions change throughout the day. The travel time of vehi-
cles between camera views changes with the amounts of traffic on
a road network within different periods of a day. Collecting reliable
training samples is a major challenge for online updating models
since manually labeled correspondences are not available at run-
time. In (Huang and Russell, 1997), the parameters of appearance
models are online updated under the Expectation–Maximization
(EM) framework. Javed et al. (2003) update the probability models
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using the online kernel density estimation (Lambert et al., 1999).
Chen et al. (2008) proposed an online unsupervised approach to
learn both spatio-temporal and appearance relationships for a
camera network. It incrementally refines the clustering results of
sources and sinks, and learns the appearance models by combining
the spatio-temporal information and MCMC sampling. Kuo et al.
(2010) use the Multiple Instance Learning (MIL) (Dietterich et al.,
1997) to online learn a discriminative appearance model. The spa-
tio-temporal constraints of tracks observed in two camera views
can provide some weakly labeled training samples which include
some potentially associated pairs of tracks and exclude impossible
associations. The selected potentially associated pairs have false
positives as noise. MIL can accommodate the ambiguity of labeling
during the model learning process.
4.3. Solving correspondences across multiple camera views

Each camera view may capture a set of multiple objects within a
short period of time. Tracking objects across multiple camera
views leads to solving the correspondences of tracks among multi-
ple sets of candidates. Given the similarities between tracks ob-
tained in different camera views as discussed above, a most
likely assignment problem remains to be solved under the con-
straint that a track in a camera view can match with at most of
one tracks in another camera view. If there are only two camera
views, this problem can be solved by the Hungarian algorithm
(Kuhn, 1956) or be formulated as a weighted bipartite graph
matching problem (Cox and Hingorani, 1994; Alexander and Lucc-
hesi, xxxx; Veenman et al., 2001; Javed et al., 2003). The Hungarian
algorithm requires computing a cost matrix based on the pairwise
similarities between tracks obtained in two different camera
views. Its complexity is Oðn3Þ where n is the number of tracks. If
it is formulated as a bipartite graph matching problem, each track
is represented as a vertex in the graph. The weight of an edge con-
nect two tracks in different camera views is their similarity. Bipar-
tite graph matching is to find M disjoint paths in the graph and
each path indicates association of tracks of the same object. It
can be solved with a complexity of Oðn2:5Þ (Hopcroft and Karp,
1973). If there are more than two camera views, solving this prob-
lem is NP hard. Various optimization approaches have been pro-
posed to find suboptimal solutions. In (Shafique and Shah, 2003;
Hamid et al., 2010), various K-partite graph matching algorithms
have been proposed to solve this problem. Wu et al. (2009) formu-
late the problem of finding correspondences across multiple cam-
era views as a multidimensional assignment problem and solve it
with a greedy randomized adaptive search procedure. Jiang et al.
(2007) formulate it as a multi-path search problem and solve it
with a proposed linear programming relaxation scheme.
5. Object re-identification

In some application scenarios, the topology of a camera net-
work and tracking information are not available, especially when
the cameras are far in distance and the environments are
crowded. For example, only the snapshots of objects instead of
tracks captured by different cameras are available. In this case
spatio-temporal reasoning is not feasible or accurate for inter-
camera tracking. In recent years, a lot of research work (Nakajima
et al., 2003; Bird et al., 2005; Javed et al., 2005; Shan et al., 2005;
Shan et al., 2005; Gheissari et al., 2006; Hu et al., 2006; Guo et al.,
2007; Wang et al., 2007; Prosser et al., 2008; Guo et al., 2008;
Hamdoun et al., 2008; Lin and Davis, 2008; Gray and Tao, 2008;
Shan et al., 2008; Schwartz and Davis, 2009; Zheng et al., 2009;
Farenzena et al., 2010; Prosser et al., 2010) has been done on
matching objects such as vehicles and pedestrians observed in
different camera views only using visual information without
spatio-temporal reasoning. It is assumed that the observations
of a pedestrian are captured in the same day and therefore his
or her clothes or shape do not change much. Objects can be
matched with a single shot (Javed et al., 2005; Shan et al.,
2005; Wang et al., 2007; Lin and Davis, 2008; Gray and Tao,
2008; Schwartz and Davis, 2009; Zheng et al., 2009; Farenzena
et al., 2010) or multiple shots (Nakajima et al., 2003; Gheissari
et al., 2006; Bird et al., 2005; Hamdoun et al., 2008). This problem
is called object re-identification. Studying object re-identification
separately from inter-camera tracking helps to better understand
the capability of object matching using visual features alone.
Once it has been well investigated, it can be integrated with spa-
tial and temporal reasoning at the later stages which can further
prune the candidate sets to be matched. Object re-identification is
very challenging. The same object observed in different camera
views undergo significant variations of resolutions, lightings,
poses and viewpoints. Because objects captured by surveillance
cameras are often small in size and a lot of visual details such
as facial components are indistinguishable in images, some of
them look similar in appearance. Examples of observed pedestri-
ans in different camera views are shown in Fig. 4. The ambiguities
increase when the number of objects to be distinguished in-
creases. Therefore, features and distance metrics used to match
image regions need to be highly discriminative and robust to
those inter-camera variations.

