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Exemplar-AMMs: Recognizing Crowd Movements
From Pedestrian Trajectories

Wenxi Liu, Rynson W. H. Lau, Xiaogang Wang, Member, IEEE, and Dinesh Manocha, Fellow, IEEE

Abstract—In this paper, we present a novel method to recognize
the types of crowd movement from crowd trajectories using
agent-based motion models (AMMs). Our idea is to apply a
number of AMMs, referred to as exemplar-AMMs, to describe
the crowd movement. Specifically, we propose an optimization
framework that filters out the unknown noise in the crowd
trajectories and measures their similarity to the exemplar-AMMs
to produce a crowd motion feature. We then address our real-world
crowd movement recognition problem as a multilabel classification
problem. Our experiments show that the proposed feature
outperforms the state-of-the-art methods in recognizing both
simulated and real-world crowd movements from their
trajectories. Finally, we have created a synthetic dataset, SynCrowd,
which contains two-dimensional (2D) crowd trajectories in various
scenarios, generated by various crowd simulators. This dataset can
serve as a training set or benchmark for crowd analysis work.

Index Terms—Crowd behavior modeling, crowd simulation,
pattern recognition, video surveillance.

I. INTRODUCTION

W ITH more cameras available everywhere in recent years,
a large number of videos are captured, not only for en-

tertainment but also for surveillance. As people are often the
main subject of interest in these videos and they usually show
up in groups, many researchers are interested in understanding
the collective behaviors of groups of people, and studying crowd
behaviors for video-based applications like social event/action
recognition [1], [2], learning motion features for pedestrian
tracking [3], [4], and retrieval in surveillance datasets [5], [6].

A fundamental problem in crowd behavior analysis is recog-
nizing types of crowd movements (including coherent move-
ments, loosely coherent movements, movements with dense
or sparse interaction, converging, crossing, clogging, random

Manuscript received March 20, 2016; revised July 18, 2016; accepted July
26, 2016. Date of publication August 3, 2016; date of current version November
15, 2016. This work was supported by the Natural Science Foundation of Fujian
Province under Grant 2016J05155. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Wolfgang Hürst.

W. Liu is with the Department of Computer Science, Fuzhou University,
Fuzhou 350001, China (e-mail: wenxi.liu@hotmail.com).

R. W. H. Lau is with the Department of Computer Science, City
University of Hong Kong, Hong Kong, China (e-mail: rynson.lau@cityu.
edu.hk).

X. Wang is with the Department of Electronic Engineering, Chinese
University of Hong Kong, Hong Kong, China (e-mail: xgwang@ee.cuhk.
edu.hk).

D. Manocha is with the Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27514 USA (e-mail: dm@cs.unc.edu).

This paper has supplementary downloadable multimedia material available at
http://ieeexplore.ieee.org provided by the authors. This includes a video intro-
ducing the authors’ framework and demonstrating some representative results.
This material is 15.2 MB in size.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2016.2598091

movements, etc.). Crowd movement recognition has been the
subject of computer vision based works because it is critical for
understanding crowd behaviors and identifying social events in
video surveillance. However, this is a challenging research topic,
because crowd movement patterns are complex and affected by
many factors, including crowd density, scene configuration, and
crowd psychology.

In this paper, we propose an approach to recognize crowd
movements based on crowd trajectories. In general, each crowd
trajectory represents the spatial-temporal information of one
pedestrian in a crowd. Crowd trajectories are informative for an-
alyzing the mutual interactions among pedestrians in a crowd,
e.g., how actively pedestrians react to oncoming pedestrians.
Leveraging such latent information can effectively improve the
accuracy of crowd recognition. The difficulty lies in how to
capture crowd trajectories. In recent years, pedestrian tracking
techniques have made significant advances. As a result, cap-
turing crowd trajectories with minor manual inference is now
possible. Previous works on trajectories-based crowd analysis
mostly concern about trajectory clustering [7], semantic region
inference [8], [9], or retrieval in trajectory datasets [6]. To the
best of our knowledge, none of the existing work uses trajecto-
ries for crowd movement recognition.

To recognize crowd trajectories, we prefer a feature that takes
into account not only the global motion pattern but also the
latent interaction attributes. Further, we need to refine the crowd
trajectories at runtime, given that they are compounded with
unknown noise (e.g., measurement errors and errors due to the
approximated perspective transformation from the image-space
to the ground-space). To address these problems, in this work,
we leverage Agent-based Motion Models (AMMs) [10]–[12],
which have recently been shown to be effective at modeling the
interactions in crowds. We measure how well a certain AMM can
simulate the crowd data. Because each AMM is able to model
a specific interaction behavior of crowds, if the AMM can fit
the input crowd data well, the crowd data probably contains
the interaction behavior that the AMM models. Meanwhile,
we can also filter out the unknown noise of the input crowd
trajectories with the assistance of the AMM. Specifically, we
extend the algorithm in [13] (which is used to quantify how
well crowd simulators perform in synthesizing virtual scenes)
to measure the similarity between any given AMM and the
input crowd trajectories. However, we remove their assumption
of homogeneity, since crowds usually consist of different types
of individuals. This allows us to investigate the latent mutual
interaction for each crowd member.

