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Abstract

Existing person re-identification (re-id) benchmarks and
algorithms mainly focus on matching cropped pedestrian
images between queries and candidates. However, it is dif-
ferent from real-world scenarios where the annotations of
pedestrian bounding boxes are unavailable and the target
person needs to be found from whole images. To close the
gap, we investigate how to localize and match query per-
sons from the scene images without relying on the anno-
tations of candidate boxes. Instead of breaking it down
into two separate tasks—pedestrian detection and person
re-id, we propose an end-to-end deep learning framework
to jointly handle both tasks. A random sampling softmax
loss is proposed to effectively train the model under the su-
pervision of sparse and unbalanced labels. On the other
hand, existing benchmarks are small in scale and the sam-
ples are collected from a few fixed camera views with low
scene diversities. To address this issue, we collect a large-
scale and scene-diversified person search dataset, which
contains 18,184 images, 8,432 persons, and 99,809 an-
notated bounding boxes. We evaluate our approach and
other baselines on the proposed dataset, and study the influ-
ence of various factors. Experiments show that our method
achieves the best result.

1. Introduction

Person re-identification (re-id) targets on matching
pedestrian images across camera views. It is a fast growing
research area [41, 18, 20] and has many important applica-
tions in video surveillance and multimedia, such as pedes-
trian retrieval [22], cross-camera visual tracking [34], and
activity analysis [36]. This problem is particularly chal-
lenging because of complex variations of viewpoints, poses,
lighting, occlusions, resolutions, background clutter and
camera settings.

Although numerous re-id datasets and algorithms have
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been proposed in recent years and the performance on these
benchmarks have been improved substantially, there is still
a big gap with practical applications. In most benchmarks
[18, 38, 9, 39, 22, 17], a query person is matched with
manually cropped pedestrians in the gallery (as shown in
Fig. 1(a)) instead of searching for the target person from
whole images. Under the protocols of these benchmarks,
the developed re-id algorithms assumed perfect pedestrian
detection. However, the annotations of pedestrian bound-
ing boxes are unavailable in real-world scenarios. Existing
pedestrian detectors will unavoidably produce false alarms,
misdetections, and misalignments, which could harm the
re-id result. Under such circumstances, current re-id algo-
rithms cannot be applied directly to real surveillance sys-
tems. Thus, it is urgent and important to solve this problem
by proposing new benchmarks and effective approaches for
person search, i.e., searching for target persons in whole im-
ages, which is more difficult than the challenges posed by
existing re-id benchmarks. Some targets could be missed
in the first detection step. Therefore, the challenges from a
large number of false alarms and misdetections cannot be
fully studied based on these benchmarks.

To close the gap between traditional re-id research and
practical applications, we investigate how to localize and
match query persons from the scene image without rely-
ing on the candidate annotations. Different from conven-
tional approaches that break down this person search prob-
lem into two separate tasks—pedestrian detection and per-
son re-identification, we propose an end-to-end deep learn-
ing framework to jointly handle the challenges from both
the aspects. Joint optimization brings multiple benefits, for
example, the learned detector could allow some false alarms
that can be easily handled by re-id, while focusing on other
hard samples. On the other hand, the detector and re-id parts
can better fit each other to reduce the influence of detection
misalignments. We share a fully convolutional neural net-
work to extract features for detecting pedestrians and pro-
ducing discriminative re-id features. A random sampling
softmax loss is proposed to effectively train the model un-
der the supervision of sparse and unbalanced labels. By uni-
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Figure 1. Samples of pedestrians in existing benchmarks and our dataset. Query in each row of (a) is collected from VIPeR [9],
CUHK03 [18], and Market-1501 [38], respectively. Their gallery sets consist of manually cropped pedestrians with green border rep-
resenting correct matching while red border is wrong. Samples in (b) are from our dataset. For each cropped query person, some gallery
images contain the target person (labeled by red bounding boxes) while the rest serve as distractors

fying the whole process into a single deep neural network,
the searching performance and speed get substantially im-
proved compared with traditional approaches.

