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Abstract. In this paper, we propose a new nonparametric Bayesian
framework to cluster white matter fiber tracts into bundles using a hi-
erarchical Dirichlet processes mixture (HDPM) model. The number of
clusters is automatically learnt from data with a Dirichlet process (DP)
prior instead of being manually specified. After the models of bundles
have been learnt from training data without supervision, they can be
used as priors to cluster/classify fibers of new subjects. When cluster-
ing fibers of new subjects, new clusters can be created for structures
not observed in the training data. Our approach does not require com-
puting pairwise distances between fibers and can cluster a huge set of
fibers across multiple subjects without subsampling. We present results
on multiple data sets, the largest of which has more than 120, 000 fibers.

1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an MRI modality that has
gained tremendous popularity over the past five years and is one of the first
methods that made it possible to visualize and quantify the organization of
white matter in the human brain in vivo. Extracting connectivity information
from dMRI, termed “tractography”, is an especially active area of research, as it
promises to model the pathways of white matter tracts in the brain, by connect-
ing local diffusion measurements into global trace-lines. In neurological studies
of white matter using tractography it is often important to identify anatomi-
cally meaningful fiber bundles. Similar fibers form clusters of points, where each
cluster is identified as a “fiber bundle”.

In this paper, we propose a nonparametric Bayesian framework to cluster
fibers into bundles. The 3D space of the brain is quantized into voxels. A bundle
is modeled as a multinomial distribution over voxels and orientations. This prob-
abilistically models the spatial variation of the pathways of fibers. The models of
bundles are learnt from how voxels are connected by fibers instead of comparing
distances between fibers. If two voxels are connected by many fibers, both of the
voxels have large weights in the model of the same bundle, which means that
they are on the same pathway of white matter tracts. Many existing approaches
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Fig. 1. An example of multiscale clustering. The spatial range of the whole brain is
200 × 200 × 200. (a): The clustering result when the space is quantized into voxels of
size 11×11×11. The bundles correspond to structures at a large scale. (b): One bundle
from (a). (c): The space is quantized into voxels of size 3× 3× 3 and the bundle in (b)
is further clustered into smaller bundles corresponding to structures at a finer scale.

have difficulty in determining the number of clusters and in clustering a very
large set of fibers. Our approach automatically learns the number of clusters
from data with a Dirichlet process (DP) prior [1]. While the space and time
complexities of existing distance-based fiber clustering approaches are at least
O(M2), where M is the number of fibers, the space complexity of our approach
is O(M) since it does not compute and store pairwise distances between fibers.

After the models of bundles have been learnt from training data without su-
pervision, they are used as priors to cluster/classify new fibers. When clustering
fibers of new subjects, our approach adapts the models of bundles to new data
and creates new clusters for structures which are not observed in training data,
instead of fixing the number of clusters as current methods do. Our framework
can be extended to multiscale clustering. First cluster fibers using a large size of
voxels and bundles correspond to structures at a large scale. Then each bundle
can be further clustered using a smaller size of voxels, leading to structures at
a finer scale. An example is shown in Figure 1. Multiscale clustering makes it
easier for experts to identify white matter structures across different scales.

1.1 Related Work

Automatically clustering fibers has drawn a lot of attention in recent years. A
typical framework is to first define a pairwise similarity/distance between fibers
and to input the similarity matrix to standard clustering algorithms. Brun et al.
[2] computed the Euclidean distances between 9-D fiber shape descriptors. Jonas-
son et al. [3] measured the similarity between two fibers by counting the number
of points sharing the same voxel. Gerig et al. [4] proposed three measures re-
lated to Hausdorff distance: closest point distance, mean of closest distances and
Hausdorff distance. Various clustering algorithms, such as hierarchical cluster-
ing (single-link and complete-link) [4, 5], fuzzy c-means [6], k-nearest neighbors
[7], normalized cuts [2] and spectral clustering [3, 8] were used. Mean of closest
distances and spectral clustering were popular among possible choices [8, 9].
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These clustering algorithms required manually specifying the number of clus-
ters or a threshold for deciding when to stop merging/splitting clusters, both of
which are difficult to know especially when the data sets are complicated and
noisy. Moberts et al. [9] showed that the performance of clustering varied dra-
matically when different numbers of clusters were chosen. To avoid this difficulty,
O’Donnell and Westin [8] first chose a large cluster number for spectral clustering
and then manually merged clusters to obtain models for white matter structures.