In addition, as a single AMM cannot model crowd be-
haviors in an omnipotent way, leveraging a single AMM to
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Fig. 1. Procedure for computing the proposed crowd motion feature. Crowd trajectories (red and gray dots indicating the tracked pedestrians) and multiple
exemplar-AMMs, which are capable of simulating different crowd behaviors, are given. Here, we show the screenshots of rendered simulated crowd movements
from three different AMMs. We can see that the agents in the simulated crowd movement of Exemplar AMM-3 are repulsive (i.e., each agent maintains a
secure distance from others). Agents of Exemplar AMM-4 are less repulsive, but still produce a clogging situation, while agents of Exemplar AMM-6 are
more aggressive (i.e., not afraid of collisions) in moving towards their own destinations. Our feature is computed as the similarity between the real-world
crowd trajectories with those of each AMM, denoted by the entropy values (e.g., E3 , E4 , and E6 ). The lower the entropy value, the more similar they
look (i.e., the input crowd movement is closer to that of Exemplar AMM-6). Hence, these entropy values can jointly classify the type of the input crowd
movement.

recognize different types of crowd movements is not robust.
On the other hand, training a specific AMM for each crowd
scenario is also inefficient. To obviate this difficulty in select-
ing or training an AMM, we are inspired by prior works on
object recognition (e.g., [14]) that leverage exemplar models
to infer unknown models. We introduce a similar exemplar-
based framework that uses multiple distinct AMMs (or the
same model with different parameters) as exemplar models
to jointly measure crowd trajectories. The similarity measure-
ments from these exemplar-AMMs serve as the crowd motion
feature.

To evaluate our proposed feature, crowd movement recog-
nition is formulated as a multi-class classification problem.
However, crowd movement may contain several attributes at
the same time. For example, coherent crowd behavior may
be blended with group swapping motion, which is often ob-
served in crosswalks. Hence, we treat the crowd movement
recognition problem in this paper as a multilabel classifi-
cation problem; i.e., each instance can own multiple class
labels.

Main results: In this paper, we propose a novel method to
leverage multiple exemplar-AMMs for crowd movement recog-
nition based on pedestrian trajectories. In particular, we present
a framework that can measure crowd movements numerically
by filtering out the noise of the trajectories, as shown in Fig. 1.
The proposed algorithm can produce an entropy descriptor that
evaluates crowd movement with reference to any given AMM.
All of the entropy descriptors from the exemplar-AMMs are
combined to form a robust middle-level feature of the crowd
movement. We evaluate this feature by performing multilabel
classification experiments in both simulated crowd trajectories
and real-world crowd movement. To study the feature, we fur-
ther produce a synthetic crowd dataset, SynCrowd, consisting
of various types of simulated crowd movements, which can be
used as the training dataset or the benchmark for further crowd
analysis research.

II. RELATED WORKS

In this section, we summarize prior works on visual analysis
of crowds and on AMMs.

A. Crowd Analysis

Prior works on crowd analysis can generally be catego-
rized into holistic methods, particle-based or feature point-based
methods, and individual-based methods.

Holistic methods: These methods treat a crowd as an aggre-
gated whole [15]–[18]. Chan et al. [15] present a method based
on dynamic textures. It represents video sequences as observa-
tions from a linear dynamical system. Mahadevan et al. [16]
extend the idea to anomaly detection in crowd motion. There
are also many works that handle low-level visual features, e.g.,
optical flow or moving pixels, and build up topic models to
discover various aggregated motion patterns in crowded scenes
[17], [18]. These methods can effectively analyze global vi-
sual features, but their models are not generalizable to dif-
ferent scenarios because they need to be retrained for differ-
ent crowd movements. Another drawback of these methods
is that most of the information regarding individuals is not
available.