To the best of our knowledge, existing benchmarks are
small in scale and the samples are collected from a few
fixed camera views, which have low scene diversities. To
justify our proposed pipeline and also serve the community,
we collect a large-scale and scene-diversified person search
dataset. It includes 18, 184 images and 8, 432 query peo-
ple. They are collected from hundreds of scenes from street
and movie snapshots. We manually annotate all the peo-
ple inside each image, resulting in 99, 809 bounding boxes,
and match the same person across different images. Some
example are shown in Fig. 1(b).

The contributions of this paper are summarized in three
folds. (1) We propose an end-to-end deep learning frame-
work to search for the query persons from whole images in
the gallery, which is much closer to real applications. In-
stead of simply combining the pedestrian detector and per-
son re-id, we jointly optimize these two objectives in a uni-
tary process. Several training strategies are proposed to ef-
fectively train the model and the experimental results show
that our framework outperforms other baselines. (2) We
collect a large-scale benchmark dataset for person search,
covering hundreds of scenes from street and movie snap-
shots. Rich annotations and protocols are also provided to
facilitate the experiments on training and testing the mod-

els. The dataset and codes will be released to the public. (3)
A full set of benchmark is established on our dataset, which
consists of the performance of our method, as well as other
pedestrian detection and person re-id baselines. We also
study the influence of various factors empirically, including
detection recall, gallery size, occlusion and resolution.

2. Related Work
Person Re-identification and Pedestrian Detection.

Existing works of person re-identification focus on man-
ually designing discriminative features [35, 11, 37], auto-
matically learning features with convolutional neural net-
works (CNN) [18, 1], learning feature transforms across
camera views [25, 24, 30], and learning distance met-
rics [40, 10, 26, 23, 21]. Li et.al. [18] and Ahmed et.al. [1]
designed specific CNN models for person re-id. Both the
networks utilized a pair of cropped pedestrian images as in-
put and employed a verification loss function to train the
parameters. Ding et.al. [5] utilized triplet samples for train-
ing CNNs to minimize the feature distance between the
same person, while maximize the distance between differ-
ent people. Several recent works addressed on improv-
ing person re-id performance on abnormal pedestrian im-
ages. Li et.al. [19] proposed a multi-scale metric learning
method for re-id under low-resolution images, while Zheng
et.al. [42] proposed a local-global matching framework for
paritially occluded pedestrian images.



Ours Market-1501 [38] CUHK03 [18] VIPeR [9] i-LIDS [39] GRID [22] CUHK01 [17]
# identities 8,432 1,501 1,360 632 119 250 971
# bboxes 99,809 32,643 13,164 1,264 476 500 1,942

Table 1. Statistics of our person search dataset and existing re-id datasets. Note that in our dataset, the bounding boxes are only used for
training and evaluation. Person search methods will be tested with the whole images as input instead of the bounding boxes

For pedestrian detection, DPM [7] and ACF [6] were the
most commonly used pedestrian detectors. They relied on
hand-crafted features and linear classifiers to detect pedes-
trians. Recent years, CNN-based pedestrian detectors have
also been developed. Various factors, including CNN model
structures, training data, and different training strategies are
studied empirically in [14]. Tian et.al. [33] utilized pedes-
trian and scene attribute labels to train CNN pedestrian de-
tectors in a multi-task manner. Cai et.al. [4] proposed a
complexity-aware boosting algorithm for learning CNN de-
tector cascades.