Another drawback of this framework is the high space and time complexities
of computing pairwise distances between fibers when the data set is large. Whole
brain tractography produces between 10, 000 and 100, 000 fibers per subject. It
is difficult to compute a 100, 000 × 100, 000 similarity matrix or even to store
it in memory. Some clustering algorithms, such as spectral clustering, need to
compute the eigenvectors of this huge similarity matrix. This problem becomes
more serious when clustering fibers of multiple subjects. The current solutions
are to cluster only a small portion of the whole data set after subsampling or
to do some numerical approximation based on the sampled subset [8]. However,
important information from the full data set may be lost after subsampling.

Maddah et al. [10] proposed a probabilistic approach to cluster fibers without
computing pairwise distances. They used a Dirichlet distribution1 as a prior to
incorporate anatomical information. This approach is different from ours. It
used a parametric model, assuming that the number of clusters is known and
required manual initialization of cluster centers. [10] required establishing point
correspondence which was difficult, while our approach does not.

Dirichlet process mixtures (DPM) models were applied to medical image
analysis in recent years because of their capability to learn the number of clus-
ters and their flexibility to adapt to a wide variety of data. Adelino [11] used
a DPM model for brain MRI tissue classification. In [12, 13] DPM models were
used to model spatial brain activation patterns in functional magnetic resonance
imaging. In [14], Jbabdi et al. modeled the connectivity profiles of a brain region
as an infinite mixture of multivariate Gaussian distributions with a DP prior.
To the best of our knowledge, our work is the first to use HDPM for tractog-
raphy segmentation to automatically learn the number of clusters from data.
Our approach is related to the work [15] where HDPM models were used for
word-document analysis. HDPM was also used for trajectory analysis in visual
surveillance [16].

2 Method

We begin by introducing DP in Section 2.1. In Section 2.2 and 2.3 we propose
our HDPM model for clustering fibers and use Gibbs sampling for inference. In
Section 2.3, we explain how to use the learned models of bundles as a prior to
cluster new data.
1 Dirichlet distribution is used as a prior of finite mixture models. These models can

only well adapt to data from particular distributions. Dirichlet process in our ap-
proach is used as a prior in infinite mixture models. These models can well adapt to
a wide variety of data.
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2.1 Dirichlet Process

DP [1] is used as a prior to sample probability measures. It is defined by a
concentration parameter α, which is a positive scalar, and a base probability
measure H. A probability measure G randomly drawn from DP (α,H) is always
a discrete distribution,

G =
∞∑
k=1

πkδφk
, (1)

which can be obtained from a stick-breaking construction [17]. In Eq (1), φk
is a parameter vector sampled from H, δφk

is a Dirac delta function centered
at φk, and πk (

∑∞
k=1 πk = 1) is a non-negative scalar constructed by πk =

π′k
∏k−1
l=1 (1− π′l), π′k ∼ Beta(1, α).

