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Abstract—We propose a novel unsupervised learning framework to model activities and interactions in crowded and complicated

scenes. Under our framework, hierarchical Bayesian models are used to connect three elements in visual surveillance: low-level visual

features, simple “atomic” activities, and interactions. Atomic activities are modeled as distributions over low-level visual features, and

multiagent interactions are modeled as distributions over atomic activities. These models are learned in an unsupervised way. Given a

long video sequence, moving pixels are clustered into different atomic activities and short video clips are clustered into different

interactions. In this paper, we propose three hierarchical Bayesian models: the Latent Dirichlet Allocation (LDA) mixture model, the

Hierarchical Dirichlet Processes (HDP) mixture model, and the Dual Hierarchical Dirichlet Processes (Dual-HDP) model. They

advance existing topic models, such as LDA [1] and HDP [2]. Directly using existing LDA and HDP models under our framework, only

moving pixels can be clustered into atomic activities. Our models can cluster both moving pixels and video clips into atomic activities

and into interactions. The LDA mixture model assumes that it is already known how many different types of atomic activities and

interactions occur in the scene. The HDP mixture model automatically decides the number of categories of atomic activities. The Dual-

HDP automatically decides the numbers of categories of both atomic activities and interactions. Our data sets are challenging video

sequences from crowded traffic scenes and train station scenes with many kinds of activities co-occurring. Without tracking and human

labeling effort, our framework completes many challenging visual surveillance tasks of broad interest such as: 1) discovering and

providing a summary of typical atomic activities and interactions occurring in the scene, 2) segmenting long video sequences into

different interactions, 3) segmenting motions into different activities, 4) detecting abnormality, and 5) supporting high-level queries on

activities and interactions. In our work, these surveillance problems are formulated in a transparent, clean, and probabilistic way

compared with the ad hoc nature of many existing approaches.

Index Terms—Hierarchical Bayesian model, visual surveillance, activity analysis, abnormality detection, video segmentation, motion

segmentation, clustering, Dirichlet process, Gibbs sampling, variational inference.

Ç

1 INTRODUCTION

THE goal of this work is to understand activities and
interactions in a crowded and complicated scene, e.g., a

crowded traffic scene, a busy train station, or a shopping
mall (see Fig. 1). In such scenes, it is often not easy to track
individual objects because of frequent occlusions among
objects and because many different types of activities often
happen simultaneously. Nonetheless, we expect a visual
surveillance system to

1. discover typical types of single-agent activities (e.g.,
car makes a U-turn) and multiagent interactions
(e.g., vehicles stopped waiting for pedestrians to
cross the street) in these scenes and provide a
summary of them;

2. label short video clips in a long sequence as different
interactions and localize different activities involved
in an interaction;

3. detect abnormal activities, e.g., pedestrians crossing
the road outside the crosswalk, and abnormal
interactions, e.g., jaywalking (people crossing the
road while vehicles are passing by); and

4. support queries about interactions which have not
yet been discovered by the system.

Ideally, a system would learn models of the scene to answer

such questions in an unsupervised way. These visual

surveillance tasks become extremely difficult in crowded

and complicated scenes. Most of the existing activity

analysis approaches are expected to fail in these scenes

(see more details in Section 1.1).
To answer these challenges, we must determine how to

model activities and interactions in crowded and compli-

cated scenes. In this work, we refer to atomic activities, such

as cars stopping, cars turning right, pedestrians crossing the

street, etc., as the basic units for describing more compli-

cated activities and interactions. An atomic activity usually

causes temporally continuous motion and does not stop in

the middle. Interaction is defined as a combination of

different types of co-occurring atomic activities, such as a
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car stops to wait for a pedestrian passing by. However, we
do not consider interactions with complicated temporal
logic, such as two people meet each other, walk together,
and then separate. Instead, we just model co-occurrences of
atomic activities. Atomic activities and interactions are
modeled using hierarchical Bayesian models under our
framework.

Our system diagram is shown in Fig. 2. We compute
local motions (moving pixels) as our low-level visual
features. This avoids difficult tracking problems in crowded
scenes. We do not adopt global motion features ([3], [4])
because, in these complicated scenes, multiple different
types of activities often occur simultaneously and we want
to separate them. Each moving pixel is labeled by its
location and direction of motion to form our basic feature
set. A long video sequence can be divided into many short
video clips. Local motions caused by the same kind of
atomic activities often co-occur in the same short video clips
since atomic activities cause temporally continuous mo-
tions. Interaction is a combination of atomic activities

occurring in the same video clip. Thus, there exist two
hierarchical structures in both our data set (long video
sequence! short video clips! moving pixels) and visual
surveillance tasks (interactions! atomic activities). So, it is
natural to employ a hierarchical Bayesian approach to
connect three elements in visual surveillance: low-level
visual features, atomic activities, and interactions. Atomic
activities are modeled as distributions over low-level visual
features and interactions are modeled as distributions over
atomic activities. Moving pixels are clustered into atomic
activities and video clips are clustered into interactions. As
explained in [5], a hierarchical Bayesian model learned from
a data set with hierarchical structure has the advantage of
using enough parameters to fit the data well while avoiding
overfitting problems since it is able to use a population
distribution to structure some dependence into the para-
meters. In our case, the same types of atomic activities
repeatedly occur in different video clips. By sharing a
common set of atomic activity models across different video
clips, the models of atomic activities can be well learned

540 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 3, MARCH 2009

Fig. 1. Examples of crowded and complicated scenes, such as traffic scenes, train stations, and shopping malls.

Fig. 2. Our framework connects: low-level visual features, atomic activities, and interactions. (a) The video sequence is divided into short clips as
documents. In each clip, local motions are quantized into visual words based on location and motion direction. The four quantized directions are
represented by colors. Each video clip has a distribution over visual words. (b) Atomic activities (e.g., pedestrians crossing the road) are discovered
and modeled as distributions over visual words. (c) Each video clip is labeled by its type of interaction, modeled as a distribution over atomic
activities. (a) Visual features. (b) Atomic activities. (c) Interactions modeled as distribution over topics.



from enough data. On the other hand, atomic activities are
used as components to further model more complicated
interactions, which are clusters of video clips. This is a
much more compact representation than directly clustering
high dimensional motion feature vectors computed from
video clips. Under hierarchical Bayesian models, surveil-
lance tasks such as video segmentation, activity detection,
and abnormality detection are formulated in a transparent,
clean, and probabilistic way compared with the ad hoc
nature of many existing approaches.