Datasets and Benchmarks. Many person re-
identification datasets have emerged in recent years, includ-
ing VIPeR [9], ETHZ [29], i-LIDS [39], PRID2011 [13],
RGB-D [2], GRID [22], CUHK01 [17], CUHK02 [16], and
Multi-Camera Surveillance Database [3]. However, these
datasets provided only manually cropped pedestrian im-
ages, and thus are not suitable for our person search prob-
lem. CUHK03 [18] provided pedestrian bounding boxes
generated by the Deformable Part-based Model (DPM) [7]
aside from manually cropped images. But the detection
false alarms were manually removed. It can only be used to
evaluate the influence of detection misalignments. Market-
1501 [38] consisted of more than 32, 000 DPM detected
bounding boxes, including both the true pedestrian detec-
tions and some false alarms. However, they did not pro-
vide the original whole images, thus if a person was missed
by the detector, he/she was also excluded from the query
and gallery sets. The influence of misdetections was not
clear. On the other hand, since it fixed DPM as the detector,
we cannot evaluate how different detectors would affect the
performance of the person search algorithms. It is also im-
possible to develop end-to-end learning methods for person
search based on these benchmarks.

From another perspective, the numbers of camera views
in the above datasets are small (< 10). It is uncertain about
the generalization capability of an algorithm given a pair of
new camera views without extra training samples. In our
dataset, the camera views are not fixed. It contains various
viewpoints and background scenes to test the robustness of
the algorithms. We summarize the statistics of our dataset
and some other existing ones in Table 1.

3. A New Benchmark for Person Search

To close the gap between traditional re-id methods
and real application scenarios, we contribute a large-scale
benchmark dataset for comprehensive evaluation of person
search from whole images. The dataset can be divided into
two parts according to the image sources: street snaps and
movies. For street snaps, 12, 490 images and 6, 057 query
persons are collected with hand-held cameras across hun-
dreds of scenes. Note that the total number of pedestrians
contained in the 12, 490 images is much larger than 6, 057.
Each selected query person appears in at least two images
captured from different viewpoints. We have made efforts
on including variations of viewpoints, lighting, resolutions,
occlusions, and background as much as possible during im-
age collection, in order to intensively reflect the real appli-
cation scenarios and increase scene diversity.

We choose movies and TV dramas as another source
for collecting images, because they provide more diversi-
fied scenes and more challenging viewpoints. Some ex-
amples are shown in Fig. 1(b). 5, 694 images and 2, 375
query persons are selected from movies and TV dramas.
We exclude query persons who appeared with half bodies
or abnormal poses such as sitting or squatting. Query per-
sons who change clothes and decorations in different videos
frames are not selected in our dataset, since person re-id and
person search recognize identities based on body shape and
clothes. It is also ensured that the selected video frames are
from different scenes or had large variation on viewpoints.

In order to evaluate the influence of detectors on the re-
identification performance, the bounding boxes of all the
pedestrians whose heights larger than 50 pixels are man-
ually annotated. The same persons appeared in different
images are associated.

3.1. Evaluation Protocols

The dataset contains 18, 184 images and 8, 432 selected
query persons in total. Each query person appears in at least
two images. Each image may contain more than one query
person and many background people. The data is parti-
tioned into a training set and a test set. The training set
contains 11, 206 images and 5, 532 query persons. The test
set contains 6, 978 images and 2, 900 query persons. The
training and test sets have no overlap on images or query
persons.

We design several evaluation protocols for testing. For
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Figure 2. Distributions of the heights of test persons (left) and
background persons (right) in test images. We keep the pedestri-
ans higher than 50 pixels. The heights of persons spread in a wide
range. The selected query persons appear larger than background
persons in general

(a) (b) (c)
Figure 3. Examples of query persons from different subsets:
(a) high resolution without occlusion, (b) occlusion, (c) low-
resolution

each test person, its query image is cropped from one of
the test images containing the person. Its gallery set in-
cludes the other test images containing the query person,
as well as some randomly selected test images not con-
taining the query person. Different queries have different
gallery sets. Moreover, our test images are captured from
many scenes and viewpoints. Therefore, it is very diffi-
cult for the person search algorithms to overfit to particular
scenes, camera views, or gallery sets. In order to evalu-
ate the influence of gallery size, we have designed different
evaluation protocols by setting the gallery size to 50, 100,
500, 1, 000, 2, 000, and 4, 000. Each image contains 5.3
background persons on average. If the gallery size is set
to 100, a query person has to be distinguished from around
5, 300 background persons and thousands of non-pedestrian
bounding boxes, which is challenging. Fig. 2 shows the
distributions of bounding box heights of test query persons
and background persons in test images. We can see that
the heights of persons spread in a large range, and the se-
lected query persons are larger than background persons in
general. Note that we only annotate pedestrians higher than

50 pixels. In our experiments, pedestrian detectors do not
evaluate bounding boxes whose heights are smaller than 50.