G can be used as a prior for infinite mixture models. Let {wi} be a set of
observed data points. wi is sampled from a density function p(·|θi) parameterized
by θi, and θi (which is one of the φks in Eq (1)) is sampled from G. Data points
sharing the same parameter vector φk are clustered together under this mixture
model. Given parameter vectors θ1, . . . , θN of N data points, the parameter
vector θN+1 of data point wN+1 can be sampled from a prior by integrating out
G,

θN+1|θ1, . . . , θN , α,H ∼
K∑
k=1

nk
N + α

δθ∗k +
α

N + α
H. (2)

There are K distinct parameter vectors {θ∗k}Kk=1 (identifying K components)
among θ1, . . . , θN . nk is the number of points with parameter vector θ∗k. θN+1

can be assigned as one of the existing components (wN+1 is assigned to one of
the existing clusters) or can sample a new component from H (a new cluster is
created for wN+1). The posterior of θN+1 is

p(θN+1|wN+1, θ1, . . . , θN , α,H) ∝ p(wN+1|θN+1)p(θN+1|θ1, . . . , θN , α,H). (3)

It is likely for the Dirichlet process mixture (DPM) model to create a new com-
ponent if existing components cannot well explain the data. There is no limit to
the number of components. These properties make DP ideal for modeling data
clustering problems when the number of clusters is not well-defined in advance.

2.2 Hierarchical Dirichlet Process Mixture Model

In probability theory, statistics, and machine learning, a graphical model is a
graph that represents independences among random variables. The graphical
model of our HDPM model is shown in Figure 2. There are M fibers and each
fiber j has Nj points which are ordered sequentially. oji = (uji, ∆uji) is the
observed 3D coordinate uji = (xji, yji, zji) and shift ∆uji = uji+1−uji of point
i on fiber j. The 3D space of the brain is uniformly quantized into voxels and
shifts are quantized into three orientations ∆u1 = (1, 0, 0)T , ∆u2 = (0, 1, 0)T and
∆u3 = (0, 0, 1)T . A codebook is built, in which codes (entries of the codebook)
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Fig. 2. The graphical model of our HDPM model. The right side list the distributions
where the random variables are sampled from. G0 is a prior on the whole data set. Gj

is a prior on fiber j. Both G0 and Gj are sampled from DP. θji is the model of a bundle
sampled for a point. wji and oji are the code and observation of a point.

are indices of voxels and orientations. Let uw be the centroid of the voxel and
dw be the index of the orientation vector corresponding to code w. Quantization
is done in a probabilistic way,

p(oji|w) = p(uji|uw)p(∆uji|dw), (4)

p(uji|uw) ∝

{
cos2

(
‖uji−uw‖2

2R2 π
)
, ‖uji − uw‖ ≤ R

0, ‖uji − uw‖ > R
, (5)

p(∆uji|dw) ∝

{
1, dw = arg maxd

|∆uji·∆ud|
‖∆uji‖·‖∆ud‖

0, otherwise
. (6)

Since we do not distinguish the starting and ending points of a fiber, the sign
of the correlation between ∆uji and ∆ud is ignored in Eq (6). The statistical
model φk of a bundle is a multinomial distribution over voxels and orientations.
Optionally, if the symmetry across hemispheres is considered, we can do bilateral
clustering as in [8]. Assuming that the brain is aligned and x = 0 is the midsagit-
tal plane, we modify observed 3D coordinates as uji = (|xji|, yji, zji) ignoring
the signs of x coordinates. Thus, learnt models of bundles are symmetric to the
midsagittal reflection.

A prior G0 on the whole data set is sampled from a DP, G0 ∼ DP (γ,H),
where the base measure H is a Dirichlet distribution. G0 =

∑∞
k=1 π0kδφk

is a
infinite mixture in which components {φk} are models of bundles. For a fiber j,
a prior Gj is sampled from a DP, Gj = DP (α,G0). It was shown that in HDPM
all the Gj share the same set of components {φk} as G0, however, they have
different weights πj over {φk}, i.e. Gj =

∑∞
k=1 πjkδφk

[15]. Thus the models
of bundles are learnt from all the fibers, and fibers have different distributions
over bundles. For a point i on fiber j, the model θji (θji ∈ {φk}) of a bundle
is sampled from Gj , θji ∼ Gj . Its index of voxel and orientation wji is sampled
from the model of a bundle, wji ∼ Discrete(θji). Observation oji is sampled from
p(oji|wji). Concentration parameters γ and α are sampled from gamma priors,
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γ ∼ Gamma(a1,b1), α ∼ Gamma(a2,b2). In Figure 2, H, a1, a2, b2 and b2 are
hyperparameters. The clustering performance is quite robust to the choice of
their values in a large range. {oji} are observations. The remaining are hidden
variables to be inferred. A fiber j is assigned to a bundle k with maximum πjk.