5.1. Features for object re-identification

The appearance of objects is usually characterized in three as-
pects, color, shape and texture. They are reviewed below. A single
type of features are not powerful enough to capture the subtle dif-
ferences of all pairs of objects. They are usually combined and
weighted differently according to their discriminative power.

5.1.1. Color
Color histograms of the whole image regions are widely used as

global features to match objects across camera views because they
are robust to the variations of poses and viewpoints (Orwell et al.,
1999; Krumm et al., 2000; Mittal and Davis, 2003; Park et al., 2006;
Cheng and Piccardi, 2006). However, they also have the weakness
that they are sensitive to the variations of lighting conditions and
photometric settings of cameras and that their discriminative
power is not high enough to distinguish a large number of objects.
Various color spaces such RGB, Lab, HSV and Log-RGB have been
investigated and compared in (Wang et al., 2007). By removing
the lightness component in the HSV color space, the color variation
across camera views can be greatly reduced. The Log-RGB color
space is less sensitive to photometric transformations. It computes
the first directional derivatives of the logarithm of the colors,
which are essentially the ratios of neighboring colors. The color
of a pixel is formed as the product of the incident illumination
and the surface albedo. Since illumination remains constant in lo-
cal regions, the ratios of neighboring colors can effectively remove
the lighting component. Mittal and Davis (2003) apply Gaussian
color models to solve the correspondences of color modes between
camera views. Other color invariants (Cheng and Piccardi, 2006;
Slater and Healey, 1996; Weijer and Schmid, 2006) are also pro-
posed. In order to enhance the discriminative power, the image re-
gion of an object is partitioned into local regions, color histograms
within local regions are computed and concatenated as features for
object matching (Park et al., 2006).

5.1.2. Shape
Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005;

Wang et al., 2007; Schwartz and Davis, 2009) characterizes local



Fig. 4. Object re-identification across camera views. (a) A network with three cameras. (b) Examples of pedestrians observed in the three camera views. They are selected
from the dataset introduced in (Wang et al., 2007). (c) A set of filter-banks proposed in (Winn et al., 2005). (d) Labels (indicated by different colors) when applying the filter-
banks in (e) to the image on the left. (e) Example of a spatial kernel. (f) When the spatial kernel is place at different parts of a person (face and hand) different histograms of
visual words are obtained. They can be used as discriminative features for object matching. (g) Exemplar-based object re-identification.
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shapes by capturing edges and gradient structures. It computes the
histograms of gradient orientations within cells which are placed
on a dense grid and undergo local photometric normalization. It is
robust to small translations and rotations of object parts. Shape con-
text proposed by Belongie et al. (2002) characterizes both global and
local shape structures. It is used to partition human bodies into con-
stitutes for person re-identification by learning a shape dictionary in
(Wang et al., 2007). There are also other models (Agarwal and Triggs,
2006; Carneiro and Lowe, 2006) proposed to characterize the geo-
metric configuration of different local parts of objects.
5.1.3. Texture
Many filters, such as Gabor filter (Daugman et al., 1985) and

other linear filter-banks (Winn et al., 2005; Varma and Zisserman,
2005; Leung and Malik, 1999), and local descriptors, such as SIFT
(Lowe, 2004), color SIFT (Abdel-Hakim and Farag, 2006), Local Bin-
ary Patterns (LBP) (Ojala et al., 2002), Speeded Up Robust Feature
(SURF) (Bay et al., 2006), Maximally Stable Extremal Regions
(MSER) (Forssen, 2007), region covariance (Tuzel et al., 2006) and
spin images (Lazebnik et al., 2003), have been proposed to charac-
terize local texture and they can be applied to object re-identifica-
tion (Hamdoun et al., 2008). These filters or descriptors can be
applied to sparse feature points or on a dense grid. Their responses
are usually quantized into visual words according to a pre-learned
visual dictionary. A set of linear filter-banks proposed by Winn
et al. is shown in Fig. 4(c). It combines Gaussians, Laplacian of
Gaussians and first order derivatives of Gaussians in the Lab color
space. Labels of quantized visual words with this set of filter-banks
are shown in Fig. 4(d). With a bag-of-features model, the histogram
of visual words of the whole image region is used as features for
object matching. However, this feature is not discriminative en-
ough. For example, it cannot distinguish a person wearing a white
jacket and blue pants with one wearing a blue jacket and white
pants. Therefore more features are proposed to capture the spatial
distributions of visual words. On the other hand, the proposed fea-
tures have to be invariant to the variations of poses and viewpoints
when encoding the spatial information. Wang et al. (2007) propose
shape and appearance context which computes the co-occurrence
of shape words and visual words. It segments deformable objects
into L parts using the shape context and a learned shape dictionary.
Using a spatial kernel, which partitions the image domain into M
subregions, as shown in Fig. 4(e), it models the spatial distributions
of visual words relative to each of the object parts. When the spa-
tial kernel is placed on one object part, the histograms of visual
words within the subregions of the spatial kernel are computed.
The L�M histograms are used as visual features for object match-
ing. There are also other features such as correlograms (Huang
et al., 1997) and correlations (Savarese et al., 2006) to capture
the co-occurrence of visual words over spatial kernels.
5.1.4. Spatio-temporal features
Gheissari et al. (2006) propose an approach of utilizing local