Individual-based methods: These methods treat a crowd as
a collection of individuals, rather than as global patterns, and
consider their interactions. They mainly analyze trajectories and
use the complete or partial spatial-temporal information of in-
dividuals for analysis [8], [9], [19], [20]. Wang et al. [8] present
an approach for unsupervised trajectory analysis and semantic
region modeling. Zhou et al. [9] propose a mixture model to
learn motion patterns and predict pedestrians’ behaviors from
the partially-observed trajectories. Choi et al. [19] set up a hier-
archical activity model to recognize collective activities and the
interaction between targets based on the individual trajectories.
These methods investigate motion patterns or individuals’ inter-
actions accurately, but the learned models are not generalizable
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to different scenes either. To model crowd motion, some works
also study real crowd trajectories [21], [22]. Wolinski et al. [21]
apply Genetic algorithm to fit crowd data. Charalambous et al.
[22] propose a rankable metric to measure individual trajecto-
ries. Compared with prior trajectory-based work, we leverage
AMMs to extract middle-level motion features for real crowd
movement recognition.

Particle-based or feature point-based methods: These meth-
ods analyze high-density crowd movements [23]–[26]. Ali [26]
presents an approach based on a particle-based representation to
explicitly take into consideration the interactions among objects
while measuring the flow complexity. Like particle-based meth-
ods, the feature point-based methods deal with tracks generated
by trackers [27], [28]. Zhou et al. [27] analyze the collective
crowd movements by measuring path similarities among crowds
on the collective manifold. Shao et al. [28] present a method for
detecting groups from the tracks to analyze the fundamental
group properties, which can be easily generalized to different
crowd systems. The resulting grouping profile of a crowd is used
for analysis. These methods provide a trade-off between holistic
methods and individual-based methods. Their limitation is that
individual information cannot be fully discovered, as the trajec-
tories captured by feature-point trackers are usually segmented
and affected by the background noise or object poses.

B. Agent-Based Motion Models (AMMs)

AMMs, which primarily model local collision avoidance or
local behaviors of pedestrians in crowds, are usually used as
predictors or simulators. Many AMMs have been proposed,
including local rule-based models [10], [29], [30], the Social
Force model [11], and geometry-based algorithms [12], [31]–
[33]. Generally speaking, AMMs focus on the spatial location,
rather than the gesture or posture, of each crowd member (or
agent), and most of them simplify agents to disks in 2D space.
AMMs usually are controlled by several motion parameters, β,
e.g., the number of the nearby persons and the maximum speed.
Hence, any AMM can be formulated as a non-linear function
f that estimates the crowd state at the next timestep from the
current crowd state xt , i.e., xt+1 = fβ (xt).

Reciprocal velocity obstacle (RVO): As one of many
geometry-based methods, the RVO model [12] provides real-
time collision-free crowd simulation, which is suitable for our
work. It predicts agents’ positions and velocities in a 2D ground
space, given the states of other agents at the current timestep,
and makes sure that they will not lead to collision among the
agents. In Fig. 2, agent A chooses the optimal velocity from the
permitted velocity set to avoid collision. Guy et al. [34] use RVO
to model different crowd behaviors by adjusting its parameters.

Data-driven AMMs: In order to learn crowd models,
many data-driven AMMs have been proposed in recent years
[35]–[37]. Unlike these data-driven models, our framework uti-
lizes multiple exemplar-AMMs, which avoids training AMMs.

AMMs in computer vision: AMMs are mainly used for multi-
target tracking [3], [38], [39] and anomaly detection [25] in
computer vision. In tracking, AMMs are usually integrated with
some appearance models to predict pedestrians’ future positions.

Fig. 2. RVO multi-agent simulation. (a) shows four agents in a 2D space, with
arrows indicating their velocities. (b) shows the corresponding velocity space.
The shaded side of each plane is the set of permitted velocities for agent A to
avoid collision with the other corresponding agent. The region with bolded lines
denotes the collision-free velocity set of agent A.

Antonini et al. [40] present a Discrete Choice Model-based
motion model to discretize the velocity space of a pedestrian and
to model the choosing of the optimal velocity for the pedestrian,
while Pellegrini et al. [3] formulate pedestrians’ movements
as an energy optimization problem that factors in navigation
and collision avoidance. Yamaguchi et al. [38] apply insights
from the social force approach to estimate future positions of
the pedestrians. In anomaly detection, Mehran et al. [25] apply
the social force model to represent the abnormal motion of
the crowd. In all of these works, the efficacy of the motion
model depends on the selection of the motion parameters. To
overcome this problem, we propose a multiple-exemplar-model
framework, which uses several representative AMMs to jointly
analyze the input crowd data.

III. EXEMPLAR-AMMS-BASED CROWD FEATURE

Similarly to previous exemplar-based works, our method
needs to measure the connection between crowd-motion data
and each exemplar model. However, as crowds are complex by
nature, it is difficult to directly compare crowd motion data with
other crowd motion examples, even if the individual trajectories
are provided. Our observation is that AMMs can model (sim-
ulate or predict) real crowd movements, but usually perform
differently for varied types of crowd interactions. For exam-
ple, some AMMs are good at modeling collective behavior [41]
and others at collision avoidance [11], [12]. Some can simulate
only aggressive behavior and others conservative behavior [34].
Hence, different AMMs can be used to describe different aspects
of crowd movement. In this paper, we apply such observations
in the following way. For each exemplar-AMM, an entropy de-
scriptor is computed to measure its similarity to the given crowd
trajectories. All entropy descriptors computed from multiple
exemplar-AMMs are then grouped as a robust crowd-motion
feature. Our method is illustrated in Fig. 1.