The data likelihood is higher when the distribution of a fiber concentrates on
fewer bundles instead of being uniform. So if two voxels are connected by many
fibers, both of them have large weights in the model of the same bundle.

The size of voxels determines the scale of the structures to be learnt. Our
framework can be extended to multiscale clustering. First cluster fibers using a
large size of voxels and bundles correspond to structures at a large scale. Then
each bundle can be further clustered using a smaller size of voxels, showing
structures at a finer scale. Multiscale clustering makes it easier for experts to
identify white mater structures across different scales.

2.3 Inference

We use the Gibbs sampling inference proposed in [15], which is based on Chinese
restaurant franchise. First we introduce some notations. cji is the index of the
bundle assigned to point i on fiber j. njk is number of points assigned to bundle k
on fiber j. nj is the number of point on fiber j. mkw is the number of points with
code w and being assigned to bundle k. mk is the total number of points assigned
to bundle k. n−jijk , m−jikw and m−jik mean that they are statistics without counting
cji. H = Dir(h, . . . ,h) is a flat Dirichlet prior. L is the size of the codebook.

During the sampling procedure, suppose that K models of bundles (clusters)
have been created and assigned to data. Then,

G0 =
K∑
k=1

π0kδφk
+ π0uGu, Gu ∼ DP (γ,H) (7)

The Gibbs sampling scheme proposed in [15] integrated out {πjk} and {φk}
without sampling them. The posterior of cji is given by

p(cji|{cj′i′}j′i′ 6=ji, {wji}, {π0k}, α) ∝

 (n−jijk + απ0k) ·
n−ji

kwji
+h

n−ji
k +Lh

, k ∈ {1, . . . ,K}
απ0u · 1

L , k is new

(8)
This posterior is the product of two terms which explain how many points on
fiber j are assigned to bundle k (n−jijk + απ0k), and how well the code wji fits
the model of an existing bundle ((n−jikwji

+ h)/(n−jik + Lh)) or a flat distribution
(1/L) to create a new bundle. This shows that points on the same fiber tend to
choose the same bundle. The posteriors of {π0k}, γ and α involve more details of
the Chinese restaurant franchise. They can be found in [15]. We need one more
step to sample wji which is not observed in our model but observed in [15],

p(wji|oji, {wj′i′}j′i′ 6=ji, {cj′i′}) (9)

∝ p(oji|wji)p(wji|{wj′i′}j′i′ 6=ji, {cj′i′}) ∝ p(oji|wji)
n−jicjiwji

+ h

n−jicji + Lh
. (10)
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Fig. 3. The graphical model of our HDPM model for clustering testing data. F is used
as the base measure to sample the prior G∗

0 on the new data set. F includes the models
of bundles in G0 learnt from training data.

where p(oji|wji) is given by Eq (4).
Although {φk} and {πjk} are not explicitly sampled during the Gibbs sam-

pling procedure, they can be estimated from any single sample,

φ̂kw =
mkw + h

mk + Lh
, π̂jk =

njk + απ0k

nj + α
.

The space complexity of our approach is O(M). The time complexity of each
Gibbs sampling iteration is O(M). It is difficult to provide theoretical analysis on
the convergence of Gibbs sampling. In practice, we stop burn-in when the data
likelihood converges. From our empirical observation, the time complexity of
our approach is much lower than O(M2). Recently some more efficient inference
approaches, such as variational inference [18], and parallel sampling [19], have
been proposed and applied to DPM and HDPM models. In future work, we will
study how to improve the inference of our model using these schemes.