motion features for person re-identification. It establishes the
correspondence between parts of different persons through
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spatio-temporal segmentation with model fitting. Features for
person re-identification are extracted by combining normalized
colors and salient edgel histograms within different body parts.

5.1.5. Exemplar-based representations
Instead of directly matching visual features, some approaches

(Shan et al., 2005; Guo et al., 2007) propose exemplar-based repre-
sentations to overcome the dramatic variations of viewpoints. An
graphical illustration is shown in Fig. 4(g). For two camera views
a and b;n representative pairs fðxa

1; x
b
1Þ; . . . ; ðxa

n; x
b
nÞg are selected as

exemplars. xa
i and xb

i are observations of the same object i captured
in a and b respectively. If a sample ya is observed in a, it is embed-
ded amongst the representative exemplars also observed in a, and it
is represented as a n-dimensional vector da ¼ ðda

1; . . . ; da
nÞ, where da

i

is the distance between ya and xa
i by matching their visual features.

If a different sample yb is observed in b, a vector db is obtained in the
same way. If the change of viewpoints is large, it is more reliable to
compare da and db than ya and yb. The underlying assumption is
that if an object to be identified is similar to one of the exemplar ob-
jects i, its observations in a and b should be similar to xa

i and xb
i

respectively, and therefore both da
i and db

i are small no matter
how different the two viewpoints are. It means that da and db are
similar if ya and yb are the observations of the same object. How-
ever, it requires a set of representative exemplars for any pair of
camera views and costs more manually labeling effort.

5.2. Learning for object re-identification

The photometric transformation between two camera views can
be learned. Javed et al. (2005), Prosser et al. (2008) learn the Bright-
ness Transfer Functions (BTFs) and the bi-directional Cumulative
Brightness Transfer Functions (CBTF), which map the color observed
in one camera view to that in another camera view, from training
examples which are collected from a pair of camera views and whose
correspondences are known. Porikli (2003) and Porikli et al. (2003)
propose a non-parametric function to model color distortion be-
tween camera views using correlation matrix analysis and dynamic
programming. Gilbert and Bowden (2006) incrementally and jointly
learn the color mapping and the spatio-temporal transitions be-
tween camera views. It does not require manually labeled training
examples with correspondences. These two types of transforma-
tions are complementary and support each other during the learning
process.

Some approaches learn the similarity/distance metrics or select
an optimal subset of features to match image regions observed in
different camera views. Schwartz and Davis (2009) propose an ap-
proach of projecting high dimensional features to a low dimen-
sional discriminant latent space by Partial Least Squares
reduction (Wold, 1985). It weights features according to their dis-
criminative power to best distinguish the observations of one ob-
ject with those of others in a one-against-all scheme. Lin and
Davis (2008) learn a different pairwise dissimilarity profile which
best distinguishes a pair of persons. It is assumed that a feature
may be crucial to discriminate two very similar objects but not
be effective for other objects. Therefore it is easier to train discrim-
inative features in a pairwise scheme. However, these two ap-
proaches require that all the objects to be re-identified have
examples in the training set. If a new object is to be re-identified
at the testing stage, the discriminant latent space or the dissimilar-
ities have to be re-trained. Zheng et al. (2011) propose a Probabilis-
tic Relative Distance Comparison model. It formulates object re-
identification as a distance learning problem and maximizes the
probability that a pair of true match has a smaller distance than
a wrong match pair. The learned distance metric can be general-
ized to objects outside the training set. In (Gray and Tao, 2008;
Prosser et al., 2010) boosting and RankSVM are used to select an
optimal subset of features for matching objects across camera
views. Shan et al. (2005, 2008) propose an unsupervised approach
to learn discriminative edge measures for vehicle matching.
6. Multi-camera activity analysis