Low-resolution Subset. In order to evaluate the influ-
ence of resolution on person search, we construct a subset
which contains query persons of low resolutions. Fig. 2(a)
shows the distribution of the heights of bounding boxes for
query persons and we take 10% of the query persons with
the smallest heights into this subset. This subset contains
290 cropped low-resolution pedestrian regions as queries.
Again, each query has a different gallery set. Some exam-
ples of selected low-resolution query persons are shown in
Fig. 3(c) and high resolution samples are shown in Fig. 3(a)
for comparison. There is a separate protocol to evaluate per-
son search with low-resolution queries on this subset.

Occlusion Subset. Occlusion is another factor affect-
ing person search. We identify 187 occluded query persons
from the test set and add them to this subset. The occlu-
sion of each person is larger than 40%. Some examples are
shown in Fig. 3(b).

3.2. Evaluation Metrics

Person search is different from re-id which only requires
matching with cropped images in the gallery. Therefore,
two evaluation metrics are used for person search. The
first metric is mean Averaged Precision (mAP). It treats per-
son search as a detection problem, i.e. detecting the query
person from all the images in the gallery. For each query
person, there are only a few ground truth bounding boxes
among millions of candidate windows in the gallery. A can-
didate window is considered as positive if its overlap with
the ground truth is larger than 0.5. The mAP is a commonly
used metric for object detection. For each query person, an
AP is calculated from its Precision-Recall curve, and the
mAP is calculated by averaging APs over all the queries.

The second metric is the top-k matching rate on bound-
ing boxes. A matching is counted if a bounding box among
the top-k predicted boxes overlaps with the ground truth
larger than the threshold. It has the constraint that each
ground truth can at most nominate one bounding box which
has the largest matching score as true. This metric is dif-
ferent from mAP, since it treats person search as a ranking
and localization problem. The metric is motivated by the
classification/localization task of ImageNet [28].

4. Method
To address the problem of person search, we propose an

end-to-end deep learning framework which jointly handles
the pedestrian detection and the person re-identification. As
shown in Fig. 4, the framework consists of three parts. First,
we utilize a fully convolutional neural network (FCN) to
extract feature maps from an input image of arbitrary size.
Then, a pedestrian proposal network is built on the top of
the feature maps to predict pedestrian bounding boxes. At
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Figure 4. Overview of our framework. Given a whole image, we first utilize a fully convolutional network to extract feature maps. Then
we deploy a convolution layer with 512 3 × 3 filters on the top of the feature maps, followed by sibling anchor classification (denoted by
Anchor cls) and regression layers (denoted by Anchor reg) to predict pedestrian ROIs. These ROIs are then used to pool the feature vector
for each candidate box on the convolutional feature maps. Three fully connected layers are utilized to produce the final feature vector (fc8)
for computing distances. The boxes with dashed orange borders represent the loss layers

last, for each confident candidate box, we use the ROI pool-
ing technique [12] to pool a fixed-length feature vector in-
side its region on the convolutional feature maps, followed
by several fully connected layers to produce the final fea-
ture vector for re-id. By sharing the FCN for pedestrian
detection and re-id feature extraction, we could accelerate
the person search process. In the following, we will de-
scribe the network structure, as well as the training and test
procedures.