There are some hierarchical Bayesian models for lan-
guage processing, such as Latent Dirichlet Allocation (LDA)
[1] and Hierarchical Dirichlet Processes (HDP) [2], from which
we can borrow. Under LDA and HDP models, words, such
as “professor” and “university,” often coexisting in the
same documents are clustered into the same topic, such as
“education.” HDP is a nonparametric model and auto-
matically decides the number of topics, while LDA requires
knowing that in advance. We perform word-document
analysis on video sequences. Moving pixels are quantized
into visual words and short video clips are treated as
documents. Directly applying LDA and HDP to our
problem, atomic activities (corresponding to topics) can be
discovered and modeled; however, modeling interactions is
not straightforward since these models cannot cluster
documents. Although LDA and HDP allow inclusion of
more hierarchical levels corresponding to groups of docu-
ments, they require first manually labeling documents into
groups. For example, [2] modeled multiple corpora but
required knowing to which corpus each document be-
longed and [6] used LDA for scene categorization but had to
label each image in the training set into different categories.
These are supervised frameworks. We propose three novel
hierarchical Bayesian models: LDA mixture model, HDP
mixture model, and Dual Hierarchical Dirichlet Processes
(Dual-HDP) model. They co-cluster words and documents
in an unsupervised way. In the case of visual surveillance,
this means we can learn atomic activities as well as
interactions without supervision. In fact, the problems of
clustering moving pixels into atomic activities and of
clustering video clips into interactions are closely related.
The interaction category of a video clip provides a prior for
possible activities happening in that clip. On the other hand,
first clustering moving pixels into atomic activities provides
an efficient representation for modeling interactions since it
dramatically reduces the data dimensionality. We solve
these two problems together under a co-clustering frame-
work. LDA mixture model assumes that the number of
different types of atomic activities and interactions happen-
ing in the scene is known. HDP mixture model automati-
cally decides the number of categories of atomic activities.
Dual-HDP automatically decides the numbers of categories
of both atomic activities and interactions.

1.1 Related Work

Most existing approaches to activity analysis fall into two
categories. In the first, objects of interest are first detected,
tracked, and classified into different object categories. Then,
object tracks are used to model activities [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18]. For example,
Stauffer and Grimson [7] classified tracks into different

activity categories based on the positions, speeds, moving
directions, sizes, and silhouettes of objects along the tracks.
Wang et al. [9] used the modified Hausdorff distance to
compare the distance between two tracks and clustered
tracks into activities. Oliver et al. [8] used a coupled HMM
to model the interaction between two tracks. Intille and
Bobick [11] used a Bayesian network to analyze the
strategies in a football game. Since it was hard to track
objects in such a crowded scene, they manually marked
tracks. With the help of tracking, the activity of one object
can be separated from other co-occurring activities. How-
ever, tracking-based approaches are sensitive to tracking
errors. If tracking errors happen only in a few frames, the
future track could be completely wrong. These approaches
fail when object detection, tracking, and/or recognition do
not work well, especially in crowded scenes. Many of these
approaches are supervised. Some systems model primitive
events, such as “move, stop, enter-area, turn-left,” which
are similar to our atomic activities, and use these primitives
as components to model complicated activities and inter-
actions [10], [19]. However, these primitive events were
learned from labeled training examples, or their parameters
were manually specified. When switching to a new scene,
new training samples must be labeled, and parameters
must be tuned or relearned.

The second kind of approaches [3], [4], [20], [21], [22],
[23] directly use motion feature vectors instead of tracks to
describe video clips. For example, Zelnik-Manor and Irani
[4] modeled and clustered video clips using multiresolution
histograms. Zhong et al. [3] also computed global motion
histograms and did word-document analysis on video.
However, their words were frames instead of moving
pixels. They clustered video clips through the partition of a
bipartite graph. Without object detection and tracking, a
particular activity cannot be separated from other activities
simultaneously occurring in the same clip, as is common in
crowded scenes. These approaches treat a video clip as an
integral entity and flag the whole clip as normal or
abnormal. They are often applied to simple data sets where
there is only one kind of activity in a video clip. It is difficult
for these approaches to model both single-agent activities
and multiagent interactions. Although there are actions/
events modeling approaches [24], [25], [26], [27], [28], which
allowed one to detect and separate co-occurring activities,
they are usually supervised. At the training stage, they
required manually isolating activities or a training video
clip only contained one kind of activity.

In computer vision, hierarchical Bayesian models have
been applied to scene categorization [6], object recognition
[29], [30], [31], and human action recognition [26]. Refer-
ences [6], [31], [32], and [26] are supervised learning
frameworks in the sense that they need to manually label
the documents. The video clip in [26] usually contains a
single activity and [26] did not model interactions among
multiple objects. References [29] and [30], which directly
applied an LDA model, were unsupervised frameworks
assuming a document contains only one major topic. These
methods will not directly transfer to our problem, where
each document typically contains several topics. These
approaches could not model interactions either.
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Our approach avoids tracking in crowded scenes, using
only local motion as features. It can separate co-occurring
activities in the video clip by modeling activities and
interactions. The whole learning procedure is unsupervised
without manual labeling of video clips or local motions. The
rest of this paper is organized as follows: Section 2 describes
how to compute the low-level visual features. Three novel
hierarchical Bayesian models are proposed in Section 3.
Section 4 explains how to employ these models to solve visual
surveillance tasks and shows experimental results from a
traffic scene and a train station scene. In Section 5, we discuss
the limitations and possible extensions of this work.

2 LOW-LEVEL VISUAL FEATURES

Our data sets are video sequences from far-field traffic
scenes (Fig. 1a) and train station scenes (Fig. 1c) recorded by
a fixed camera. There are myriads of activities and
interactions in the video data. It also involves many
challenging problems, such as lighting changes, occlusions,
a variety of object types, object view changes, and
environmental effects.

We compute local motions as our low-level features.
Moving pixels are detected in each frame as follows: We
compute the intensity difference between two successive
frames, on a pixel basis. If the difference at a pixel is above a
threshold, that pixel is detected as a moving pixel. The
motion direction at each moving pixel is obtained by
computing optical flow [33]. The moving pixels are
quantized according to a codebook, as follows. Each
moving pixel has two features: position and direction of
motion. To quantize position, the scene (480 � 720) is
divided into cells of size 10 � 10. The motion of a moving
pixel is quantized into four directions as shown in Fig. 2a.
Hence, the size of the codebook is 48� 72� 4 and, thus,
each detected moving pixel is assigned a word from the
codebook based on rough position and motion direction.
Deciding the size of the codebook is a balance between the
descriptive capability and complexity of the model. The
whole video sequence is uniformly divided into nonover-
lapping short clips, each 10 seconds in length. In our
framework, video clips are treated as documents and
moving pixels are treated as words for word-document
analysis as described in Section 3.

3 HIERARCHICAL BAYESIAN MODELS

LDA [1] and HDP [2] were originally proposed as
hierarchical Bayesian models for language processing. In
these models, words that often co-exist in the same
documents are clustered into the same topic. We extend
these models by enabling clustering of both documents and
words, thus finding co-occurring words (topics) and co-
occurring topics (interactions). For far-field surveillance
videos, words are quantized local motions of pixels; moving
pixels that tend to co-occur in clips (or documents) are
modeled as topics. Our goal is to infer the set of activities
(or topics) from video by learning the distributions of
features that co-occur, and to learn distributions of activities
that co-occur, thus finding interactions. Three new hier-
archical Bayesian models are proposed in this section: the

LDA mixture model, the HDP mixture model, and the Dual-
HDP model.