Activity analysis is a key task in video surveillance. It classifies
activities into different categories and discovers typical and abnor-
mal activities. The proposed approaches fall into two categories.
The supervised approaches (Murata and Properties, 1989; Bobick
and Ivanov, 1998; Oliver et al., 2000; Smith et al., 2005) require
manually labeling training samples. However, since the observa-
tions of activities change dramatically in different camera views,
it often requires relabeling training samples when these ap-
proaches are applied to different camera views. This limits their
scalability and adaptability. On the other hand, it is very difficult
to make these approaches robust to viewpoint transformation
without the process of retraining. Video surveillance systems need
to process video streams captured from a large number of cameras.
The scales of camera networks are fast increasing nowadays.
Therefore, people prefer unsupervised approaches (Brand and Kett-
naker, 2000; Song et al., 2003; Wang et al., 2006, 2009) which can
automatically learn the models of activities without labeling train-
ing samples. They can easily adapt to different scenes with little
human intervention.

In far-field video surveillance, objects are small in size and the
captured videos are of low resolution and poor quality. It is difficult
to compute sophisticated features, such as poses, gestures, and
appearance of objects. The activities of objects are mainly distin-
guished by their moving patterns. In many surveillance systems
(Johnson and Hogg, 1995; Stauffer and Grimson, 2000; Oliver et al.,
2000; Haritaoglu et al., 2000; Brand and Kettnaker, 2000; Medioni
et al., 2001; Honggeng and Nevatia, 2001; Hu et al., 2004; Wang
et al., 2006; Morris and Trivedi, 2008; Wang et al., 2008, 2011), ob-
jects are first detected and tracked and the activity of an object is
then treated as sequential movements along its tracks. Usually only
positions of objects are recorded along tracks, which are called tra-
jectories. With positions and velocities as features, the motion pat-
terns of trajectories can distinguish many different activity
categories in far-field settings. Some examples are shown in Fig. 5.
The activities of objects are regularized by scene structures, such
as paths, sources and sinks. Many approaches (Keogh and Pazzani,
2000; Makris and Ellis, 2002; Porikli, 2003; Junejo et al., 2004; Fu
et al., 2005; Zhang et al., 2006; Wang et al., 2011) have been proposed
to cluster trajectories of objects into different activity categories
without supervision. If a trajectory does not fit any of the typical
activity models, it is detected as abnormality.

A natural way of doing activity analysis in multiple camera
views is to first track objects across camera views and then use
the complete trajectory of an object observed in different camera
views for activity analysis with similar approaches developed for
activity analysis in single camera views. For example, Zelniker
et al. (2008) cluster stitched trajectories from multiple camera
views and detected abnormalities. However, as discussed earlier,
tracking objects across camera views require inferring the topology
of camera views, calibrating camera views, and solving the corre-
spondence problem, which are challenging especially when scene
structures and the configurations of camera networks are quite
arbitrary. The camera views may have any combination of large,
little, or even no overlap. The objects may move on one or multiple
ground planes. Some approaches (Wang et al., 2008, 2010; Loy
et al., 2009) are proposed for activity analysis in multiple camera
views without tracking objects across camera views. They will be
discussed in Section 6.1.



Fig. 5. (a) More than 40;000 trajectories collected in a parking lot and observed in a single camera view. Random colors indicate different trajectories. (b) Trajectories are
clustered into different motion patterns which correspond to different activity categories using the approach proposed in (Wang et al., 2011). For example, the first motion
pattern can be explained as vehicles making u-turns. The third motion pattern can be explained as pedestrians coming out of the building and leaving the parking lot. The
activities are regularized by scene structures. Red and yellow circles indicate sources and sinks. (c) Top 80 abnormal trajectories detected using the approach proposed in
(Wang et al., 2011). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In near-fields, more features of objects, such as color, texture,
shape, gestures and movements of body parts can be observed.
Therefore, activities can be analyzed with more categories and
with more detailed features. It is called action recognition in this
paper. These features change dramatically when they are observed
in different camera views. Some examples are shown in Fig. 9.
Many approaches (Rao et al., 2002; Junejo et al., 2008, 2011; Yil-
maz and Shah, 2005; Syeda-Mahmood et al., 2001; Parameswaran
and Chellappa, 2006; Shen and Foroosh, 2008; Ogale et al., 2006; Li
et al., 2007; Weinland et al., 2007; Yan et al., 2008; Farhadi and
Tabrizi, 2008; Liu et al., 2011) are proposed to make action recog-
nition robust to the change of camera views. They will be discussed
in Section 6.3.

6.1. Correspondence-free multi-camera activity analysis

Wang et al. (2010) propose an approach of jointly modeling
activities in multiple camera views using a topic model and a tra-
jectory network without requiring solving the challenging corre-
spondence problem. It is assumed that the cameras are
synchronized but uncalibrated, and the topology of their fields of
views is unknown and arbitrary. Objects are tracked in each cam-
era view independently, however, without inter-camera tracking.
The goal is to learn the model of an activity category with distribu-
tions in all the camera views and to cluster trajectories in all the
camera views without supervision. An example is shown in Fig. 6.