4.1. Model Structure

We adopt the commonly used VGG16 [31] model for
our convolutional layers (conv1 to conv5) in FCN and the
first two fully connected layers (fc6 and fc7) in re-id feature
extraction. For the pedestrian proposal network, we add a
512 × 3 × 3 convolutional layer on the top of the feature
maps, and follow [27] to associate 9 anchors at each feature
map location. The module will then predict the score of
person / non-person and the bounding box regression result
for each anchor.

After the ROI pooling, we summarize the features for
each pedestrian proposal region by using two fully con-
nected layers (fc6 and fc7). However, the dimension of
fc7 is 4096, which slows down the feature distance com-
putation for re-id. Therefore, we append another fully con-
nected layer (fc8) after fc7, which reduces the dimension to
256 and serves as the final feature vector for re-id. More-
over, another bounding box regression layer is employed on
the top of fc7 to further improve the localization ability for
better box alignments.

4.2. Training Phase

At the training phase, several loss functions are deployed
to train the network to detect pedestrians and produce dis-

criminative features for re-id. We use the smoothed-L1
loss [8] for the two bounding box regression layers. For the
pedestrian proposal module, a softmax loss is employed to
classify pedestrian / non-pedestrian. While for the re-id fea-
ture extraction part, we also add a softmax loss layer on the
top of fc8, but it aims at classifying the person identities. It
is shown in several previous works that such kind of classi-
fication task could greatly benefit the feature learning [32].
The feature representation in fc8 has to be highly discrimi-
native, since it is required to distinguish a large number of
identities in the training set. Specific to our framework, we
further include a background class along with the identities
to suppress false alarms generated by the pedestrian pro-
posal net. The overall loss is the sum of the previous four
loss functions, and the gradients w.r.t. the network parame-
ters are computed through backpropagation.1

A key challenge to train the proposed framework lies
in the identity softmax classification loss. First, our train-
ing set has 5532 identities, thus the softmax target is very
sparse. Second, due to computation cost on large images,
each minibatch consists of only two input scene images,
which often contain no more than ten different training
identities. Thus the minibatch label distribution mismatches
dramatically with the dataset label distribution and lacks di-
versity. When combined together, these two issues make it
extremely difficult for the net to receive proper gradients. In
practice, we found that the training loss would not decrease
if we directly finetune the network from the ImageNet pre-
trained VGG16 model.

To overcome this problem, we first need to set a good ini-
tial point for the softmax classifier. Specifically, we crop the

1In practice we did not backpropagate the losses of the re-id parts to
the pedestrian proposal module through the ROI pooling layer.



ground truth bounding boxes for each training person and
randomly sample the same number of background boxes.
Then we shuffle the boxes, resize them to 224×224, and
finetune the VGG16 model to classify the boxes with batch
size of 256. This finetuning process works properly because
of the rich label diversity inside each minibatch, and the
resulting model is used as the initial point for training the
whole framework.

Next, we propose a random sampling softmax (RSS) loss
layer to replace the original one. For the original softmax
loss, the gradients could favor only a few number of classes
that appear in a minibatch, while severely suppress the other
classes. The RSS loss layer solves this problem by ran-
domly selecting a subset of softmax neurons for each input
sample to compute the loss and gradients. Detailed formu-
lation is given below.

Suppose the target classes are from 1 to C + 1, where
class C + 1 is the background and the others are the identi-
ties. Denote each data sample by {x, t}, where x ∈ RC+1

is the classifier scores (input of the softmax) and t is a 1-
of-(C + 1) binary vector representing the label. Then the
original softmax loss can be written as

l = −
C+1∑
i=1

ti log yi, where yi =
exi∑C+1

j=1 exj

. (1)

The RSS loss will randomly select K(K � C + 1)
dimensions from x and t to compute the loss and gradi-
ents. Suppose the selected indices are i1, i2, . . . , iK , the
sampled classifier scores and label vector can be denoted
by x̃ = (xi1 , xi2 , . . . , xiK )T and t̃ = (ti1 , ti2 , . . . , tiK )T .
Then the RSS loss function is defined as

l̃ = −
K∑
i=1

t̃i log ỹi, where ỹi =
ex̃i∑K
j=1 e

x̃j

. (2)

