
Dimensionality Reduction with Generalized Linear Models

Mo Chen1 Wei Li1 Wei Zhang2 Xiaogang Wang1

1Department of Electronic Engineering
2Department of Information Engineering
The Chinese University of Hong Kong

1{mchen,liwei,xgwang}@ee.cuhk.edu.hk 2wzhang009@gmail.com

Abstract
In this paper, we propose a general dimensionality
reduction method for data generated from a very
broad family of distributions and nonlinear func-
tions based on the generalized linear model, called
Generalized Linear Principal Component Analysis
(GLPCA). Data of different domains often have
very different structures. These data can be mod-
eled by different distributions and reconstruction
functions. For example, real valued data can be
modeled by the Gaussian distribution with a lin-
ear reconstruction function, whereas binary valued
data may be more appropriately modeled by the
Bernoulli distribution with a logit or probit func-
tion. Based on general linear models, we propose a
unified framework for extracting features from data
of different domains. A general optimization algo-
rithm based on natural gradient ascent on distribu-
tion manifold is proposed for obtaining the maxi-
mum likelihood solutions. We also present some
specific algorithms derived from this framework to
deal with specific data modeling problems such as
document modeling. Experimental results of these
algorithms on several data sets are shown for the
validation of GLPCA.

1 Introduction
Principal component analysis (PCA) is one of the most
widely used methods for dimensionality reduction of mul-
tivariate data. Given a set of sample points yi ∈ Rd for
i = 1, . . . , n, PCA finds a lower dimensional subspace that
minimizes the sum of the square distances from the data
points yi to their projections µi in the subspace. In other
words, PCA finds a linear reconstruction of the data that is
optimal in the least square sense. PCA also can be interpreted
from a probabilistic viewpoint that each point yi is thought as
a random draw from an isotropic Gaussian with mean µi and
variance ψI where ψ is shared among all samples. In other
words, each yi is considered as a noise-corrupted sample of
the true data point µi which lies in a lower dimensional sub-
space.

However, the assumption of the Gaussian noise model and
the linear reconstruction is not always appropriate for data of

different domains. For example, binary data are more suit-
able to be modeled by Bernoulli with a logit or probit recon-
struction (link) function. In order to easily obtain a proper
representation for data using appropriate distributions and re-
construction functions, we want to have a general framework
for data modeling, so that we can easily incorporate specific
distribution and reconstruction function which are suitable for
the data. The first step toward this goal was made by [Collins
et al., 2002], in which the authors extended PCA to expo-
nential family distributions (called exponential family PCA
or EPCA). EPCA is based on the minimization of a general-
ized criterion in terms of the Bregman divergence, which has
a duality relationship with exponential family distributions.

In this paper, we propose a probabilistic model called
generalized linear principal component analysis (GLPCA),
which is based on the generalized linear model to solve di-
mensionality reduction problems. Different from the algo-
rithm for the EPCA model, which is based on Bregman diver-
gence minimization, we propose a algorithm which directly
maximizes the likelihood using the so called natural gradient
ascent on the Riemannian manifold of the parameter space.
The algorithm makes incorporating domain specific distribu-
tions and reconstruction functions a easy task which simply
reduces to input the sufficient statistics to the algorithm. We
demonstrate the logit and probit GLPCA algorithms for mod-
eling documents.

It is worth mentioning that the paper [Gordon, 2003] also
proposed a very general framework for both regression and
factor analysis problems called (GL)2M. This framework in
a sense, is more general than the generalized linear model. It
uses three link functions instead of one in regular GLM. How-
ever, this formulation is somehow over generalized. It makes
optimizing the target a very hard problem. The subproblem
of the optimization procedure is not only non-convex, but it
can have exponentially many local minima [Kivinen and War-
muth, 2001]. The author proposed a Newton typed meta algo-
rithm for their model. However, one has to make non-trivial
effort to derive the required quantities (e.g. Hessian) in order
to incorporate specific distributions and link functions.

In this paper, we denote scalars with lowercase letters (x),
vectors with bold lowercase letters (x), matrices with bold
uppercase letters (X) and high order tensors with calligraphy
uppercase letters (T ).