2.4 Clustering New Data

After the models of bundles have been learnt from training data without super-
vision, we can fix G0 and the number of clusters to classify new fibers. Thus our
model is converted to a parametric model.

Optionally, we can use the models learnt from training data as priors to
cluster instead of classifying new data. The pre-learnt models can adapt to new
data, and new clusters can be created for structures not observed in the training
data. Our HDPM model for clustering testing data is shown in Figure 3. Suppose
that G0 represented in Eq (7) has been learnt from training data and K clusters
are created. A prior G∗0 on testing data is to be learnt. Different from the model
shown in Figure 2, where G0 is generated from a DP with a flat base measure
H, G∗0 is generated from DP (γ∗, F ), where the based measure F is constructed
from G0 and includes models learnt from training data.

F = ω∗
K∑
k=1

π̂0kδφ∗k + (1− ω∗)H (11)
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F is composed of two parts: the models learnt from training data and a flat
prior. ω∗ is a scalar between 0 and 1. {π̂0k} are normalized weights in G0,

π̂0k =
π0k∑K

k′=1 π0k′
.

This assumes that before observing any testing data, there already exist K
models of bundles {φ∗k}Kk=1. However, instead of letting φ∗k be equal to φk in Eq
(7), we sample φ∗k from a Dirichlet distribution choosing φk as prior,

φ∗k ∼ Dir(ξ∗k · φk +H),

where ξ∗k is a positive scalar. Thus the models of bundles can adapt to testing
data instead of being fixed.

The choice of γ∗, ω∗ and ξ∗k controls how much the models learnt from the
training data affect the clustering of testing data. The two extreme cases are that
the pre-learnt models have no effect on clustering new data (ω∗ = 0, ξ∗k = 0)
and that the models learnt from new data are exactly the same as those learnt
from training data (γ∗ =∞, ω = 1, ξ∗k =∞).

Suppose there are K∗ models of bundles assigned to testing data. Then an
explicit construction of G∗0 is given by

G∗0 =
K∑
k=1

π∗0kδφ∗k +
K∗∑

k=K+1

π∗0kδφ∗k + π∗0uG
∗
0u. (12)

Models {φ∗k}Kk=1 have been seen in training data. They are sampled from priors
Dir(ξ∗k ·φk+H) and are updated using testing data. {φ∗k}K

∗

k=K+1 are new models
not found in training data. They are sampled from a flat prior Dir(H). The
remaining parts are the same as described in Section 2.2.

3 Results

We evaluate our approach on multiple data sets. The spatial range of the whole
brain is roughly 200×200×200. The size of voxels is 11×11×11. We choose the
hyperparameters in Figure 2 as a1 = a2 = b1 = b2 = 1, h = 0.3. We do bilateral
clustering. Running on a computer with 3GHz CPU, it takes around one minute
to cluster 1, 000 fibers and around four hours to cluster 60, 000 fibers.

The first data set has 3, 152 fibers with ground truth. They are manually
labeled to six anatomical structures. Figure 4 (a)-(d) plots the clustering results
of our approach and a spectral clustering approach, compared with the ground
truth. Colors are used to distinguish clusters. Since clusters may be permuted
in different results, the meaning of colors is not consistent across different re-
sults. The spectral clustering approach uses the mean of closest distances as the
distance measure, which was found the most effective in previous studies [9, 8].
The clustering result of our approach is close to the ground truth. Although the
correct number of clusters has been set, two anatomical structures are merged in



Tractography Segmentation Using HDPM 9

(a) (b) (c)

(d) (e)

Fig. 4. Compare the results of two clustering approaches with the ground truth on a
data set with 3, 152 fibers. Two views are plotted for each result. (a) Ground truth.
(b) Our approach. (c) Spectral clustering when the number of clusters is 6. (d) Spec-
tral clustering when number of clusters is 7. (e) The accuracies of completeness and
correctness of spectral clustering and our approach (HDPM).

the result of the spectral clustering approach. A few outlier fibers form a small
cluster. As the number of clusters increases to 7, the two anatomical structures
still cannot be separated, instead, another structure splits into two clusters.