Suppose the label class is c, we define the following rules to
generate the indices:

1. Set i1 to c;

2. If c = C+1, sample i2, . . . , iK from {1, . . . , C} uniformly;

3. If c 6= C + 1, set i2 to C + 1, and sample i3, . . . , iK from
{1, . . . , C} \ c uniformly.

These rules make sure that the background class will al-
ways be selected. This helps the net to better distinguish be-
tween identities and false alarms predicted by the detector
net. K is a hyperparameter that controls how many classes
will be suppressed. We find that choosing K = 100 works
well in practice.
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Figure 5. The precision-recall curves of the ACF and the Deep
pedestrian detectors on our test set. Some (recall, precision) data
points are annotated on the curves

4.3. Test Phase

During the test phase, for each gallery image, we can get
the features (fc8) of all the candidate pedestrians by per-
forming the network forward computation once. While for
the query image, we replace the pedestrian proposals with
the given bounding box, and then do the forward computa-
tion to get its feature vector (fc8). After that, we compute
the pairwise Euclidean distances between the query features
and those of the gallery candidates, which are utilized later
for re-id evaluation. Notice that we decouple the feature
computations for the query and gallery images, which is dif-
ferent from previous deep learning re-id approaches [18, 1].
Thus the gallery features can be reused for other queries,
which further accelerates the search process. Be reminded
that the purpose of the net in Fig. 4 is to train the feature ex-
tractor for re-id. Although C identities are used in training,
the feature extractor can be applied to new identities outside
the training data. It has been proved to be effective in face
verification applications [32].

5. Experiments
To investigate the influence of various factors on person

search and demonstrate the effectiveness of our proposed
approach, we conduct several groups of experiments on the
new benchmark. In this section, we first detail the base-
line methods and experiment settings in Section 5.1. Then
we evaluate the baselines with separate detection and re-id
in Section 5.2. Section 5.3 shows the effectiveness of our
approach, and some ablation studies are conducted in Sec-
tion 5.4. At last, we present the influence of various factors,
including detection recall, gallery size, person occlusion,
and image resolution.

5.1. Baseline Methods and Experiment Settings

A straightforward solution to searching a person in-
side an image is to break down the problem into two
subtasks—pedestrian detection and person re-identification,
and choose algorithms separately for each task. Therefore,



Euclidean KISSME [15] BoW [38] IDNet Ours
mAP top-1 mAP top-1 mAP top-1 mAP top-1 mAP top-1

ACF [6] 21.7 25.9 32.3 38.1 42.4 48.4 47.3 53.3
Deep 28.0 33.0 39.1 44.9 48.3 54.1 52.6 59.0 55.7 62.7
GT 41.1 45.9 56.2 61.9 62.5 67.2 66.5 71.1

Table 2. Comparisons between our approach and four person re-identification methods under two pedestrian detectors (ACF and Deep), as
well as the ground truth boxes (GT). The DenseSift+ColorHist [37] features are used for Euclidean and KISSME

we combine several existing pedestrian detectors and per-
son re-id methods as our baselines.

For the pedestrian detection task, ACF [6] is a widely
used pedestrian detector. We train it on our dataset by using
the publicly available tools provided by the authors. On
the other hand, the FCN and pedestrian proposal network in
our framework can also be treated as a detector. We thus
discard the re-id parts and train only the remaining layers.
The resulting model serves as another baseline pedestrian
detector (Deep). The precision-recall curves of these two
detectors on our test set are shown in Fig. 5. At last, we
utilize the ground truth bounding boxes as a perfect detector
(GT) to compare with other detection results.