As shown in Fig. 7, a network is built by connecting trajectories
observed in different camera views based on their temporal ex-
tents. Each node on the network is a trajectory. If two trajectories
are observed in different camera views and their temporal extents
are close, they are connected by an edge. An edge on the network
indicates a possible correspondence candidate only based on the
temporal information of trajectories. However, this network does
not solve the correspondence problem, because many edges are
actually false correspondences.

Topic models (Hofmann, 1999; Blei et al., 2003) were originally
proposed for document analysis. Under topic models, words such
as ‘‘professor’’ and ‘‘university’’ which often co-occur in the same
documents, are clustered into one topic such as ‘‘education’’. In
(Wang et al., 2010), trajectories are treated as documents, observa-
tions on trajectories are treated as words, and activity classes are
treated as topics. Observations are quantized into words according
to their locations and moving directions. Each activity class has a
joint distribution over locations and moving directions in all the
camera views, and corresponds to a path commonly taken by ob-
jects. Only considering single camera views separately, if two word
values, which are indices of locations and moving directions, often
co-occur on the same trajectories (documents), they are on the
same path (belonging to the same topic). Trajectories passing
through the same paths belong to the same activity classes. There-
fore, the models of activities can be learned in single camera views
according to the tracking information with topic models. In (Wang
et al., 2010), it is further assumed that if two trajectories in differ-
ent camera views are connected by an edge on the network, which
means that they may correspond to the same object since they are
observed by cameras around the same time, they tend to have sim-
ilar distributions over activities. Thus based on such temporal cor-
relation, the distributions of an activity class (the path of objects)
in different camera views can be jointly modeled.

An example is shown in Fig. 7(d). Trajectories a and b are ob-
served in different camera views and connected by an edge. Points
on trajectories are assigned to activity classes by fitting the models



Fig. 6. (a) Four camera views, their topology and the trajectories observed in these camera views. (b) All the trajectories are clustered into different activity categories using
the approach proposed in (Wang et al., 2010). In each cluster, the trajectories are observed in different camera views but belong to the same activities. For example, in activity
1, vehicles move first from the top-right to the bottom-left along the road observed in camera view 4, and then they move upward along the road in camera view 1. Some of
them enter the parking lot as observed in camera view 2. Some continue to move along the road as observed in camera view 3. In activity 3, pedestrians walk along the
sidewalk and are observed in camera views 1 and 4. (c) The models of activities learned without supervision. Each model has a joint distribution over positions and moving
directions in all the four camera views. (d) The detected abnormal trajectories which do not fit any of the learned activity models. (e) A trajectory of activity 1 is observed in
the view of camera 1. Around the same time, trajectories in other camera views are observed and plotted. The red trajectories all belong to activity 1 shown in (c). Thus it is
more likely for them to be the same object.
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of activities. These models in each of the individual camera views
can be learned using the topic model according to the tracking
information within single camera views. However, the goal is to
learn the joint distribution of each activity model in all the camera
views. The smoothness constraint requires that the distributions of
a and b over activities are similar in order to have a smaller pen-
alty. In this example, both a and b have a larger distribution on
activity 1, so the models of activity 1 in the two different camera
views can be associated.
Many public places of high security interest are extremely
crowded. It is difficult to accurately detect and track objects in such
environments. In recent years, many activity analysis approaches
(Wang et al., 2007, 2009; Loy et al., 2009) have been proposed for
video surveillance in crowded environments without tracking ob-
jects. Loy et al. (2009) propose an approach of activity analysis with
multiple non-overlapping and uncalibrated camera views in a busy
scene without intra- or inter- camera tracking. Activities are repre-
sented as features of local motions. They decompose each camera



Fig. 7. Correspondence-free activity analysis. (a)–(c): Example of building a network connecting trajectories observed in multiple camera views. (d) Example to describe the
high-level picture of the model proposed in (Wang et al., 2010).
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view into semantic regions according to the similarity of local spa-
tio-temporal motion patterns as shown in Fig. 8(b). The temporal
and causal relationships between activities of semantic regions
within and across camera views are detected and quantified using
Cross Canonical Correlation Analysis. The proposed approach can
automatically infer the topology of the semantic regions as well
as the camera network (as shown in Fig. 8(c) and (d)), and can mod-
el the global activities over the whole camera network by linking
visual evidence collected in multiple camera views.
Fig. 8. Example of multi-camera activity correlation analysis (Loy et al., 2009). (a) Four
camera views. (c) The inferred topology of semantic regions. (d) The inferred topology o
6.2. Using activity models to improve tracking and object re-
identification across camera views

As discussed above, the models of activities in all the camera
views can be learned without correspondence among trajectories
in an unsupervised way. Once they are learned, they can be used
to solve the correspondence problem by providing prior informa-
tion. If two trajectories belong to the same activity category, it is
more likely for them to be the same object. An example is shown
non-overlapping camera views. (b) Semantic regions segmented within each of the
f camera views. The figure is reproduced from Loy et al. (2009).