2 Generalized Linear Principal Component
Analysis Model

The classical PCA is a linear model which assumes that an
observation yi is generated from a linear transformation of
a latent low dimensional vector xi plus a bias term m and a
Gaussian noise term ε,

yi = WTxi + m + ε. (1)
The least square estimator is adapted to this assumption.
However, the restriction of linearity is too strict for a variety
of practical situations. For example, the linear model fails,
when dealing with binary data (Bernoulli) or with count data
(Poisson).

The generalized linear model (GLM) [Nelder and Wedder-
burn, 1972] was proposed to relax the assumption to a broad
family of nonlinear models for regression problems. In [Rish
et al., 2008], the authors utilized the GLM for supervised di-
mensionality reduction problems. In this paper, we propose
the GLPCA model to extend PCA with GLM for dimension-
ality reduction problems. The essential feature of GLPCA is
that the observation yi is a sample from certain distribution
p(y). The expectation µi = E[yi] is a monotonic function of
ηi such that

E[yi] = f(ηi), ηi = WTxi + m. (2)
Here, we overload the notation f(η) as a vector function that
each elements is obtained by applying f over each elements
of vector η. The conditional distribution p(y|W,x,m) is
a distribution of natural exponential family, which will be
discussed later. The reconstruction function f is also called
the link function in GLM literature. Given the i.i.d. sam-
ples {yi} ∈ Rd, our goal is to find the optimal W ∈ Rd×q ,
m ∈ Rd, and {xi} ∈ Rq in the sense that the likelihood of
this model is maximized.

2.1 Exponential Family
We first introduce the natural exponential family, from which
we derive our GLPCA model. Some quantities of the natural
exponential family are derived and will be used latter in the
algorithm.

In the GLPCA model, we assume that the distribution of
the observation yi is a member of the multivariate natural
exponential family [Wainwright and Jordan, 2008]. The nat-
ural exponential family is a class of probability distributions
where the first order statistics are of primary interest. It cov-
ers a broad range of distributions, such as Gaussian, Gamma,
Bernoulli and Poisson distributions. The density functions
of the natural exponential family distributions have a general
form

p(y|θ, ψ) = exp

(
yTθ −A(θ)

ψ
+ C(y, ψ)

)
. (3)

y is a d dimensional observation. θ is the natural parameter.
ψ is a scalar dispersion parameter and is a scale parameter of
the variance. A(θ) is called the partition function which plays
an important role in our latter derivation. The expectation and
covariance of y are

E[y] =∇A(θ)

Cov[y] =ψ∇∇TA(θ).
(4)

For convenience, we denote

g(θ) =∇A(θ),

Σ(µ) =∇∇TA(θ).
(5)

We can see that the expectation of y only depends on the
natural parameter θ whereas the variance of y depends on
both θ and the parameter ψ. Typically one assumes that the
factor ψ is identical over all observations. One example is the
isotropic Gaussian distribution which can be written in the
standard form as

p(y|θ, ψ) =
1

(2πσ2)d/2
exp

(
−‖y − µ‖

2

2σ2

)
,

= exp

(
yTθ − θTθ/2

ψ
− 1

2

(
yTy

ψ
+ ln(2πψ)

))
,

(6)

where θ = µ,ψ = σ2,A(θ) = θTθ/2, g(µ) = µ, Σ = I ,
and C(y, ψ) = −(yTy/ψ + ln(2πψ))/2),

If the degree of freedom of y is d, then the representa-
tion is said to be minimal; otherwise it is over-complete. If
the representation is minimal, the multivariate density can be
factorized as

p(y|θ) =

d∏
j=1

p(yj |θj). (7)

Then it can be easily verified thatA(θ) =
∑d
j=1A(θj) where

we overload the notation A(θj) to be the partition function of
the univariate distribution p(yj |θj). As a result, the covari-
ance matrix Σ becomes a diagonal matrix with diagonal ele-
ments are Σjj = ψA′′(θj). This is the case for the isotropic
Gaussian. For convenience, we define

ν(µ) = A′′(θ). (8)

For a over-complete representation, the degree of freedom
of y is smaller than d. For example, if the sample vector rep-
resents a discrete distribution, i.e.,

∑d
j=1 yj = 1 and yj > 0,

it is natural to model the data by the Dirichlet distribution.
However, if we write the Dirichlet distribution in the form of
natural exponential family (3), the representation is not min-
imal. Another example is that if the samples are normalized
such that ‖y‖2 = 1, it is natural to model the data by the
von Mises-Fisher distribution, of which the representation in
the form of (3) again is not minimal. For certain distribu-
tions, transforming from the over-complete representations
to the minimal ones is non-trivial. The previous EPCA al-
gorithm is based on minimizing the Bregman divergence, and
has an one-to-one map to the natural exponential family with
the minimal representation [Wainwright and Jordan, 2008].
Therefore, EPCA only works with the natural exponential
family with minimal representation. On the other hand, our
GLPCA does not have this restriction. It works with both
minimal and over-complete representations.