For the person re-identification task, we use the
BoW [38] feature with cosine distance, as well as the Dens-
eSift+ColorHist [37] feature (reduced to 256 dimension by
using PCA) with Euclidean and KISSME [15] distance met-
ric. The KISSME metric is learned on our training set.
Moreover, by discarding the pedestrian proposal network
in our framework and training the remaining net to classify
identities from cropped pedestrian images, we get another
baseline re-id method (IDNet). Note that its model capacity
is approximately the same as our framework.

Our method is trained end-to-end that jointly handles the
pedestrian detection and the person re-identification. The
model structure and training strategies are listed in Sec-
tion 4. The initial learning rate is set to 1e-3, and decreases
to 1e-4 after 100K iterations. The training process con-
verges at 120K iteration. In the following experiments, we
will report the performance based on the test protocol where
the gallery size is 100 if not specified.

5.2. Evaluation of Baselines with Separate Detection
and Re-ID

The results of our approach and different baselines under
two evaluation metrics are summarized in Table 2. We first
conduct analysis on the combination of baseline detection
and re-id methods. To understand how different pedestrian
detectors would affect the person search results, we evaluate
the performance of ACF and Deep detectors on our dataset
by drawing their Precision-Recall curves in Fig. 5. Deep
outperforms ACF in pedestrian detection and also leads to
better person search performance when it is combined with

different person re-id algorithms, as shown in Table 2. This
is consistent with our common knowledge. Since a better
pedestrian detector generates fewer false alarms, fewer mis-
detections, and more accurate boxes, it makes the re-id sub-
task much easier.

From Table 2, we also observe that the performance
of using ground truth pedestrian bounding boxes (GT) are
much better than using the other detectors. This verifies
our conjecture that although existing re-id algorithms have
achieved impressive results on various benchmarks, it does
not mean that they are ready for real-world applications.
Because detector remains to be one of the major factors that
affect the person search performance.

On the other hand, the relative performance of different
re-id algorithms are consistent across all the detectors. It
implies that existing person re-id datasets could still have
their research values, even though there is a gap between
these datasets and real-world application scenarios. If a re-
id algorithm performs better on manually cropped pedes-
trian bounding boxes (GT), it also has better performance
on ACF and Deep. Although this phenomenon matches
with our common cognition, it is not obvious without strong
evidence. We are the first to provide detailed empirical anal-
ysis on the influence of detectors and re-id.

5.3. Effectiveness of Our Approach

From Table 2, we can see that our proposed frame-
work achieves the best mAP and top-1 accuracy among
all the methods, except for those utilizing ground truth
bounding boxes. The only difference between our method
and Deep+IDNet is that we jointly optimize the detector
and re-id feature extractor in an end-to-end manner, while
Deep+IDNet is trained separately on these two subtasks.
The 3% performance gap between Deep+IDNet and our ap-
proach shows that with joint optimization, detector and re-
id feature extractor could better fit to each other. Detector
could allow some false alarms easily handled by re-id while
focusing on other hard samples. Re-id could better adapt to
the boxes generated by the detector and help reduce the false
alarms and misalignments. Moreover, our approach is about
40× faster than Deep+IDNet in practice, because sharing
the underlying convolutional layers for both the pedestrian
detection and the re-id feature extraction saves lots of com-
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Figure 6. Training loss and test mAP of different models used in
ablation experiments

putation.

5.4. Ablation Studies of Our Training Strategies

To show the effectiveness of the training strategies pro-
posed in Section 4.2, we conduct several ablation experi-
ments. First, we establish a baseline by training the frame-
work without the proposed strategies, i.e., using the tradi-
tional softmax loss layer for identity classification and fine-
tuning the whole net directly from the ImageNet pretrained
VGG16 model. Next, we change the initial model from Im-
ageNet pretrained VGG16 to the one stated in Section 4.2.
At last, we replace the traditional softmax layer with the
proposed RSS layer. We plot training loss and test mAP of
each method w.r.t. the training iteration in Fig. 6.