In the following sections, we first explain generally how we
model AMMs and the crowd data, and then introduce how we
compute the entropy descriptors.

A. AMMs and Crowd Data

For a given AMM, the state xt of the crowd at a specific
timestep t contains the status of all agents: positions, velocities,
and desired velocities. (See Table I for a summary of the major
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TABLE I
DEFINITIONS OF THE NOTATIONS USED

Symbol Definition

N Number of agents
T Number of frames of the crowd movement
p i , v i , d i The position, velocity and desired velocity of ith agent,

where p i , v i , d i ∈ R2

xt Crowd state vector, i.e.,
xt = [p1 , v1 , d1 , . . . , pN , vN , dN ] ∈ R6 N

zt Observed crowd state (i.e., pedestrians’ positions),
zt = [p1 , . . . , pN ] ∈ R2 N

X , Q, R Gaussian distributions
q , r Random samples drawn from Q and R, respectively

notations). An AMM can be treated as a non-linear function f
that propagates xt forward to the next timestep, xt+1 = f(xt).
However, it cannot always make exact accurate predictions. We
denote the true crowd state as ẋt (usually unknown) and the
error of the prediction as rt

ẋt+1 = f(xt) + rt . (1)

The crowd data contains all agents’ temporal-spatial positions
(or trajectories), represented as T vectors in R2N , {z1 , . . . zT },
i.e., observations. Since they are often compounded with noise,
they may be considered as a noisy projection of the true
crowd state {ẋ1 , . . . ẋT } at timestep: zt = h(ẋt) + qt (qt ∼
Q), where h projects crowd state ẋt ∈ R6N to zt ∈ R2N , keep-
ing only the position information. qt represents the observation
noise, subject to a zero-mean Gaussian distribution. We assume
Q to be static and measurable. In practice, we usually assign it
a small scale.

B. Entropy Descriptor

To introduce our descriptor, we first assume that the prediction
error rt in (1) is subject to a zero-mean Gaussian distribution
R = N (0,Σ). By measuring the scale of R, we can quantify
the similarity between the given AMM and the data. A larger
scale implies a larger divergence between the AMM and the
data, and vice versa.

As mentioned above, given the noisy observations zt (t ∈
{1, . . . T}) containing pedestrians’ observed positions only, the
true crowd state ẋt (which contains all pedestrians’ positions,
velocities, and desired velocities) is often uncertain. To account
for this uncertainty, we represent the crowd state as a Gaussian
distribution: Xt = N (ẋt , ·) (t ∈ {1, . . . T}).

With regard to the prediction error Σ and the crowd state
distribution Xt , our goal is to maximize the log-likelihood of R
with a given AMM f , i.e.,

Xt ,Σ = arg max
Xt ,Σ

��(R). (2)

C. Optimization

The objective function of (2) has decisive variables: the
prediction error Σ and the crowd state distribution Xt . We
adopt an optimization strategy similar to the Expectation-

Maximization algorithm. We first optimize Xt based on
observations and then maximize the likelihood of Σ. Thus, the
following two steps are performed iteratively:

Step 1: Fix Σ (R is known) and optimize Xt . Since the
prediction error R is known and the noisy observation zt

(t ∈ {1 . . . T}) is given, we aim to compute the optimal crowd
states, i.e., removing the observation noise of crowd trajectories
and estimating the states (i.e., positions, velocities, and desired
velocities) of pedestrians.

As mentioned, we assume the crowd states as distributions,
Xt (t ∈ {1 . . . T}). We then apply the Ensemble Kalman Filter
(EnKF) algorithm [42] to compute the optimal values of crowd
state distributions. In EnKF, Xt is represented by a set of sam-
ples, or ensembles, i.e., [x1

t , . . . ,x
M
t ] ∼ Xt , where M is the

number of the ensembles.
Similarly to the Kalman filter, in each timestep t (t ∈

{1 . . . T}), EnKF consists of two main steps: 1) prediction and
2) correction. In prediction, given the current crowd state at t,
we leverage the provided AMM, f , and the fixed prediction er-
ror, R = N (0,Σ), to sequentially predict the following crowd
states. Specifically, the next crowd state distribution is predicted
subject to f , i.e., X̂t+1 = N (f(Xt),Σ). Since the crowd state
distribution is represented by ensembles, each of them evolves
via the AMM in addition to random Gaussian noise drawn
from R, i.e., [f(x1

t ) + r1
t , . . . , f(xM

t ) + rM
t ], where rm

t ∼ R
(m ∈ {1 . . . M}). In correction, the evolved crowd state distri-
bution X̂t+1 is corrected by the observations, zt+1 (i.e., positions
of crowd members). According to [42], the posterior ensemble
is similar to the Kalman filter