There are two important aspects, called correctness and completeness, to be
considered when comparing a clustering result with the ground truth [9]. Cor-
rectness implies that fibers of different anatomical structures are not clustered
together. Completeness means that fibers of the same anatomical structures are
clustered together. Putting all the fibers into the same cluster results in 100%
completeness and 0% correctness. Putting every fiber into a singleton cluster
results in 100% correctness and 0% completeness. To measure correctness, we
randomly sample 5, 000 pairs of fibers which are in different anatomical struc-
tures according to the ground truth and calculate the accuracy (rcorrect) of
they are also in different clusters according to the clustering result. To measure



10 Xiaogang Wang1, W. Eric L. Grimson1, and Carl-Fredrik Westin2

Fig. 5. Compare results of our approach and the approach proposed in [8], in which
experts manually merged the clusters from spectral clustering to obtain anatomical
structures. (a) Clustering all the fibers using our approach. (b1)-(f1) show the obtained
anatomical structures by merging clusters from our approach (totally 27 clusters).
(b2)-(f2) show the obtained anatomical structures by merging clusters from spectral
clustering (totally 200 clusters). Colors are used to distinguish clusters. (g) plots the
frequency of the numbers of clusters learnt by our approach when running 50 trials of
Gibbs sampling with random initializations.

completeness, we randomly sample 5, 000 pairs of fibers which are in the same
anatomical structures and calculate the accuracy (rcorrect) of they are also in
the same clusters. raverage = (rcorrect+ rcomplete)/2 is also computed. The accu-
racies of our approach and spectral clustering are plotted in Figure 4 (e). As we
increase the number of clusters from 2 to 25, the correctness of spectral cluster-
ing increases and its completeness decreases. Its best raverage is found when the
number of clusters is five, which is close to the ground truth, and it is lower than
raverage of our approach. The correctness of our approach is almost consistently
better than spectral clustering until spectral clustering chooses more than 20
clusters. The completeness of our approach is significantly better than spectral
clustering when the number of clusters of spectral clustering is larger than 5.

We compare our approach with the approach proposed in [8] on a larger data
set with 12, 420 fibers. In [8], fibers were first grouped into a large number of
clusters (200) and then experts merged these clusters to obtain anatomical struc-
tures. In this data set there are 10 anatomical structures. Our approach clusters
these fibers to 27 clusters. We also manually merge them to these 10 anatomical
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Training data

Testing data

Fig. 6. Cluster fibers across multiple subjects.

structures, however its takes much less effort than [8] since the number of clus-
ters is smaller. Figure 5 shows some of the anatomical structures obtained by
the two approaches. 83.2% fibers have consistent anatomical labels according to
the two results. To evaluate how our approach is sensitive to initialization, we
run 50 trials of Gibbs sampling with random initializations. Figure 5 (g) plots
the frequency of the numbers of clusters learnt from data.

Figure 6 shows the results of clustering fibers across multiple subjects. The
training data has 63, 751 fibers of two subjects. The models of bundles are learnt
from all these fibers. The testing data has 61, 572 fibers of two subjects.

4 Conclusion

We propose a nonparametric Bayesian framework for tractography segmenta-
tion. The number of clusters is automatically learnt from data through DP. This
method has much lower space complexity than distance-based clustering meth-
ods can cluster a very large set of fibers. Our Bayesian model is very flexible to
include knowledge from experts as priors. In future work, we plan to incorporate
anatomical information in the model to guide tractography segmentation.
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