3.1 LDA Mixture Model

Fig. 3a shows the LDA model of [1]. Suppose the corpus has
M documents. Each document is modeled as a mixture of
K topics, where K is assumed known. Each topic k is
modeled as a multinomial distribution �k ¼ ½�k1; . . . ; �kW �
over a word vocabulary of size W . � ¼ f�kg. � ¼
½�1; . . . ; �K � is a Dirichlet prior on the corpus. For each
document j, a parameter �j ¼ ½�j1; . . . ; �jK � of the multi-
nomial distribution over K topics is drawn from Dirichlet
distribution Dirð�jj�Þ. For each word i in document j, a
topic label zji ¼ k is drawn with probability �jk, and
word xji is drawn from a discrete distribution given by
�zji . �j and zji are hidden variables. � and � are
hyperparameters to be optimized. Given � and �, the joint
distribution of topic mixture �j, topics zj ¼ fzjig, and words
xj ¼ fxjig is

pðxj; zj; �jj�; �Þ

¼ pð�jj�Þ
YNj

i¼1

pðzjij�jÞpðxjijzji; �Þ

¼
�
PK

k¼1 �k

� �
QK

k¼1 �ð�kÞ
��1�1
j1 � � ���K�1

jK

YNj

i¼1

�jzji�zjixji ;

ð1Þ

where Nj is the number of words in document j. Unfortu-
nately, the marginal likelihood pðxjj�; �Þ and, thus, the
posterior distribution pð�j; zjj�; �Þ are intractable for exact
inference. Thus in [1], a Variational Bayes (VB) inference
algorithm used a family of variational distributions,

qð�j; zjj�j; �jÞ ¼ qð�jj�jÞ
YNj

i¼1

qðzjij�jiÞ; ð2Þ

to approximate pð�j; zjj�; �Þ, where the Dirichlet para-
meter �j and multinomial parameters f�jig are free
variational parameters. The optimal ð�j; �jÞ is computed
by finding a tight lower bound on log pðxjj�; �Þ.

This LDA model in [1] does not model clusters of
documents. All of the documents share the same Dirichlet
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Fig. 3. (a) The LDA model proposed in [1]. (b) Our LDA mixture model.



prior �. In activity analysis, we assume that video clips

(documents) of the same type of interaction would include a

similar set of atomic activities (topics), so they could be

grouped into the same cluster and share the same prior over

topics. Our LDA mixture model is shown in Fig. 3b. The

M documents in the corpus will be grouped into L clusters.

Each cluster c has its own Dirichlet prior �c. For a

document j, the cluster label cj is first drawn from discrete

distribution � and �j is drawn from Dirð�jj�cjÞ. Given f�cg,
�, and �, the joint distribution of hidden variables cj, �j, zj,

and observed words xj is

p xj; zj; �j; cjjf�cg; �; �
� �
¼ pðcjj�Þpð�jj�cjÞ

YN
i¼1

pðzjij�jÞpðxjijzji; �Þ:
ð3Þ

The marginal log likelihood of document j is

log p xjjf�cg; �; �
� �

¼ log
XL
cj¼1

pðcjj�Þpðxjj�cj ; �Þ: ð4Þ

Our LDA mixture model is relevant to the model proposed

in [6]. However, the hidden variable cj in our model was

observed in [6]. So, [6] required manually labeling docu-

ments in the training set, while our framework is totally

unsupervised. This causes a different inference algorithm to

be proposed for our model. Using VB [1], log pðxjj�cj ; �Þ can

be approximated by a tight lower bound L1ð�jcj ; �jcj ;�cj ; �Þ:

log pðxjj�cj ; �Þ

¼ log

Z
�j

X
zj

pð�j; zj;xjj�cj ; �Þd�j

¼ log

Z
�j

X
zj

pð�j; zj;xjj�cj ; �Þqðzj; �jj�jcj ; �jcjÞ
qðzj; �jj�jcj ; �jcjÞ

d�j

�
Z
�j

X
zj

qðzj; �jj�jcj ; �jcjÞ log pðxj; zj; �jj�cj ; �Þd�j

�
Z
�j

X
zj

qðzj; �jj�jcj ; �jcjÞ log qðzj; �jj�jcj ; �jcjÞd�j

¼ L1ð�jcj ; �jcj ;�cj ; �Þ:

ð5Þ

However, because of the marginalization over cj, hyper-

parameters are still coupled even using VB. So, we use both

EM and VB to estimate hyperparameters. After using VB to

compute the lower bound of log pðxjj�cj ; �Þ, an averaging

distribution qðcjj�jcj ; �jcjÞ can provide a further lower bound

on the log likelihood:

log p xjjf�cg; �; �
� �

� log
XL
cj¼1

pðcjj�ÞeL1ð�jcj ;�jcj ;�cj ;�Þ

¼ log
XL
cj¼1

qðcjj�jcj ; �jcjÞ
pðcjj�ÞeL1ð�jcj ;�jcj ;�cj ;�Þ

qðcjj�jcj ; �jcjÞ

�
XL
cj¼1

qðcjj�jcj ; �jcjÞ log pðcjj�Þ þ L1ð�jcj ; �jcj ;�cj ; �Þ
� �

�
XL
cj¼1

qðcjj�jcj ; �jcjÞ log qðcjj�jcj ; �jcjÞ

¼ L2 qðcjj�jcj ; �jcjÞ; f�cg; �; �
� �

:

ð6Þ

L2 is maximized when choosing

qðcjj�jcj ; �jcjÞ ¼
pðcjj�ÞeL1ð�jcj ;�jcj ;�cj ;�ÞP
cj
pðcjj�ÞeL1ð�jcj ;�jcj ;�cj ;�Þ

: ð7Þ

Our EM algorithm for hyperparameter estimation is:

1. For each document j and cluster cj, find the optimal
values of the variational parameters f��j;cj ; �

�
j;cj

: j ¼
1; . . . ;M; cj ¼ 1; . . . ; Lg to maximizeL1 (using VB [1]).

2. Compute qðcjj��jcj ; �
�
jcj
Þ using (7) to maximize L2.

3. Maximize L2 with respect to f�cg, �, and �. � and �
are optimized by setting the first derivative to zero:

�c /
XM
j¼1

q cj ¼ cj��jc; ��jc
� �

; ð8Þ

�kw /
XM
j¼1

XL
cj¼1

q cjj��jcj ; �
�
jcj

� � XN
i¼1

��jcjikx
w
ji

" #
; ð9Þ

where xwji ¼ 1 if xji ¼ w; otherwise, it is 0. The f�cg
are optimized using a Newton-Ralphson algorithm.

The first and second derivatives are

@L2

@�ck
¼
XM
j¼1

qðcj ¼ cj�jc; �jcÞ
"

�
XK
k¼1

�ck

 !
��ð�ckÞ

þ�ð�jckÞ ��
Xk
j¼1

�jck

 !#
;

ð10Þ

@2L2

@�ck1
�ck2

¼
XM
j¼1

qðcj ¼ cj�jc; �jcÞ
"

�0
XK
k¼1

�ck

 !