2.2 Link Function
Apart from the distribution of y, the link function is another
important part of GLPCA. From previous section, we have

µ = f(η) = ∇A(θ) (9)



In the case that θ(η) = η, i.e., f = ∇A, the function f
is called canonical link. For models with a canonical link,
some theoretical and practical problems are easier to solve.
If a canonical link is used and the data are modeled by the
natural exponential family with the minimal representation,
GLPCA is equivalent to EPCA [Collins et al., 2002] (see
Section 4). Table 1 summarizes the characteristics for some
exponential family distributions together with natural param-
eters and canonical link functions. GLPCA also can work
with non-canonical link functions. For a specific distribution,
a family of special link functions is valid. For example, the
(canonical) logit link and cumulative Gaussian link can both
be used with the Bernoulli distribution, called logistic and
probit model respectively. A very flexible class of link func-
tions is the class of power functions which are also called the
Box-Cox transformations [Box and Cox, 1964]. They can be
defined for all models for which we have observations with
positive means. This family is usually specified as

η =

{
µλ if λ 6= 0;
lnµ if λ = 0.

(10)

We summarize some commonly used link functions in Ta-
ble 2

3 Maximum Likelihood Estimation
In this section, we present the algorithm for maximum like-
lihood estimation based on the natural gradient ascent in the
Riemannian manifold of distributions.

3.1 Natural Gradient in Riemannian Manifold of
Distributions

Consider a family S of parameterized distributions p(x|θ).
Under some smoothness conditions, S = {pθ} can be consid-
ered as a differential manifold [Amari and Nagaoka, 2000].
The log-likelihood, denoted as `(y;θ) = ln p(y|θ) is a scalar
function in this manifold. The Fisher information matrix is
defined as G = [gij ], where

gij(θ) = Ey

[
∂`

∂θi

∂`

∂θj

]
. (11)

By definition, the G is always symmetric and positive semi-
definite. Under certain regularity condition over the distribu-
tion p(x|θ) (such as exponential family), the Fisher informa-
tion matrix is positive definite. For positive definite Fisher in-
formation matrix, a Riemannian manifold is induced by defin-
ing the Riemannian metric over the differential manifold S as

〈∂i, ∂j〉θ = gij(θ), (12)

which is also called Fisher metric or information metric in in-
formation geometry literature. It can be proved that the only
Riemannian metric is Fisher metric that the geometry is in-
variant under coordinate transformations of θ and also under
one-to-one transformations of random variable y. The tech-
nical detail can be found in [Amari and Nagaoka, 2000].

The steepest ascent direction of a function `(θ) in a Rie-
mannian manifold is given by

∇̃`(θ) = G−1(θ)∇`(θ), (13)

where∇`(θ) is the conventional gradient

∇`(θ) =

[
∂

∂θ1
`(θ), . . . ,

∂

∂θd
`(θ)

]T
. (14)

∇̃`(θ) is called natural gradient of ` in the Riemannian man-
ifold [Amari, 1998]. When the manifold is Euclidean space
and the coordinate system is orthonormal, we have ∇̃`(θ) =
∇`(θ). This argument suggests the natural gradient ascent
algorithm of the form

θt+1 = θt + τ∇̃`(θt), (15)
where τ is the learning rate that determines the step size.
Since the Riemannian manifold is invariant under transfor-
mation of coordinate θ and random variable y, the natural
gradient ascent algorithm is also invariant under the transfor-
mation. The natural gradient method has been successfully
applied on various machine learning models, including neu-
ral network and ICA [Amari and Nagaoka, 2000].