Xt+1 = X̂t+1 + K(zt+1 − h(X̂t+1)) (3)

where h is the projection function and K is the Kalman
gain matrix. To compute the Kalman gain matrix, we define
A = X̂t+1 − 1

M

∑
X̂t+1 and B = h(X̂t+1) − 1

M

∑
h(X̂t+1).

The Kalman gain matrix can be computed as K = (M −
1)−1ABT P−1 , where P = (M − 1)−1BBT + ΣQ and ΣQ is
the known covariance matrix of Q. We integrate K into (3)
and update the crowd state distribution at the next time
step. Hence, by sequentially predicting and correcting crowd
states, the noise of the trajectories are removed as much
as possible and we approximately obtain the optimal crowd
states.

Step 2: Fix Xt and optimize Σ. As mentioned, the prediction
error Σ is the covariance of zero-mean distribution R. Here we
assume that given an AMM, the prediction error for each indi-
vidual is independent. Therefore, the distribution of the AMM’s
prediction error R is formulated as

R = N (0,Σ)

= N

⎛

⎜
⎝0,

⎡

⎢
⎣

Σ1
. . .
ΣN

⎤

⎥
⎦

⎞

⎟
⎠ (4)

where Σi ∈ R6×6 (i ∈ {1, . . . , N}) represents the individual
covariance of each agent in the crowd. To find the optimal Σ,
we maximize the expected log-likelihood of Σ. Its maximum
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Fig. 3. (a)–(e) Examples of 2D simulation crowd movements from SynCrowd. (f) The statistics of the crowd movement in the real-world dataset. (a) Coherent
motion. (b) Converging motion. (c) Sparse interaction. (d) Crossing. (e) Clogging. (f) Scene-category statistics of real-world dataset.

likelihood estimation can be computed as

Σ̂ =
1

T − 1

T −1∑

t=1

(Xt+1 − f(Xt))(Xt+1 − f(Xt))T

=
1

(T − 1)M

T −1∑

t=1

M∑

m=1

(
xm

t+1 − f
(
xm

t

))(
xm

t+1 − f
(
xm

t

))T
.

(5)

D. Entropy Computation

By performing STEP-1 and STEP-2 iteratively, the algo-
rithm will converge, since both steps optimize the objective
function explained in (2). Thus, we can estimate the op-
timal crowd state Xt and the prediction error distribution
R. Consequently, the estimated individual covariance matri-
ces, Σ̂i (i ∈ {1, . . . , N}), are also computed. Hence, the in-
dividual entropy values of the crowd are computed as E =
[1
2 ln |(2πe)Σ̂1 |, . . . , 1

2 ln |(2πe)Σ̂N |]T ∈ RN ×1 .

E. Exemplar-Based Framework

Prior works on object recognition, e.g., [14], adopt exemplar-
models to infer the unknown objects. Similarly, our framework
adopts exemplar-AMMs to evaluate the crowd movement. As
discussed, the entropy value implies how well or poorly the
AMM fits to the crowd data. Our framework leverages the joint
efforts of these pre-defined exemplar-AMMs in order to obvi-
ate the difficulty of training a single robust AMM. Because all
the exemplar-AMMs contribute to the feature, the computed
entropy values of exemplar-AMMs are jointly formed as a de-
scriptor of the crowd movement.

Assuming that we have K exemplar-AMMs, we then have
an entropy matrix, [E1 , . . . ,EK ] ∈ RN ×K , where Ei con-
tains the entropies of the crowd individuals in reference to
exemplar-AMM-i. In practice, we compute the average and
the variance values of Ek to form a feature vector, i.e.,
[avg(E1), std(E1) . . . , avg(EK ), std(EK )] ∈ R2K . As we as-
sume that the AMM’s prediction errors for the individuals in a
crowd are independent, the mean entropy value shows the av-
erage performance of the AMM in fitting to the query crowd
data. The standard deviation of the entropy value measures how
differently the AMM fits to individual trajectories of the crowd.
For example, the standard deviation should be small for a coher-
ent motion, as the differences among crowd members are small,
but large for a random motion.