From Fig. 6 we can see that the training loss of the base-
line model remains at a high level throughout the training
process. Setting a good initial point enables the loss to
decrease, but the test mAP improves very slowly and con-
verges to about 40%. This phenomenon shows that if the
softmax target is very sparse and the minibatch contains
only a few label classes, the gradients would be biased on
these classes at each SGD iteration. Thus the whole net-
work cannot be updated efficiently. However, after replac-
ing the traditional softmax layer with the proposed RSS
layer, we can find that the training loss decreases much
faster and converges to a better local minimum. Meanwhile
the test mAP increases significantly and converges to about
55%. This big performance improvement shows that our
proposed RSS loss is effective to solve the problem.

5.5. Influence of Various Factors

Detection Recall. We investigate how detection recalls
would affect the person search performance by setting dif-
ferent thresholds on detection scores. A lower threshold
reduces the misdetections (increases the recall) but results
in more false alarms. We choose different recall rates for
the Deep and the ACF detectors, ranging from 40% to 90%,
and use the generated bounding boxes to do the person re-id
with BoW and KISSME. The results of top-1 accuracy w.r.t.
the recall rate of different baseline combinations are shown
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Figure 7. The top-k matching rates of (a) four baseline methods
under different detection recalls, (b) our method and Deep+BoW
with different gallery sizes

Deep+KISSME ACF+BoW Ours
mAP top-1 mAP top-1 mAP top-1

Whole 39.1 44.9 42.4 48.4 55.7 62.7
Occlusion 18.2 17.7 29.1 32.1 39.7 43.3

Low-resolution 43.8 42.8 44.9 53.8 35.7 42.1

Table 3. Experimental results of our algorithm and two combi-
nations of detectors and person re-identification on the occlusion
subset, low-resolution subset, and the whole test set

in Fig. 7(a). It is observed that all baselines achieve the
highest top-1 accuracy when the recall rate is 70%, which
indicates that both the false alarms and misdetections could
affect person search. We should find a best trade-off in real
applications.
Gallery Size. Person search could become more chal-
lenging when the gallery size increases. We regard the
gallery size as a hyperparameter and investigate its in-
fluence through a group of experiments. We vary the
gallery size from 50 to 4,000, and test our approach and
Deep+BoW accordingly. The results of top-1 accuracy
w.r.t. the gallery size are shown in Fig. 7(b). It can be seen
that when the gallery size increases from 50 to 4,000, more
distractors are included and the top-1 accuracies drop by
half for both the methods.
Occlusion and Resolution. We construct two subsets by
selecting abnormal samples from the whole test set as stated
in Section 3.1. One consists of low-resolution query persons
and the other consists of partially occluded persons. The
gallery size is fixed as 100 and several methods are evalu-
ated on these subsets. The results are shown in Table 3. It
is observed that all the methods perform significantly worse
on the occlusion subset than on the whole test set. On the
other hand, resolution is not a major factor that affects the
re-id methods with hand-crafted features. The results of
Deep+KISSME and ACF+BoW on this low-resolution sub-
set are even better than those on the whole test set. However,
for our method, since the ROI pooling is not effective in



extracting features inside small pedestrian bounding boxes,
the results drop down on the low-resolution subset signifi-
cantly. This phenomenon indicates that our method can still
be improved to better handle small pedestrians.

6. Conclusions
In this paper, we target on the problem of searching

query persons from whole images. Different from con-
ventional approaches that break down the problem into
two separate tasks—pedestrian detection and person re-
identification, we develop an end-to-end deep learning
framework to jointly handle both aspects with the help of
the proposed random sampling softmax loss. A large-scale
and scene-diversified person search dataset is contributed,
which contains 18,184 images, 8,432 persons, and 99,809
annotated bounding boxes. We evaluate our approach and
other baselines on the dataset, and our method of joint de-
tection and re-id achieves the best result. We also study
the influence of various factors. It is observed that detec-
tors greatly affect the person search performance of baseline
method and there is still a big gap between using the ground
truth bounding boxes and the automatically detected ones.
This phenomenon again shows the importance of jointly
considering both the detection and the re-id for the person
search problem.
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