3.2 Maximizing Likelihood of GLPCA
For GLPCA model, the log-likelihood of the observations is

L =

n∑
i=1

`(yi;θi)

=

n∑
i=1

(
yTi θi −A(θi)

ψ
+ C(yi, ψ)

)
,

(16)

where
θi = θ(ηi) = θ(WTxi + m). (17)

Our goal is to maximize L w.r.t. X = [xi]
n
i=1,W = [wj ]

d
j=1,

and m. Note that ψ and C(yi, ψ) have no influence on our
objective.

To apply the natural gradient method to GLPCA model,
we have to derive the gradients and the Fisher information
matrices. However the parameter W and X are matrices. To
proceed, in this paper we utilize the tensor notation [Kolda
and Bader, 2009] for our derivation.

Taking the first derivative of (16) w.r.t. X, W and m yields
the gradients

∇XL =WZ,

∇WL =XZT ,

∇mL =Z1,

(18)

where
Z = [∇fT (ηi)Σ

−1
i (yi − µi)]ni=1, (19)

Σi = Σ(µi) and 1 = [1, . . . , 1]T . By definition, one can
easily show that the Fisher information matrix is

G(θ) = −Ey[∇2
θL]. (20)

For our problem, since the parameters are of the matrix form,
the Fisher information are tensors, which are given by1

G(X) = −T ×1 W ×3 W,

G(W) = −T ×2 X×4 X,

G(m) = −T ×2 1T ×4 1T ,

(21)

1Due to the restriction of the paper length, we omit the proof.



Table 1: Characteristics of some exponential family distributions.
Distribution A(θ) g(θ) = ∇A(θ) Σ(µ) or ν(µ) ψ

Gaussian N(µ, σ2) θ2/2 θ 1 σ2

Bernoulli B(µ) ln(1 + eθ) ln
(

eθ

1+eθ

)
µ(1− µ) 1

Poisson P (µ) eθ eθ µ 1
Gamma A(µ, ν) − ln(−θ) −1/θ µ2 1/ν

where T is a 4th-order tensor with entries

T·,i,·,i = ∇fT (ηi)Σ
−1
i ∇

T f(ηi) (22)

and all the other entries being zeros. The notation ×t is the
tensor t-mode product, i.e., multiplying a tensor by a matrix
(or a vector) in mode t.

To compute the natural gradient, we have to unfold the ten-
sors G(·) into the matrices G(vec(·)). The unfolded Fisher
information matrix G(vec(X)) is a block diagonal matrix
with the diagonal blocks of size d× d given by

Gii(vec(X)) = −WT·,i,·,iWT . (23)

The Fisher information matrix G(vec(W)) comprises blocks
of size d× d in which block jk is given by

Gjk(vec(W)) = −XTj,·,k,·XT . (24)

The Fisher information matrix G(m) is simply

G(m) = −
n∑
i=1

T·,i,·,i. (25)

The gradients are easily unfolded as

∇vec(X)L = vec(∇XL),

∇vec(W)L = vec(∇WL).
(26)

Then the natural gradients w.r.t. to X, W and m are

∇̃vec(X)L = G(vec(X))−1∇vec(X)L,

∇̃vec(W)L = G(vec(W))−1∇vec(W)L,

∇̃mL = G(m)−1∇mL.

(27)

Our algorithm for solving the ML solution of (16) is to
iterate through the following three steps

vec(X∗) =vec(X) + τ∇̃vec(X)L,

vec(W∗) =vec(W) + τ∇̃vec(W)L,

m∗ =m + τ∇̃mL,

(28)

until converge. Note that in practice, the natural gradients
in (27) need not be exactly computed. One can apply the
preconditioned conjugate gradient descent method to solve
the linear system

G∇̃L = ∇L (29)

for ∇̃L in a few steps to produce approximated natural gra-
dients with an acceptable precision which is sufficient for up-
dating our parameters. This method is very efficient.

4 Exponential Family PCA
If a canonical link function is used, we recover the exponen-
tial family PCA. Following our natural gradient method for
ML estimation, we obtain an efficient algorithm for exponen-
tial family PCA.

If the canonical link function f(·) = g(·) = ∇A(·) is used
in GLPCA, the gradients in (18) become

∇XL =W[Y − f(WTX + m1T )],

∇WL =X[Y − f(WTX + m1T )]T ,

∇mL =[Y − f(WTX + m1T )]1.