TABLE II
KEY MOTION PARAMETERS OF THE SELECTED AMMS

N-Dist N-Num React Radius Max-Spd Smooth

AMM-1 2.94 3 3.12 0.13 3.61 0.25
AMM-2 5.84 8 0.83 0.31 3.80 0.76
AMM-3 1.96 3 4.12 0.25 2.71 0.31
AMM-4 8.72 3 1.31 0.19 1.52 0.36
AMM-5 5.61 8 0.06 0.19 3.17 0.82
AMM-6 8.96 4 0.18 0.12 1.58 0.06
AMM-7 8.84 2 6.09 0.66 1.75 0.08

IV. EXPERIMENTS AND RESULTS

In this section, we first present how we select exemplar-
AMMs based on SynCrowd. We then analyze the computed
features of the simulation data. Finally, we show the results on
the recognition of real-world crowd movement.

A. Selection of Exemplar-AMMs

To select exemplar-AMMs, we first set up a synthetic crowd
motion dataset, called SynCrowd. We design and generate the
crowd simulation data, including five categories of clustered
motion: coherent motion, converging motion, sparse interaction,
crossing, and clogging. Each of these motions belongs to a
unique category. A coherent motion (coH) refers to the motion of
individuals in the crowd generally moving in the same direction
and maintaining almost the same distance from each other. For
the converging motion (coL), the crowd members move closer
to each other. The sparse interaction (sP) only exists in sparse
crowds, where individuals move independently. Crossing (cR)
and clogging (cG) take place in a dense crowd with multiple
groups. We illustrate some examples in Fig. 3.

Here, we adopt RVO [12] to form the AMMs. We take into
consideration the following adjustable variables of RVO: N-
Dist, the neighborhood range; N-Num, the number of nearest
agents within a certain range; Radius, the effective radius of an
agent (i.e., the distance that the agent prefers to keep away from
others); React, the range that the agent travels to avoid an up-
coming collision; Max-spd, the maximum speed; and Smooth,
how smoothly the agent can change velocities. As we tweak
these variables, different AMMs are created. We first need to
generate several combinations of these 6 variables as candidates
of the exemplar-AMMs. By thresholding each variable, we can
sample it from a reasonable range (e.g., the neighboring ra-
dius rests within [0.1, 2] meters). However, there are too many
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Fig. 4. Visualization of the features of different simulation data in the coordinate space of the top-two principal components. (a) Coherent (coH) versus converging
(coL). (b) Clogging (cG) versus sparse-interaction (sP). (c) Clogging (cG) versus crossing (cR).

combinations if we evenly sample each variable within its valid
range and combine them together. RVO may sometimes not be
sensitive to certain variables. For example, if N-Dist is larger
than 4 meters, its small variation may not make a big differ-
ence. Therefore, we empirically reduce the number of variable
combinations down to 25 and then add random white noise to
introduce randomness to them. However, some of these candi-
date AMMs may still be redundant. To eliminate the useless
AMMs, we use the crowd data from SynCrowd and compute
the entropy descriptors using all candidate AMMs. We then ap-
ply the sequential feature selection algorithm [43] and adopt
the misclassification rate of SVM as the selection criterion to
choose the AMMs that can separate the classes well. As a result,
only 7 exemplar-AMMs are selected from the candidate AMMs.
Table II shows the results. In additional tests, it turned out that
more AMMs did not improve the results much but increase the
computation time significantly.

B. Evaluation Based on Simulation

To evaluate the effectiveness of our descriptor, we first test it
on simulated crowd data.

PCA: We perform principal component analysis on the simu-
lation data. For different types of crowd data, we transform their
selected AMM-based features to principal components. Each
time, we compare twotypes of simulated crowd movements and
visualize the top-2 principal components. Fig. 4 shows the repre-
sentative ones. We observe that most of the pairs are separable.
However, there are a few points in Fig. 4(c) that may not be
separable, because our entropy descriptor may not work well
in certain scenarios. Nevertheless, this experiment generally
shows that our proposed feature can be used to classify crowd
movements.

Classification: To further evaluate our method, we apply the
SVM linear classifier to classify the simulation data in Syn-
Crowd based on the 10-fold cross validation strategy. Table III
shows the average accuracy, precision, recall, and F-measure in
classifying the SynCrowd data with respect to different num-
bers of AMMs used. We can see that all metrics of using 7
AMMs are over 90% in categorizing these five interaction pat-
terns, outperforming all others. We also observe that the more
exemplar-AMMs that are used in the classification, the better
the metrics it obtains.