Fig. 9. Examples of human actions observed in five different camera views from the IXMAS multi-view data set (Weinland et al., 2006).
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in Fig. 6(e). So the information on activity categories can dramati-
cally reduce the search space when solving the correspondence
problem. In (Wang et al., 2010), the distance between two trajecto-
ries is defined as the Jensen-Shannon divergence of their distribu-
tions over activity categories. The correspondence problem is
solved by the Hungarian algorithm (Kuhn, 1956). Berclaz et al.
(2008) integrate activity models into a multi-camera tracking sys-
tem in order to improve the tracking performance. Each of the
activity models is represented by a behavioral map that encodes,
for each ground plane location, the probability of an object moving
into one of the adjacent positions at the next frame. The probability
of an object switching between different behavior maps (i.e. activ-
ity models) is also modeled. The behavior maps are combined with
the multi-people tracking algorithm proposed in (Fleuret et al.,
2007) under HMM. The multi-camera activity correlation analysis
proposed in (Loy et al., 2009) can improve object re-identification
across camera views by providing the contextual information of
the temporal and causal relationships between regional activities.
It effectively reduces the search space and resolve the ambiguities
among objects with similar appearance.

6.3. Human action recognition in multiple camera views

Multi-camera activity analysis in near-fields faces the great chal-
lenge that the change of viewpoints causes large variations both on
appearance and motions of human actions. Some examples are
shown in Fig. 9. Most research effort has been made along two direc-
tions: (1) proposing features which are invariant to the variation of
view points; and (2) reducing the gap between viewpoints through
learning.

Various viewpoint invariant features are proposed for human ac-
tion recognition. Many of them are based on trajectories extracted
from human bodies (Rao et al., 2002; Parameswaran and Chellappa,
2006; Shen and Foroosh, 2008; Yilmaz and Shah, 2005; Syeda-Mah-
mood et al., 2001). Rao et al. (2002) first track human body parts
(such as hands) and then use the spatio-temporal curvatures of 2-
D trajectories as features, which capture the dramatic changes in
speed and direction of actions. Parameswaran and Chellappa
(2006) track body joints and find a set of canonical poses where at
least five body joints are approximately aligned on the same plane.
For each canonical pose, two view-invariants are computed. The
periodic occurrences of canonical poses and the dynamic trajectories
in a view-invariance space are used as the representation for action
recognition. Shen and Foroosh (2008) represent an action as a set of
pose transitions defined by a set of triplets of body joints. Each triplet
forms a moving plane observed by a fixed camera and it can be char-
acterized by a fundamental matrix across frames. It is shown that
some ratios among the elements in the fundamental matrix are
invariant to view points and can be used to match plane motions
across camera views. In (Yilmaz and Shah, 2005; Syeda-Mahmood
et al., 2001), trajectories of landmark points are extracted. Through
computing correspondence of landmarks, fundamental matrix con-
straints are imposed for matching actions in a stationary camera
view and a moving camera view. However, in these approaches the
requirement of accurately tracking body parts, joints or landmarks
under different viewpoints is challenging. Besides trajectories, other
feature representations also can be used such as silhouettes (Wein-
land et al., 2007), and self-similarities (Junejo et al., 2008, 2011).
Weinland et al. (2007) fully reconstruct the 3D models of human ac-
tions from silhouettes seen from multiple cameras using an exem-
plar-based HMM (Frey et al., 2000). At the recognition stage,
actions observed from a single camera view can be efficiently recog-
nized without information of the viewpoint as a priori. The parame-
ters of viewpoints are estimated as latent variables. Yan et al. (2008)
develop a 4D action shape model, which is a sequence of 3D shapes
constructed from multi-view silhouette sequences. Spatio-temporal
action features are computed by analyzing differential geometric
properties of the 4D shapes. Obtaining silhouettes requires back-
ground segmentation which is difficult in cluttered scenes or with
moving cameras. Junejo et al. (2008, 2011) propose an action
descriptor that captures the structure of temporal similarities and
dissimilarities in a video sequence based on the observation that
self-similarities of action sequences over time show stability under
the changes of viewpoints. The self-similarity is computed from
pairwise distances between image features in different frames. It
does not require tracking or background subtraction.