(30)

The tensor T can be simplified with entries T·,i,·,i = Σi and
all other entries being zeros. If the distribution is minimally
represented in the form of natural exponential family (3), Σi

is a diagonal matrix. Denote Vi = T·,i,·,i and Uj = Tj,·,j,·,
we have

Vi = diag[ν(g(wT
j xi + m))]dj=1

Uj = diag[ν(g(wT
j xi + m))]ni=1

(31)

The algorithm (28) now becomes
x∗i = xi + τ(WViW

T )−1W[yi − f(WTxi + m)],

w∗j = wj + τ(XUjX
T )−1X[YT

j· − f(XTwj +mj1
T )],

m∗ = m + τV−1[Y − f(WTX + m1T )]1, (32)
where V =

∑n
i=1 Vi.

In [Collins et al., 2002], the authors proposed the exponen-
tial family PCA (EPCA) model which minimizes the Breg-
man divergence

n∑
i=1

BF (yi‖g(θi)) =

n∑
i=1

d∑
j=1

BF (yij‖g(θij)), (33)

where BF is the Bregman divergence associated with func-
tion F . There is a duality relationship between the Bregman
divergence BF (y‖g(θ)) and the natural exponential family
p(y) = exp(yθ−A(θ) +C(y)). We can express the negative
log-likelihood through Bregman divergence as [Azoury and
Warmuth, 2001; Forster and Warmuth, 2002]
− ln p(y|θ) = − lnC(y)− F (y) +BF (y‖g(θ)). (34)

The model implicitly assumes that the distribution of the sam-
ple vector y satisfies the factorization condition (7). In other
words, the distribution of the samples must be minimally rep-
resented by (3) and the degree of freedom of any sample yi
must be d. This assumption excludes some commonly used
distributions, such as von Mises-Fisher. The Bregman diver-
gence based EPCA model is equivalent to a special case of
our GLPCA model, where the distribution used is assumed
satisfying the factorization condition (7) and the canonical
link function corresponding to the distribution is used.



Table 2: Link functions.
Link η = g(µ) µ = g−1(η) Range
Log lnµ eη µ ≥ 0

Negative log-log − ln(− ln(µ)) exp(− exp(−η)) µ ∈ [0, 1]
Complementary log-log ln(− ln(1− µ)) 1− exp(− exp(η)) µ ∈ [0, 1]

Negative Binomial ln
(

µ
µ+ 1

k

)
exp(η)

k(1−exp(η)) µ ≥ 0

Probit Φ−1(µ) Φ(η) = 1√
2π

∫ η
−∞ e−t

2/2dt µ ∈ [0, 1]

5 Example Models
5.1 Linear PCA
When the Gaussian noise model is assumed and the canonical
link (identity function) is used, the GLPCA algorithm simply
iterates through following steps

X = (WWT )−1W(Y −m1T ),

W = (XXT )−1X(Y −m1T )T ,

m = (Y −WTX)1/n.

(35)

This algorithm is similar to the EM algorithm for PCA (EM-
PCA) which was introduced in [Roweis, 1998]. The differ-
ence is that in EMPCA the bias term m is set to be the mean
of the data a priori and subtracted from the data before ap-
plying the EM algorithm. In our algorithm, the bias term is
optimized together with other parameters. When the algo-
rithm converges, the bias term obtained is not necessarily the
mean of the data, since the solution is not unique. However
the subspace spanned by W is identical to the one obtained
by standard PCA.

5.2 Logistic PCA
Suppose we are given a data set of which each sample yi is a
binary valued vector. It is convenient to model the data with
the multivariate Bernoulli distribution, i.e.

p(yj |θj) = θ
yj
j (1− θj)1−yj ,

p(y|θ) =

d∏
j=1

p(yj |θj).
(36)

The canonical link function of Bernoulli distribution is the
logistic function. In GLPCA, if Bernoulli and logistic link
function are used, we call this model logistic PCA. For logis-
tic PCA, Following (31), we have

Vi = diag[ν(µij)]
d
j=1,

Uj = diag[ν(µij)]
n
i=1.

(37)

where ν(x) = x(1 − x) and µij is the j-th element of µi.
Then the ML solution of logistic PCA can be obtained by
iterating through (32) with the definition (37).