TABLE III
COMPARISON OF USING DIFFERENT NUMBERS OF EXEMPLAR-AMMS

Accuracy Precision Recall F-measure

1 AMM 0.461 0.327 0.416 0.340
2 AMMs 0.617 0.543 0.575 0.528
3 AMMs 0.685 0.651 0.672 0.633
4 AMMs 0.729 0.704 0.712 0.681
5 AMMs 0.800 0.790 0.787 0.766
6 AMMs 0.881 0.875 0.882 0.864
7 AMMs 0.924 0.928 0.934 0.923

C. Evaluation on Real-World Crowd Motion

Since our method is based on pedestrian trajectories, we
adopt a multi-person tracker to capture the crowd trajectories
from videos. Specifically, we first manually provide the ini-
tial position of each pedestrian. We then use the state-of-the-
art tracker [44] to track pedestrians’ positions to produce the
trajectories. Occasionally, the tracker may not perform well due
to problems such as occlusions. The tracker is manually reini-
tialized once the tracking deviation is too large. Finally, the
captured trajectories are transformed from the image-space to
the ground-space based on the estimated perspective transfor-
mation matrix, as the input data for our algorithm.

We labeled crowd trajectories from 524 short crowd videos,
selected and split from the dataset in [28], where the average
crowd size is 19.4. There are two main differences between real-
world crowd motion and the simulated SynCrowd data. First, as
real-world crowd movements are more complex, we assign more
semantic labels for them, including coherent motion, loosely
coherent motion, sparse interaction, dense interaction, converg-
ing, crossing, clogging, and random motion. Second, real-world
crowd data may not be uniquely labeled. For example, the crowd
movement in a crosswalk may be labeled as both ‘coherent mo-
tion’ and ‘crossing’. Fig. 3(f) shows the scene-category statistics
of the dataset.

Hence, we treat the labeling of real-world crowd data as a
multilabel classification problem. Specifically, we let X be the
feature vector of a crowd movement sequence, and Y be a
finite set of labels, i.e., Y = {1, 2, . . . , Q}. Given a training
set T = {(x1 , Y1), (x2 , Y2), . . . , (xm , Ym )} (xi ∈ X, Yi ⊆ Y),
our goal is to output a multilabel classifier h : X → 2Y , which
is usually formed as a real-value function g : X × Y → R. The
function g(·, ·) can be treated as a ranking function. Hence,
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TABLE IV
COMPARISON OF MULTILABEL CLASSIFICATION

Avg. Prec. Hamming One-error Cov. Ranking

MBH [46] 0.558 0.304 0.887 2.552 0.203
Shao et al. [28] (KLT) 0.719 0.214 0.379 2.528 0.162
Shao et al. [28] (traj.) 0.795 0.157 0.272 2.089 0.112
GA [21] 0.790 0.142 0.292 2.071 0.112
1 AMM 0.789 0.156 0.275 2.141 0.122
2 AMMs 0.825 0.147 0.200 1.857 0.087
4 AMMs 0.902 0.082 0.136 1.403 0.040
7 AMMs(m) 0.877 0.101 0.168 1.578 0.060
7 AMMs(s) 0.897 0.088 0.134 1.462 0.049
Ours (7 AMMs) 0.924 0.072 0.097 1.313 0.031

the multilabel classifier can be derived as h = {y | g(xi, y) >
threshold, y ∈ Y}. In this experiment, we have adopted the
ML-KNN classifier [45], which utilizes the maximum a pos-
teriori principle, to predict the labels of the real-world crowd
movement.

As a baseline comparison, we adopt the MBH descriptor
(implemented based on [46]) to classify the real-world crowd
movement. In addition, we also compare our method with the
latest method [28], which computes a bundle of crowd move-
ment descriptors based on the group motion and then combines
the group descriptors as features for crowd movement classifi-
cation. For fair comparison, we provide both KLT tracklets and
complete crowd trajectories as input to their algorithm. Besides,
we use a genetic algorithm (GA) [21] to train an optimal RVO
parameter for each instance and apply the learned parameters as
the feature. Further, we also compare our feature with the fea-
tures computed by 1 AMM and 4 AMMs. Finally, as mentioned
in Section III-E, our feature vector consists of the average values
and the standard deviation values. We separate the feature vec-
tor into two sub-vectors: one containing only the average values
(7 AMMs(m)) and the other containing only the standard devi-
ation values (7 AMMs(s)). We compare these two sub-vectors
with the complete feature.

In these experiments, we adopt the leave-one-out cross val-
idation strategy to evaluate the performance of the multilabel
classification. We also follow the metrics introduced in [45]:
1) average precision; 2) Hamming loss—how many times an
instance-label pair is misclassified; 3) one-error—how many
top-ranked labels are not in the proper label sets; 4) coverage—
how many labels are needed to cover all the instances; and 5)
ranking loss—how many label pairs are reversely ordered for the
instance. Except for average precision, the smaller the metric
is, the better the performance.