� �ðk1; k2Þ�0ð�ck1
Þ
#
;

ð11Þ

where � is the first derivative of log Gamma

function.

L2 monotonously increases after each iteration.

3.2 HDP Mixture Model

HDP is a nonparametric hierarchical Bayesian model and

automatically decides the number of topics. The HDP

model proposed in [2] is shown in Fig. 4a. A global random
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measure G0 is distributed as a Dirichlet process with
concentration parameter 	 and base probability measure H
(H is a Dirichlet prior in our case):

G0j�;H � DP ð�;HÞ:

G0 can be expressed using a stick-breaking representation:

G0 ¼
X1
k¼1

�0k��k ; ð12Þ

where f�kg are parameters of multinomial distributions,
and ��kð�Þ is the Delta function with support point at �k.
f�kg and f�0kg are called locations and masses. f�kgmodels
topics of words. f�0kg are mixtures over topics. They are
sampled from a stick-breaking construction: �k � H,
�0k ¼ �00k

Qk�1
l¼1 ð1� �00lÞ, �00k � Betað1; 	Þ.

G0 is a prior distribution over the whole corpus. For each
document j, a random measure Gd

j is drawn from a
Dirichlet process with concentration parameter � and base
probability measure G0: Gd

j j�;G0 � DP ð�;G0Þ. Each Gd
j has

support at the same locations f�kg1k¼1 as G0, i.e., all of the
documents share the same set of topics and can be written
as Gd

j ¼
P1

k¼1 �jk��k . G
d
j is a prior distribution of all of the

words in document j. For each word i in document j, a
topic 
ji is drawn from Gd

j (
ji is sampled as one of the �ks).
Word xji is drawn from discrete distribution Discreteð
jiÞ.
In [2], Gibbs sampling schemes were used to do inference
under an HDP model.

In our HDP mixture model, as shown in Fig. 4b, clusters of
documents are modeled and each cluster c has a random
probability measure Gc. Gc is drawn from Dirichlet process
DP ð�;G0Þ. For each document j, a cluster label cj is first
drawn from discrete distribution pðcjj�Þ. Document j chooses
Gcj as the base probability measure and draws its own Gd

j

from Dirichlet process Gd
j � DP ð�;GcjÞ. We also use Gibbs

sampling for inference. In our HDP mixture model, there are
two kinds of hidden variables to be sampled: 1) variables
z ¼ fzijg assigning words to topics, base distributionsG0 and
fGcg; and 2) cluster label cj. The key issue to be solved in this
paper is how to sample cj. Given cj is fixed, the first kind of
variables can be sampled using the same scheme described in
[2]. We will not repeat the details in this paper. We focus on

the step of sampling cj, which is the new part of our model
compared with HDP in [2].

At some sampling iteration, suppose that there have
been K topics, f�kgKk¼1, generated and assigned to the
words in the corpus (K is variable during the sampling
procedure). G0, Gc, and Gd

j can be expressed as

G0 ¼
XK
k¼1

�0k��k þ �0uG0u;

Gc ¼
XK
k¼1

�ck��k þ �cuGcu;

Gd
j ¼

XK
k¼1

!jk��k þ !juGd
ju;

where G0u, Gcu, and Gd
ju are distributed as Dirichlet process

DP ð�;HÞ. Note that the prior over the corpus ðG0Þ, a cluster
of document ðGcÞ, and a document Gd

j share the same set of
topics f�kg. However, they have different mixtures over
topics.

Using the sampling schemes in [2], topic mixtures
�0 ¼ f�01; . . . ; �0K; �0ug, �c ¼ f�c1; . . . ; �cK; �cug are sampled,
while f�kg, G0u, Gcu, Gd

ju, and !dj ¼ f!j1; . . . ; !jK; !jug can be
integrated out without sampling. In order to sample the
cluster label cj of document j, the posterior pðcj ¼
cjðmj1; . . . ;mjKÞ; �0; f�cgÞ has to be computed where mjk is
the number of words assigned to topic k in document j and
is computable from z:

pðcj ¼ cj mj1; . . . ;mjKÞ; �0; f�cg
� �

/ pðmj1; . . . ;mjK j�cÞpðcj ¼ cÞ

¼ �c
Z
p mj1; . . . ;mjK j!dj
� �

p !dj j�c
� �

d!dj :

pðmj1; . . . ;mjK j!dj Þ is a multinomial distribution. Since Gd
j is

drawn from DP ð�;GcÞ, pð!dj j�cÞ is a Dirichlet distribution
Dirð!dj j� � �cÞ. Thus, we have

p cj ¼ cjðmj1; . . . ;mjKÞ; �0; f�cg
� �
/ �c

Z � ��cu þ �
PK

k¼1 �ck

� �
�ð��cuÞ

QK
k¼1 �ð��ckÞ

!��cu�1
ju

YK
k¼1

!
��ckþmjk�1
jk d!dj

/
� ��cu þ �

PK
k¼1 �ck

� �
� ��cuÞ

QK
k¼1 �ð��ck

� � �ð��cuÞ
QK

k¼1 �ð��ck þmjkÞ
� ��cu þ

PK
k¼1ð��ck þmjkÞ

� �

¼ �c
�ð�Þ

�ð�þNjÞ

QK
k¼1 �ð� � �ck þmjkÞQK

k¼1 �ð� � �ckÞ

/ �c
QK

k¼1 �ð� � �ck þmjkÞQK
k¼1 �ð� � �ckÞ

;

ð13Þ

where � is the Gamma function.
So, the Gibbs sampling procedure repeats the following

two steps alternatively at every iteration:

1. Given fcjg, sample z, �0, and f�cg using the schemes
in [2].

2. Given z, �0, and f�cg, sample cluster labels fcjg
using posterior (13).
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Fig. 4. (a) the HDP model proposed in [2]. (b) Our HDP mixture model.



In this section, we assume that the concentration
parameters �, �, and � are fixed. In actual implementation,
we give them a vague gamma prior and sample them using
the scheme proposed in [2]. Thus, these concentration
parameters are sampled from a broad distribution instead
of being fixed at a particular point.

3.3 Dual-HDP

In this section, we propose a Dual-HDP model which
automatically decides both the number of word topics and
the number of document clusters. In addition to the HDP
which model the word topics, there is another layer of HDP
modeling the clusters of documents. Hence, we call this a
Dual-HDP model. The graphical model of Dual-HDP is
shown in Fig. 5. In HDP mixture model, each document j
has a prior Gcj drawn from a finite mixture fGcgLc¼1. In the
Dual-HDP model, Gcj is drawn from an infinite mixture:

Q ¼
X1
c¼1

�c�Gc
: ð14Þ

Notice that Gc itself is a random distribution with infinite
parameters. When a Dirichlet process was first developed
by Ferguson [34], the location parameters (such as �k in
(12)) could only be scalars or vectors. MacEachern et al.
[35] made an important generalization and proposed the
Dependent Dirichlet Processes (DDP). DDP replaces the
locations in the stick-breaking representation with sto-
chastic processes and introduces dependence in a collec-
tion of distributions. The parameters fð�ck; �ckÞg1k¼1 of Gc

can be treated as a stochastic process with index k. Q can
be treated as a set of dependent distributions, Q ¼ fQk ¼P1

c¼1 �c�ð�ck;�ckÞg
1
k¼1: So, we can generate Q through DDP.