Liu et al. (2011) propose a transfer learning framework for hu-
man action recognition across camera views. Many approaches
model an action as a bag of visual words in each of the two camera
views (Liu et al., 2009). Such a feature representation is sensitive to
view changes. Therefore, some higher level features which can be
shared across camera views are further learned in (Liu et al.,
2011). A bipartite graph is built to model two view-dependent
vocabularies, and then the two vocabularies are co-clustered into
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visual-word clusters called bilingual-words, which are the repre-
sentations of high-level features, through bipartite graph partition-
ing based on the co-occurrence of visual words in the training
videos. A bag-of-bilingual-words is used to represent an action
for recognition. It bridges the semantic gap between view-depen-
dent vocabularies. Also under the transfer learning framework,
Farhadi and Tabrizi (2008) employ Maximum Margin Clustering
(Xu et al., 2004) to generate split-based features in a source view,
and then a predictor is trained to predict split-based features in the
target view using unlabeled but temporally aligned training video
pairs in both the source view and the target view. The split-based
features are transferable across views in this way. The drawback of
these approaches is that the learned feature representations are
only applicable to a fixed pair of camera views. When the view-
points change, they have to be trained again. Weinland et al.
(2010) handle viewpoint changes by learning classifiers on training
examples taken from various views without being limited to fixed
viewpoints.

7. Cooperative video surveillance with static and active cameras

Many techniques discussed above are applied to static cameras.
With a limited number of static cameras to monitor a large area,
the observed objects are often small in size and there exist gaps be-
tween camera views. By including active cameras, whose panning,
tilting and zooming (PTZ) parameters are automatically and
dynamically controlled by the systems, the performance of video
surveillance can be significantly improved (Collins et al., 2001,
2002; Matsuyama and Ukita, 2002; Gonzalez-Galvan et al., 2002;
Kurihara et al., 2002; Naish et al., 2003; Bakhtari et al., 2009).
The hybrid systems both with static and active cameras can ob-
serve a wider area with a smaller number of cameras by constantly
changing the fields of views of the active cameras according to a
scanning plan (Sakane et al., 1987; Levit et al., 1992; Ye and Tsot-
sos, 1999; Matsuyama et al., 1999; Marcenaro et al., 2000; Gonz-
alez-Galvan et al., 2002). Once objects of security interest are
detected, their images can be captured with higher resolutions
by automatically zooming in of the active cameras (Woo and Cap-
son, 2000; Izo et al., 2007). It also allows to online choose the opti-
mal viewpoints for object detection, tracking and recognition
(Cowan and Kovesi, 1988; Tarabanis et al., 1990; Kim et al.,
1995; Piexoto et al., 2000). However, the complexity of the hybrid
systems also considerably increases. They have to face some new
challenges, some of which are briefly mentioned below. Some of
the topics are closely related to the research areas of Active Vision
(Bajcsy and passive perception, 1985; Aloimonos et al., 1988;
Aloimonos, 1993; Blake and Yuille, 1993; Bakhtari et al., 2009)
and Vision-Based Robot Control (Agin et al., 1979; Weiss et al.,
1987; Hutchinson et al., 1996; Chaumette et al., 2006, 2007).

1. Online calibration of active cameras static cameras (Chen et al.,
2009). It requires high efficiency and no human intervention is
allowed at the online stage.

2. Background modeling of active cameras (Kang et al., 2003; Azz-
ari et al., 2005; Bevilacqua and Azzari, 2006, 2007; Sankarana-
rayanan and Davis, 2008). Background subtraction (Piccardi,
2004) is widely used for detecting moving objects in video sur-
veillance with static cameras. However, it becomes more chal-
lenging for active cameras whose background constantly
change because of camera motions.

3. Designing a scanning plan according to which active cameras
navigate the environments until objects of interest are detected
(Davis et al., 2006).

4. Coordinating active cameras and static cameras to improve
tracking performance in terms of minimizing the cost and max-
imizing the accuracy (Matsuyama and Ukita, 2002; Micheloni
et al., 2005; Bakhtari et al., 2007, 2009). In order to keep track-
ing an object without breaks, one camera needs to hand over
the object to another camera. In order to minimize the amount
of data to be processed, a sensing strategy needs to dynamically
activate an optimal subset of cameras in response to the motion
of objects to serve the tracking purpose. Sensing strategies also
need to be planned to maneuver the cameras into optimal poses
and to reduce the uncertainty of tracking. The coordination
methods take into account both object motion characteristics
and mechanical camera dynamics.

There are also other issues, such as activity analysis with hybrid
cameras (Singh and Atrey, 2008) and visualization of videos and
analysis results (Morison et al., 2009) to be considered. Some
detailed discussions are provided in the sections below.