Table IV shows the classification result. First, the trajectory-
based methods perform better than the MBH and KLT-
based [28] descriptors, as trajectories provide more accurate
crowd movement information. Although MBH and KLT-based
descriptors provide holistic features on the crowd videos, they
are not robust enough to describe the crowd movement. Second,
using trajectories as input, our features outperform not only GA-
trained features but also the features from [28]. [28] originally
requires dense input data to capture the properties of the group
motion. When dealing with trajectories, the group descriptors

may not work particularly well as the input data is not that dense.
Besides, as discussed earlier, using multiple exemplar-AMMs
helps boost the classification performance. This is because
more exemplar-AMMs enable finer representation of the crowd
movements. We have also noticed that 7 AMMs(s) performs bet-
ter than 7 AMMs(m), which implies that the standard deviation
of the entropy values plays an important role in classification.

We show more classification results on various crowd move-
ments in Fig. 5. Specifically, Fig. 5(a), (c), and (d) are captured
from places like a mall and a train station, where mutual inter-
actions of pedestrians take place at times (i.e., ‘sparse interac-
tion’). The densities of Fig. 5(a) and (d) are higher than that
of Fig. 5(c). This means that the motions of some pedestrians
are more constrained and they are directed to move in the same
direction (e.g., towards the exit). Hence, they are ‘loosely coher-
ent.’ Compared with Fig. 5(d), some people in Fig. 5(a) and most
people in Fig. 5(c) are more heterogeneous. As a result, they are
labeled as ‘random.’ Note that the estimated probabilities of the
labels are consistent with the scenarios. For example, Fig. 5(c)
has a lower density than Fig. 5(a). As a result, its probability of
being labeled ‘random’ is much higher (0.888 > 0.505) and its
probability of being labeled ‘loosely coherent’ is lower (0.122 <
0.690). In addition, Fig. 5(b), (e), and (f) are correctly labeled as
‘crossing,’ ‘converging,’ and ‘clogging,’ respectively, and their
latent interaction and motion properties are consistent.

Finally, in Fig. 5, we also show the corresponding normalized
average (red bars) and normalized standard deviation (blue bars)
of the entropy values of AMMs. According to Section III-E,
a small average entropy value indicates that the AMM fits the
crowd data well and vice versa, while a small standard deviation
of the entropy values implies that the heterogeneity of the crowd
movement is low. Results in Fig. 5 are consistent with our ex-
pectation. For example, Fig. 5(c) contains a low-density crowd,
i.e., ‘random motion.’ On the one hand, for a low-density crowd
with few mutual collisions, AMMs generally perform better,
i.e., the mean of their entropy values is lower than those of
other examples. On the other hand, the motion in Fig. 5(c) is not
very coherent. Hence, its standard deviation is much higher than
that of the others. Another example is Fig. 5(e), which contains
a converging motion. Most AMMs cannot fit well, but it can
still be differentiated from others due to its large mean value
and low standard deviation value. In addition, Fig. 5(b) and (d)
have similar mean values, but the standard deviation values help
differentiate if they are ‘crossing.’

D. Implementation and Timing Performance

Finally, we test the timing performance of the proposed
method on a laptop with 8GB memory and a two-core 2GHz i7
CPU. The implementation was not optimized. Only RVO was
compiled in C++ and the rest was built on Matlab R2013a. The
complexity of our algorithm is O(TMN), since the computa-
tion of f is O(N), where N is the number of agents, and we
need to calculate M ensembles in EnKF and MLE. In our ex-
periments, we set the number of ensembles to 1,000 and the
initial Σ in Step 1 as a diagonal matrix with small diagonal
entries (e.g., diag[1e − 3, . . . , 1e − 3]). The algorithm requires
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Fig. 5. Results of classifying different real-world crowd videos using our feature. Red dots are the tracked pedestrians in the videos. The probabilities of
estimating the crowd movement classes are also shown, and the bolded green ones are top-ranked classes. In addition, the normalized average (red bars) and the
normalized standard deviation (blue bars) of the entropy values are computed via exemplar-AMMs in all the plots.

around 30 loops to converge. The time cost per loop depends on
the crowd size and the motion duration. In our experiments, the
average time per loop is about 2.1 seconds.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an exemplar-based method to
extract features from the crowd trajectories and have shown that
the proposed method outperforms the state-of-the-art methods
in recognizing both simulated and real-world crowd movements.
For our future work, we would like to address the limitation in
the method that requires trajectories in ground-space as input.
Also, the entropy descriptor is not accurate when handling long
crowd movements.

There are several other related problems to address in the
future. First, our method can be extended to analyze trajectories
from different sources by leveraging different simulators (e.g.,
vehicle simulators). Second, our algorithm is slow for real-time
surveillance applications. Third, we also need to model the latent
dependency of AMMs’ prediction errors. Finally, it would be
interesting to integrate multi-target detection and tracking with
crowd motion classification.
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