As shown in Fig. 5a, Q is sampled from DDP ð;�Þ.  is
the concentration parameter and �c ¼ �0c

Qc�1
l¼1 ð1� �0lÞ,

�0c � Betað1; Þ. As shown in Fig. 5b, � ¼ DP ð�;G0Þ is a
Dirichlet process and Gc � DP ð�;G0Þ. Similarly to the HDP
mixture model in Fig. 4b, G0 � DP ð	;HÞ is the prior over
the whole corpus and generates topics shared by all of the
words. fGcg1c¼1 all have the same topics in G0, i.e., �ck ¼ �k.

However, they have different mixtures f�ckg1k¼1 over these
topics.

Each document j samples a probability measure Gcj from
Q as its prior. Different documents may choose the same
prior Gc, thus they form one cluster. So, in Dual-HDP, the
two infinite mixtures Q and G0 model the clusters of
documents and words, respectively. The following gen-
erative procedure is the same as HDP mixture model.
Document j generates its own probability measure Gd

j from
Gd
j � DP ð�;GcjÞ. Word i in document j samples topic �k

from Gd
j and samples its word value from Discreteð�kÞ.

Gibbs sampling was also used for inference and learning
on Dual-HDP. The Gibbs sampling procedure can be
divided into two steps:

1. Given the cluster assignment fcjg of documents is
fixed, sample the word topic assignment z, masses
�0 and �c on topics using the schemes in [2].

2. Given z, masses �0 and �c, sample the cluster
assignment fcjg of documents. cj can be assigned
to one of the existing clusters or to a new cluster. We
use the Chinese restaurant franchise for sampling.
See details in the Appendix.

3.4 Discussion on the Words-Documents
Co-Clustering Framework

We propose three words-documents co-clustering models.
Readers may ask why do we need a co-clustering frame-
work? Can’t we first cluster words into topics and then
cluster documents based on their distributions over topics
or solve the two problems separately? In visual surveillance
applications, the issue is about simultaneously modeling
activities and interactions. In the language processing
literature, there has been considerable work dealing with
word clustering [36], [1], [2] and document clustering [37],
[38], [39] separately. Dhillon [40] showed the duality of
words and documents clustering: “word clustering induces
document clustering while document clustering induces
words clustering.” Information on the category of docu-
ments helps to solve the ambiguity of word meaning and
vice versa. Thus, a co-clustering framework can solve the
two closely related problems in a better way. Dhillon [40]
co-clustered words and documents by partitioning a
bipartite spectral graph with words and documents as
vertices. However, one cluster of documents only corre-
sponded to one cluster of words. References [36] and [1]
showed that one document may contain several topics. In a
visual surveillance data set, one video clip may contain
several atomic activities. Our co-clustering algorithms
based on hierarchical Bayesian models can better solve
these problems.

3.5 Example of Synthetic Data

We use an example of synthetic data to demonstrate the
strength of our hierarchical Bayesian models (see Fig. 6).
The toy data is similar to that used in [41]. The word
vocabulary is a set of 5 � 5 cells. There are 10 topics with
distributions over horizontal bars and vertical bars (Fig. 6a),
i.e., words tend to co-occur along the same row or column,
but not arbitrarily. The document is represented by a image
with 25 pixels in a 5 � 5 grid. Each pixel is a word, and the
intensity of a pixel is the frequency of the word. If we
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Fig. 5. The graphical model of Dual-HDP. Q ¼
P1

c¼1 �c�Gc
and G0 ¼P1

k¼1 �0k��k are two infinite mixtures modeling clusters of documents

and words, respectively. Q is generated from DDP ð;�Þ. � ¼
DP ð�;G0Þ is a Dirichlet process.



generate documents by randomly choosing several topics
from the 10, adding noise to the bar distributions, and
sampling words from these bars, there are only two levels
of structures (topics and words) in the data, and the HDP
model in [2] can perfectly discover the 10 topics. However,
in our experiments in Fig. 6, we add one more level, clusters
of documents, to the data. Documents are from two clusters:
a vertical-bars cluster and a horizontal-bars cluster. If a
document is from the vertical-bars cluster, it randomly
combines several vertical bar topics and sample words from
them; otherwise, it randomly combines horizontal bar
topics. As seen in Fig. 6c, HDP in [2] has much worse
performance on this data. There are two kinds of correlation
among words: If words are on the same bar, they often co-
exist in the same documents; if words are all on horizontal
bars or vertical bars, they are also likely to be in the same
documents. It is improper to use a two-level HDP to model
data with a three-level structure. Fifteen topics are
discovered and many of the topics include more than one
bar. Using our HDP mixture model and Dual-HDP model to
co-cluster words and documents, the 10 topics are dis-
covered nearly perfectly as shown in Fig. 6d. Meanwhile,
the documents are grouped into two clusters as shown in
Figs. 6e and 6f. The topic mixtures �1 and �2 of these two
clusters are shown in Fig. 6g. �1 only has large weights on
horizontal bar topics, while �2 only has large weights on
vertical bar topics. Thus, our approach recovers common
topics (i.e., words that co-occur) and common documents
(i.e., topics that co-occur). For Dual-HDP, we tried different
numbers of document clusters as initialization, and found it
always converges to two clusters.

4 VISUAL SURVEILLANCE APPLICATIONS AND

EXPERIMENTAL RESULTS

After computing the low-level visual features as described
in Section 2, we divide our video sequence into 10 second
long clips, each treated as a document, and feed these
documents to the hierarchical Bayesian models described in
Section 3. In this section, we explain how to use the results
from hierarchical Bayesian models for activity analysis. We
will mainly show results from Dual-HDP, since it auto-
matically decides the number of word topics and the
number of document clusters, while LDA mixture model
and HDP mixture model need to know those in advance.
However, if the number of word topics and the number of
document clusters are properly set in LDA mixture model
and HDP mixture model, they provide very similar results.
Most of the experimental results are from a traffic scene.
Some results from a train station scene is shown at the end
of this section. Some video examples of our results can be
found from our website (http://groups.csail.mit.edu/
vision/app/research/HBM.html).

4.1 Discover Atomic Activities

In visual surveillance, people often ask “what are the
typical activities and interactions in this scene?” The
parameters estimated by our hierarchical Bayesian models
provide a good answer to this question.

As we explained in Section 1, an atomic activity usually
causes temporally continuous motion and does not stop in
the middle. So, the motions caused by the same kind of
atomic activity often co-occur in the same video clip. Since
the moving pixels are treated as words in our hierarchical
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Fig. 6. Experiment on synthetic data. (a) There are 10 topics with distributions along horizontal bars and vertical bars. A synthetic document can be

generated in one of the two ways. It randomly combines several vertical bar topics and sample words from them or randomly combines several

horizontal bar topics. (b) The simulated documents. (c) Topic distributions learned by the HDP model in [2]. (d) Topic distributions learned by the

Dual-HDP model. Documents are grouped into two clusters shown in (e) and (f). (g) Topic mixtures of two clusters �1 and �2.