7.1. Background modeling of active cameras

Most approaches for background modeling of active cameras
compute a mosaic of the background scene. A mosaic background
is a compound image built through aligning a large number of
frames captured by the active camera when it is hinged and freely
rotates around its optical center and transforming them onto a
common reference plane according to the geometric model of the
active camera. When a new frame is captured online, it is regis-
tered to the mosaic background and moving objects are detected
by comparing their differences. Computational cost is one of the
major concerns for realtime applications, where online image reg-
istration is time consuming. Some approaches simplify the geo-
metric transform model from projective transform to rigid or
affine transform and utilize the pan/tilt/zoom information to speed
up registration (Winkelman and Patras, 2004; Hayman and Ekl-
undh, 2003). Various approaches are proposed to reduce the regis-
tration errors (Bhat et al., 2000; Bartoli et al., 2002; Bevilacqua
et al., 2005). Since frames may be captured under different lighting
conditions, they need photometric calibration when being com-
posed together (Mann, 1996; Tsin et al., 2001; Capel et al., 2001).

7.2. Object tracking with active cameras

Object tracking with an active camera involves two iterative
steps: perception and action. The perception step uses the PTZ
parameters of the camera obtained from the action step to update
the background model and locate the moving object. The action
step uses the object location obtained from the perception step
to control the camera (Murray and Basu, 1994). An active camera
can continually track an object while keeping it centered in the
camera view. Therefore, there is a need to efficiently map image
pixel coordinates from tracking to their pan-tilt orientations in
the word coordinate system in order to adjust the camera to a
new location which corresponds to the centroid of the object (San-
karanarayanan and Davis, 2008).

Since multiple objects move freely in the scene, the surveillance
system has to adaptively determine which cameras should track
which objects considering the dynamic behaviors of objects and
the current sates of cameras. This real-time dynamic resource allo-
cation is solve as an optimization problem (Tarabanis et al., 1995;
Miura and Ikeuchi, 1998). The optimization criterion includes max-
imizing the visibility measure (i.e. the tracked objects are less oc-
cluded in the camera views) (Bakhtari et al., 2006; Mackay and
Benhabib, 2008), maximizing the distinctiveness of the appearance
of objects from the background (Snidaro et al., 2003), the impor-
tance of objects (i.e., objects of higher security interest have a high-
er priority to obtain the resource) (Izo et al., 2007), and minimizing
the changes of cameras’ positions from one time to the next (Sa-
kane et al., 1987). The number and the types of cameras utilized
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for data acquisition and the optimal positions and orientations of
cameras need to be decided as well (Bakhtari et al., 2009).
8. Discussion and conclusions

By employing distributed camera networks, video surveillance
systems substantially extend their capabilities and improve their
robustness through data fusion and cooperative sensing. With
multi-camera surveillance systems, activities in wide areas are
analyzed, the accuracy and robustness of object tracking are im-
proved by fusing data from multiple camera views, and one camera
handovers objects to another camera to realize tracking over long
distances without break. As the sizes and complexities of camera
networks fast increase, there are higher requirements on the
robustness, reliability, scalability, transferability, self-adaptability
and less human intervention of intelligent multi-camera video sur-
veillance systems. The discussed computer vision and pattern rec-
ognition technologies are closely related to each other. While most
conventional surveillance systems assume one directional infor-
mation flow, recent studies show that different modules actually
can support each other. For example, activity modeling can im-
prove inter-camera tracking and multi-camera tracking provides
information for camera calibration and inference of the topology
of camera views. Jointly solving some of these problems not only
improves the robust and accuracy but also reduces human inter-
vention. Jointly modeling these problems at different hierarchical
levels in more principled ways is an important issue for further
investigation. Significant progress on intelligent multi-camera vi-
deo surveillance has been achieved in recent years. While some
problems, such as calibrating camera views with significant over-
lap and computing their topology, have been well studied, some
need more research effort in the future. It is still challenging to cal-
ibrate camera views which are disjoint and where objects move on
multiple ground planes. Object re-identification is relatively new
and its performance is still far from satisfactory. The accuracy of
state-of-the-art is below 20% on the VIPeR dataset (Gray et al.,
2007). This bring challenges for inter-camera tracking when spa-
tio-temporal reasoning is unreliable and it has to more rely on
appearance matching. Video surveillance in crowded environ-
ments started to draw a lot of attention in the past five years be-
cause it is very challenging and highly valuable for public
security. Most existing works on this topic assume a single camera
view. Although it is well known that multi-camera surveillance
systems can better solve occlusions and scene clutters, not much
research work has been done on designing the topology of camera
networks and cooperating hybrid cameras to avoid occlusions in
extremely crowded environments. Most published results on cam-
era calibration, inference of topology, object re-identification,
tracking and activity analysis are based on small camera networks.
However, larger scale camera networks are needed for future re-
search. Both benchmark datasets and comprehensive experimental
evaluations on very large scale camera networks are needed in the
future research. In conclusion, this paper reviews some key com-
puter vision and pattern recognition technologies utilized in intel-
ligent multi-camera video surveillance and emphasizes their
connections and integration. The most recent development of
these technologies is discussed and different solutions are com-
pared. It provides detailed descriptions of major challenges for
each of the key technologies. We believe that this review will
encourage new research work in the fast growing area.
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