5.3 Probit PCA
Besides the logistic model, we can also use the probit model
for binary data. Probit PCA has the same assumption of

multivariate Bernoulli distribution as logistic PCA. The dif-
ference is that we use the cumulative Gaussian link µij =
Φ(ηij), where

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt (38)

is the CDF of standard normal distribution. Following (22),
we have

Vi = diag[φ(ηij)
2/ν(µi1)]dj=1,

Ui = diag[φ(ηij)
2/ν(µi1)]ni=1,

(39)

where φ(·) is the PDF of standard normal distribution and ηij
is the j-th element of ηi. The ML solution of probit PCA can
also be obtained with algorithm (32). Probit PCA provides a
nice alternative to logistic PCA.

6 Experiments
In this section, we demonstrate our GLPCA method on some
benchmark data sets. We compare the logistic and probit
GLPCA with EPCA on binary data of varying size, dimen-
sionality, and sparsity. Results of standard PCA based on sin-
gular value decomposition of mean-centered data is also pre-
sented. We use two datasets from the UCI machine learning
repository. One is the anonymous Microsoft Web Database
and we select the first 5000 instances with 285 binary vari-
ables in each instance for experiments. The proportion of
nonzero variables in the data is ρ = 0.011. The other dataset
is the Advertisement Data consisting of both continuous and
binary variables. We only use the 1555 binary features for
each instance and remove the corrupted ones. Finally we have
3264 instances with ρ = 0.0082.

We use the reconstruction accuracy as the evaluation
criterion. The binary reconstructions are computed by
thresholding the continuous values estimated from the low-
dimensional representation. Two kinds of measures, a mini-
mum error rate and a balanced error rate, are employed. The
minimum error rate is obtained by choosing the best threshold
to minimize the overall error rate, and the balanced error rate
is obtained by choosing the threshold to equalize the false
positive and false negative error rates. As the experimental
data are very sparse, both error rates capture different notions
of the performance.

The experimental results are shown in Table 3. We can see
that both logistic and probit GLPCA outperform the standard
PCA on all tasks. Our probit GLPCA outperforms the logistic
EPCA algorithm [Schein et al., 2003] in some experiments.
It shows different link functions may have strength for mod-
eling different data sets. For binary data, the probit GLPCA
is a good alternative of logistic model.



Table 3: Minimum and balanced error rates on two datasets for the task of binary data reconstruction. Each dataset is a d × n
binary matrices with ρdn nonzero elements. The best results for each setting are shown in bold.

Anonymous Microsoft Web Database (n = 5000, d = 285, ρ = 0.011)
Minimum Error Rates (%) Balanced Error Rates (%)

q Linear Logistic Logistic Probit Linear Logistic Logistic Probit
PCA EPCA GLPCA GLPCA PCA EPCA GLPCA GLPCA

1 0.905 0.926 0.907 0.969 14.9 12.2 11.6 11.7
2 0.830 0.718 0.713 0.757 13.9 10.6 9.75 8.05
4 0.725 0.499 0.472 0.625 13.4 6.01 5.57 4.31
8 0.654 0.148 0.137 0.148 13.1 1.97 1.74 1.47

Advertisement Data (n = 3264, d = 1555, ρ = 0.0082)
Minimum Error Rates (%) Balanced Error Rates (%)

q Linear Logistic Logistic Probit Linear Logistic Logistic Probit
PCA EPCA GLPCA GLPCA PCA EPCA GLPCA GLPCA

1 0.724 0.697 0.699 0.697 25.8 18.6 14.8 13.22
2 0.698 0.500 0.444 0.451 22.8 7.34 6.80 6.52
4 0.652 0.223 0.224 0.222 20.8 3.58 3.37 3.29
8 0.629 0.0427 0.0415 0.0428 20.4 0.852 0.789 0.563

7 Conclusion
In this paper we proposed a general dimensionality reduction
method based on a generalized linear model, called GLPCA.
This general method admits a larger range of distributions and
link functions. It further extends the previous exponential
family PCA model to use non-canonical link functions. An
unified meta algorithm based on natural gradient ascent in
Riemannian manifold of distributions was proposed for max-
imizing the likelihood of the model. Deriving the algorithm
for specific distribution and link function can be easily done
by plugging in corresponding quantities. We also derived the
logistic and probit GLPCA from our framework for binary
data. Experimental results were shown to validate the effec-
tiveness of the proposed method.
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