Bayesian models, the topics of words are actually a

summary of typical atomic activities in the scene. Each

topic has a multinomial distribution over words (i.e., visual

motions), specified by � in LDA mixture model and f�kg in

our HDP models. (�k can be easily estimated given the

words assigned to topic k after sampling.)
Our HDP models automatically discovered 29 atomic

activities in the traffic scene. In Fig. 7, we show the motion

distributions of these topics. The topics are sorted by size

(the number of words assigned to the topic) from large to

small. The numbers of moving pixels assigned to topics are

shown in Fig. 8. Topic 2 explains vehicles making a right

turn. Topics 5, 14, and 20 explain vehicles making left turns.
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Fig. 7. Motion distributions of some topics discovered by our HDP models. The motion is quantized into four directions represented by four colors:

red ð!Þ, magenta ð"Þ, cyan ð Þ, and green ð#Þ. The topics are sorted according to how many words in the corpus are assigned to them (from large

to small). For convenience, we label roads and crosswalks as a; b; . . . in the first image.

Fig. 8. Histogram of moving pixels assigned to 29 topics in Fig. 7.



Topics 6 and 9 explain vehicles crossing road d, but along

different lanes. Topics 1 and 4 explain “vehicles pass road d

from left to right.” This activity is broken into two topics

because when vehicles from g make a right turn (see topic 2)

or vehicles from road e make a left turn (see topic 14), they

also share the motion in 4. From topics 10 and 19, we find

vehicles stopping behind the stop lines during red lights.

Topics 13, 17, and 21 explain that pedestrians walk on

crosswalks. When people pass the crosswalk a, they often

stop at the divider between roads e and f waiting for

vehicles to pass by. So, this activity breaks into two topics,

17 and 21. When the number of topics is set as 29, LDA

model provides similar result as HDP. In Fig. 9, we show

the results from LDA when choosing 14 instead of 29 as the

number of topics. Several topics discovered by HDP merge

into one topic in LDA. For example, as shown in Fig. 10,

HDP topics 17, 21, 23, 24, 25, 26, and 27 related to pedestrian

walking in Fig. 7 merge into LDA topic 4 in Fig. 9. Topics 8,

16, and 19 in Fig. 7 merge into topic 10 in Fig. 9.

4.2 Discover Interactions

Multiagent interactions can be well explained as combina-

tions of atomic activities, or equivalently, topics, under our

framework. In our hierarchical Bayesian models, the video

clips are automatically clustered into different interactions.

The topics mixtures (f�cg in LDA mixture model and f�cg
in HDP) as priors of document clusters provide a good

summary of interactions. Fig. 11 plots the topic mixtures �c
of five clusters under our HDP models. Cluster 1 explains

traffic moving in a vertical direction. Vehicles from e and g

move vertically, crossing road d and crosswalk a. Topics 3,

6, 7, 9, and 11 are major topics in this interaction, while the

prior over other topics related to horizontal traffic (1, 4, 5, 8,

16, 20), and pedestrians walking on crosswalk a and b (13,

17, 21, 23), is very low. Cluster 2 explains “vehicles from

road g make a right turn to road a while there is not much

other traffic.” At this time, vertical traffic is forbidden

because of the red light while there are no vehicles traveling

horizontally on road d, so these vehicles from g can make a
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Fig. 9. Motion distributions of topics discovered by our LDA model when the topic number is fixed as 14.

Fig. 10. When the number of word topics is set as 14 in LDA, HDP topics 17, 21, 23, 24, 25, 26, and 27 related to pedestrian walking are merged into

one LDA topic 14.



right turn. Cluster 3 is “pedestrians walk on the crosswalks

while there is not much traffic.” Several topics (21, 13, 17)

related to pedestrian walking are much higher that their

average distributions on during the whole video sequence.

Topics 10 and 15 are also high because they explain that

vehicles on road e stop behind the stop line. Cluster 4 is

“vehicles on road d make a left turn to road f .” Topics 5, 11,

and 12 related to this activity are high. Topics 1 and 4 are

also high since horizontal traffic from left to right is allowed

at this time. However, topics 8, 16, and 20 are very low,

because traffic from right to left conflicts with this left turn

activity. Cluster 5 is horizontal traffic. During this interac-

tion, topics 13, 17, and 21 are also relatively high since

pedestrians are allowed to walk on a. In the second row of

Fig. 11, we show an example video clip for each type of

interaction. In each video clip, we choose the five largest

topics and mark motions belonging to different topics by

different colors.

4.3 Video Segmentation

Given a long video sequence, we can segment it based on
different types of interactions. Our models provide a natural
way to complete this task in an unsupervised manner since
video clips are automatically separated into clusters (inter-
actions) in our model. To evaluate the clustering perfor-
mance, we create a ground truth by manually labeling the 540
video clips into five typical interactions in this scene as
described in Section 4.2. The confusion matrix between our
clustering result and the ground truth is shown in Fig. 12b.
The average accuracy of video segmentation is 85.74 percent.
Fig. 12 shows the labels of video clips in the entire one and half
hours of video and in the last 20 minutes. Note the periodicity
of the labels assigned. We can observe that each traffic cycle
lasts around 85 seconds.

4.4 Activity Detection

We also want to localize different types of atomic activities
happening in the video. Since, in our hierarchical Bayesian
models, each moving pixel is labeled as one of the atomic
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Fig. 11. The short video clips are grouped into five clusters. In the first row, we plot the mixtures f�cg over 29 topics as prior of each cluster
represented by blue bars. For comparison, the red curve in each plot is the average topic mixture over the whole corpus. The x-axis is the index of
atomic activities. The y-axis is the mixture over atomic activities. In the second row, we show a video clip as an example for each type of interaction
and mark the motions of the five largest topics in that video clip. Notice that colors distinguish different topics in the same video (the same color may
correspond to different topics in different video clips) instead of representing motion directions as in Fig. 7.

Fig. 12. Results of video segmentation. (a) The snapshot of our video result. (b) The confusion matrix. (c) The segmentation result of one and one-

half hours of video. (d) Zoom in of the segmentation result of the last 20 minutes of video. In (c) and (d), the x-axis is the index of video clips in

temporal order and the y-axis is the label of the five interactions shown in Fig. 11.



activities, activity detection becomes straightforward. In

Fig. 13, we choose five 10 second long video clips as

examples of the five different interactions and show the

activity detection results on them. As an extension of

activity detection, we can detect vehicles and pedestrians

based on motions. It is observed that the vehicle motions

and pedestrian motions are well separated among atomic

activities. However, the user first needs to label each of the

discovered atomic activities as being related to vehicles or

pedestrians. Then, we can classify the moving pixels into

vehicles and pedestrians based on their atomic activity

labels. Fig. 14 shows some detection results. This approach

cannot detect static vehicles and pedestrians. It is comple-

mentary to appearance-based vehicle and pedestrian

detectors since these two approaches are using very

different features (appearance versus motion) for detection.

4.5 Abnormality Detection

In visual surveillance, detecting abnormal video clips and
localizing abnormal activities in the video clip are of great
interest. Under the Bayesian models, abnormality detection
has a nice probabilistic explanation by the marginal
likelihood of every video clip or motion rather than by
comparing similarities between samples. Computing the
likelihoods of documents and words under LDA mixture
has been described in Section 3.1 (see (5)). Computing the
likelihood under HDP mixture model and Dual-HDP

model is not straightforward. We need to compute the
likelihood of document j given other documents, pðxjjx�jÞ,
where x�j represents the whole corpus excluding docu-
ment j. For example, in the HDP mixture model, since we
have already drawnM samplesfz�jðmÞ; f�ðmÞc g; �

ðmÞ
0 g

M
m¼1 from

pðz�j; f�cg; �0jxÞ, which is very close to pðz�j; f�cg; �0jx�jÞ,
we approximate pðxjjx�jÞ as
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Fig. 13. Activity detection. Five video clips are chosen as examples of the five interactions shown in Fig. 11. We show one key frame of each video
clip. The motions are clustered into different activities marked by different colors. However, since there are so many atomic activities, we cannot use
a uniform color scheme to represent all of them. In this figure, the same color in different video clips may indicate different activities. Clip 1 has atomic
activities 1 (green), 3 (cyan), and 6 (blue) (see these atomic activities in Fig. 7). Clip 2 has atomic activities 2 (cyan) and 13 (blue). Clip 3 has atomic
activities 15 (cyan), 7 (blue), and 21 (red). Clip 4 has atomic activities 1 (red), 5 (blue), 7(green), 12 (cyan), and 15 (yellow). Clip 5 has atomic
activities 8 (red), 16 (cyan), 17 (magenta), and 20 (green).

Fig. 14. Vehicle and pedestrian detection. Vehicle motions are marked by red color and pedestrian motions are marked by green color.



pðxjjx�jÞ ¼
1

M

X
m

X
cj

Z
!j

X
zj

X
i

p xjijzji; z�jðmÞ;x�j
� �

pðzjj!jÞp !jj�ðmÞcj

� �
�cjd!j:

ð15Þ

pð!jj�ðmÞcj
Þ is a Dirichlet distribution. If ðu1; . . . ; uT Þ is the

Dirichlet prior on �k,

p xjijzji; z�jðmÞ;x�j
� �

¼ ðuxji þ nxjiÞ
� XT

t¼1

ðut þ ntÞ
 !

is a multinomial distribution, where nt is the number of
words in x�j with value t assigned to topic zji (see [2]). The
computation of

R
!j

P
zj
pðxjijzji; z�jðmÞ;x�jÞpðzjj!jÞpð!jj�ðmÞcj

Þ
is intractable, but can be approximated with a variational
inference algorithm as in [1]. The likelihood computation in
Dual-HDP model is very similar to that in the HDP mixture
model. The only difference is to replace �cj with �ðmÞcj

in (15).
Fig. 15 shows the top five detected abnormal video clips.

The red color highlights the regions with abnormal motions
in the video clips. There are two abnormal activities in the
first video. A vehicle is making a right-turn from road d to
road f . This is uncommon in this scene because of the
layout of the city. Actually, there is no topic explaining this
kind of activity in our data (topics are summaries of typical
activities). A person is simultaneously approaching road f ,
causing abnormal motion. In the successive video clip, we
find that the person is actually crossing road f outside the
crosswalk region. This video clip ranked fourth in abnorm-
ality. In the second and third videos, bicycles are crossing
the road abnormally. The fifth video is another example of a
pedestrian crossing the road outside the crosswalk.

4.6 High-Level Semantic Query

In our framework, it is convenient to use atomic activities as
tools to query for interactions of interest. For example,
suppose a user wants to detect jaywalking. This is not
automatically discovered by the system as a typical
interaction. Thus, the user simply picks topics involved in

the interaction, e.g., topics 6 and 13, i.e., “pedestrians walk
on crosswalk a from right to left (topic 13) while vehicles are
approaching in vertical direction (topic 6),” and specifies
the query distribution q (qð6Þ ¼ qð13Þ ¼ 0:5 and other
mixtures are zeros). The topic distributions fpjg of video
clips in the data set match with the query distribution using
relative entropy between q and pj:

DðqjjpjÞ ¼
XK
k¼1

qðkÞlog qðkÞ
pjðkÞ

: ð16Þ

Fig. 16d shows the result of querying examples of
“pedestrians walk on crosswalk a from right to left while
vehicles are approaching in vertical direction.” All of the
video clips are sorted by matching similarity. A true
instance will be labeled 1; otherwise, it is labeled as 0.
There are 18 jaywalking instances in this data set and they
are all found among the top 37 examples out of the 540 clips
in the whole video sequence. The top 12 retrieval results are
all correct.

4.7 Comparison with Other Methods

Another option to model interactions is to first use the
original LDA in Fig. 3a or HDP in Fig. 4b as a feature
reduction step. A distribution pj over topics or a posterior
Dirichlet parameter (�j in (2)) is associated with each
document. Then, one can cluster documents based on fpjg
or f�jg as feature vectors. Reference [1] used this strategy
for classification. K-means on fpjg only has 55.6 percent
accuracy of video segmentation on this data set (KL
divergence is the distance measure), while the accuracy of
our Dual-HDP model is 85.74 percent. It is hard to define a
proper distance for Dirichlet parameters. We cannot get
meaningful clusters using f�jg.

4.8 Results on the Train Station Scene

We also test our models on a train station scene. Fig. 17
shows the 22 discovered atomic activities from a 1 hour
video sequence. These atomic activities explain people
going up or coming down the escalators or passing by in
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Fig. 15. Results of abnormality detection. We show the top five video clips with the highest abnormality (lowest likelihood). In each video clip, we

highlight the regions with motions of high abnormality.



different ways. Activity detection results are shown in

Fig. 18. However, we do not see interesting interactions and

abnormal activities in this scene. Those results are not

shown here.

4.9 Discussion

The space complexities of the three proposed models are all

OðKWÞ þOðKLÞ þOðKMÞ þOðNÞ, where K is the num-

ber of topics, W is the size of the codebook, L is the number
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Fig. 17. Motion distributions of discovered atomic activities on a train station scene. The motion is quantized into four directions represented by four

colors: red ð!Þ, magenta ð"Þ, cyan ð Þ, and green ð#Þ.

Fig. 16. Query result of jaywalking. (a) We pick two atomic activities (topics 6 and 13) involved in the interaction jaywalking. (b) A query distribution is

drawn with large weights on topics 6 and 13, and zero weights on other topics. (c) An example of jaywalk retrieval. (d) shows the top 40 retrieval

results. If the video clip is correct, it is labeled as 1; otherwise, 0.



of document clusters, M is the number of documents, and
N is the total number of words. Using EM and VB, the time
complexity of the learning and inference of the LDA
mixture model is OðMLÞ þOðNKÞ þOðLK2Þ. Running on
a computer with 3 GHz CPU, it takes less than 1 hour to
process a 1.5 hour video sequence. The Gibbs sampling
inference of HDP mixture model and Dual-HDP model is
much slower. The time complexity of each Gibbs sampling
iteration is OðNKÞ þOðMLÞ. It is difficult to provide
theoretical analysis on the convergence of Gibbs sampling.
It takes around 12 hours to process a 1.5 hour video
sequence. In recent years, variational inference was pro-
posed for HDP [42] and it is faster than Gibbs sampling. A
possible extension of this work is to explore variational
inference algorithms under HDP mixture model and Dual-
HDP model. Currently, our algorithm is running in a batch
mode. However, once the model has been learned from a
training video sequence and fixed, it can be used to do
motion/video segmentation and abnormality detection on
new video stream in an online mode.

5 LIMITATIONS AND POSSIBLE EXTENSIONS

OF THIS WORK

In this framework, we adopt the positions and moving
directions of moving pixels as low-level visual features
since they are more reliable in a crowded scene. While we
have demonstrated the effectiveness of this model in a
variety of visual surveillance tasks, including more compli-
cated features is expected to further boost the model’s
discrimination power. For example, if a pedestrian is
walking along the path of vehicles, just based on positions
and moving detections, his motions cannot be distinguished
from those of vehicles and this activity will not be detected
as an abnormality. If a car drives extremely fast, it will not
be detected as abnormal either. Other features, such as
appearance and speed, are useful in these scenarios.

The information on the co-occurrence of moving pixels is
critical for our methods to separate atomic activities. One
moving pixel tends to be labeled as the same atomic activity
as other moving pixels happening around the same time.
This information is encoded into the design of video clips as
documents. We divide the long video sequence into short
video clips. This “hard” division may cause some problems.
The moving pixels happening in two successive frames

might be divided into two different documents. By
intuition, one moving pixel should receive more influence
from those moving pixels closer in time. However, in our
models, moving pixels that fall into the same video clip are
treated in the same way, no matter how close they are. In
[43], we proposed a model allowing random assignment of
words to documents according to some prior which
encodes temporal information. If two moving pixels are
temporally closer in space, they have a higher probability to
be assigned to the same documents.

We are not utilizing any tracking information in this
work. However, in some cases when tracking is doable or
objects can be partially tracked (i.e., whenever there is
ambiguity caused by occlusion or clutter, stop tracking and
initialize a new track later), tracks provide useful informa-
tion on atomic activities. Motions on the same track are
likely to be caused by the same atomic activity. Thus, a
possible extension of this work is to incorporate both co-
occurrence and tracking information.

In this work, we do not model activities and interactions
with complicated temporal logic. However, the atomic
activities and interactions learned by our framework can be
used as units to model more complicated activities and
interactions.

6 CONCLUSION

We have proposed an unsupervised framework adopting
hierarchical Bayesian models to model activities and interac-
tions in crowded and complicated scenes. Three hierarchical
Bayesian models: the LDA mixture model, the HDP mixture
model, and the Dual-HDP model are proposed. Without
tracking and human labeling, our system is able to summar-
ize typical activities and interactions in the scene, segment the
video sequences, detect typical and abnormal activities, and
support high-level semantic queries on activities and inter-
actions. These surveillance tasks are formulated in an integral
probabilistic way.

APPENDIX

Here, we will explain how to do Gibbs sampling in the
Dual-HDP model as described in Section 3.3. The sampling
procedure is implemented in two steps. In the first step,
given the cluster assignment fcjg of documents is fixed, we
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Fig. 18. Activity detection in the train station scene. The motions are clustered into different atomic activities marked by different colors. We choose
three video clips as examples. Again, because there are not enough colors to represent 22 atomic activities, we only mark several major activities by
colors in each video clips. The same color may represent different activities in different video clips. Video clip 1 has atomic activities 2 (red), 3 (cyan),
4 (yellow), 5 (blue), 6 (orange), and 10 (green). Clip 2 has atomic activities 1 (red), 6 (blue), 13 (blue), 14 (cyan), 15 (green), and 18 (yellow). Clip 3
has atomic activities 1 (green), 2 (red), 3 (cyan), 6 (orange), 7 (yellow), 13 (blue), and 14 (magenta).



sample the word topic assignment z, mixtures �0 and �c on
topics. It follows the Chinese Restaurant Process (CRP)
Gibbs sampling scheme as described in [2], but adding
more hierarchical levels. In CPR, restaurants are documents,
customers are words, and dishes are topics. All the
restaurants share a common menu. The process can be
briefly described as following (see more details in [2]):

. When a customer i comes to restaurant j, he sits at
one of the existing tables t and eats the dishes served
on table t or takes a new table tnew.

. If a new table tnew is added to restaurant j, it orders a
dish from the menu.

Since we are modeling clusters of documents, we
introduce “big restaurants,” which are clusters of docu-
ments. The label of document cluster cj associates restau-
rant j to big restaurant cj. The CRP is modified as follows:

. If a new table tnew needs to be added in restaurant j,
we go to the big restaurant cj and choose one of the
existing big tables r in cj. tnew is associated with r
and serves the same dish as r.

. Alternatively, the new table tnew may take a new big
table rnew in the big restaurant cj. If that happens,
rnew orders a dish from the menu. This dish will be
served on both rnew and tnew.

Following this modified CRP , given fcjg, k, �0, and f�cg
can be sampled. It is a straightforward extension of the
sampling scheme in [2] to more hierarchical levels.

In order to sample fcjg and generate the clusters of
documents, given z, �0, and f�cg, we add an extra process:

. When a new restaurant j is built, it needs to be
associated with one of the existing big restaurants or
a new big restaurant needs to be built and associated
with j. It is assumed that we already know how
many tables in restaurant j and dishes served at
every table.

Let mt
jk be the number of tables in restaurant j serving

dish z, and mt
j� be the number of tables in restaurant j. To

sample cj, we need to compute the posterior

p cjj mt
jk

n o
; c�j; f�cg; �0

� �
/ p mt

jk

n o
jcj; c�j; f�cg; �0

� �
p cjjc�j; f�cg; �0

� �
;
ð17Þ

where c�j is the cluster labels of documents excluding
document j. cj could be one of the existing clusters
generated at the current stage, i.e., cj 2 cold. In this case,

p mt
jkjcj; c�j; f�cg; �0

� �

¼ p mt
jkj�cj

� �
¼ mt

j1 � � �mt
jK

mt
j�

0
@
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k¼1

�
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cjk
;
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where K is the number of word topics allocated at the
current stage. In addition,

p cjjf�cg; c�j; �0

� �
¼

ncj
M � 1þ  ; ð19Þ

where ncj is the number of documents assigned to cluster cj.

cj could also be a new cluster, i.e., cj ¼ cnew. In this case,
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In addition,

p cj ¼ cnewjf�cg; c�j; �0

� �
¼ 

M � 1þ  : ð21Þ

So, we have

p cj ¼ cj mt
jk

n o
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