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The Gaussian Mixture Probability Hypothesis
Density Filter

Ba-Ngu Vo, and Wing-Kin Ma

Abstract—A new recursive algorithm is proposed for jointly ing formulations involve explicit associations between mea-
estimating the time-varying .numberlof targets and their states 'surements and targets. Multiple Hypotheses Tracking (MHT)
from a sequence of observation sets in the presence of data assoCizng its variations concern the propagation of association

ation uncertainty, detection uncertainty, noise and false alarms. S L. o
The approach involves modelling the respective collections of hypotheses in time [2], [6], [7]. The joint probabilistic data

targets and measurements as random finite sets and applying the association filter (JPDAF) [1], [8], the probabilistic MHT
probability hypothesis density (PHD) recursion to propagate the (PMHT) [9], and the multi-target particle filter [3], [4] use
posterior intensity, which is a first order statistic of the random  gpservations weighted by their association probabilities. Al-
finite set of targets, in time. At present, there is no closed form o 5tive formulations that avoid explicit associations between

solution to the PHD recursion. This work shows that under linear, ¢ dt ts include S tric M ¢
Gaussian assumptions on the target dynamics and birth process measurements and iargets Include symmetric Measuremen

the posterior intensity at any time step is a Gaussian mixture. Equations [10] and Random Finite Sets (RFS) [5], [11]-{14].
More importantly, closed form recursions for propagating the The random finite set (RFS) approach to multi-target track-
means, covariances and weights of the constituent Gaussianing is an emerging and promising alternative to the traditional
components of the posterior intensity are derived. The proposed 5qqqciation-based methods [5], [11], [15]. A comparison of the
algorithm combines these recursions with a strategy for managing L . .

the number of Gaussian components to increase efficiency. This RFS approf'ich f'ind traditional multi-target _trackmg meth_ods
algorithm is extended to accommodate mildly nonlinear target has been given in [11]. In the RFS formulation, the collection

dynamics using approximation strategies from the extended and of individual targets is treated ass&t-valued stateand the

unscented Kalman filters. collection of individual observations is treated aset-valued
Index Terms—Multi-target tracking, optimal filtering, point ~ observation Modelling set-valued states and set-valued obser-
processes, random sets, intensity function. vations as RFSs allows the problem of dynamically estimating

multiple targets in the presence of clutter and association
uncertainty to be cast in a Bayesian filtering framework [5],
[11], [15]-{17]. This theoretically optimal approach to multi-

In a multi-target environment, not only do the states of th@rget tracking is an elegant generalization of the single-target
targets vary with time, but the number of targets also changggyes filter. Indeed, novel RFS-based filters such asiuti-
due to targets appearing and disappearing. Often, not alltgfget Bayes filterthe Probability Hypothesis Density (PHD)
the existing targets are detected by the sensor. Moreover, fiigr [5], [11], [18] and their implementations [16], [17], [19]-
sensor also receives a set of spurious measurements (clut@g} have generated substantial interest.
not originating from any target. As a result, the observation The focus of this paper is the PHD filter, a recursion that
set at each time step is a collection of indistinguishable partiglopagates the first-order statistical moment, or intensity, of
observations, only some of which are generated by targeise RFS of states in time [5]. This approximation was devel-
The objective of multi-target tracking is to jointly estimate, agped to alleviate the computational intractability in the multi-
each time step, the number of targets and their states freaiget Bayes filter, which stems from the combinatorial nature
a sequence of noisy and cluttered observation sets. Mulifthe multi-target densities and the multiple integrations on
target tracking is an established area of study, for details @i (infinite dimensional) multi-target state space. The PHD
its techniques and applications, readers are referred to [1], [Rker operates on the single-target state space and avoids the
Up to date overviews are also available in more recent workgmbinatorial problem that arises from data association. These
such as [3]-[5]. salient features render the PHD filter extremely attractive.

An intrinsic problem in multi-target tracking is the unknowrHowever, the PHD recursion involves multiple integrals that
association of measurements with appropriate targets [1], [Rhve no closed form solutions in general. A generic sequential
[6], [7] Due to its combinatorial nature, the data aSSOCiatiqﬂonte Carlo technique [16], [17], accompanied by various
prOblem makes up the bulk of the Computational load in mUltb'erformance guarantees [17]’ [24]' [25]’ have been proposed
target tracking algorithms. Most traditional multi-target tratho propagate the posterior intensity in time. In this approach,

. . . _ state estimates are extracted from the particles representing
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low complexity, innovative extensions and applications d&. Single-target filtering

the particle-PHD filter soon followed [26]-[31]. The main |, many dynamic state estimation problems, the state is
drawbacks of this approach though, are the large number Q& med to follow a Markov process on the state space
particles, and the unreliability of clustering techniques fq@m, with transition densityfy .1 (-|-), i.. given astatek__l

extracting state estimates. (The latter will be further discussgptime k—1, the probability density of a transition to the state
in Section III-C.) x at timek ist

In this paper, we propose an analytic solution to the PHD 1
. ; . ) . Jjp—1(zr|TR—1)- (1)

recursion for linear Gaussian target dynamics and Gaussian
birth model. This solution is analogous to the Kalman filteFhis Markov process is partially observed in the observation
as a solution to the single-target Bayes filter. It is showspaceZ C R"=, as modelled by thikelihood functiongy (-|-),
that when the initial prior intensity is a Gaussian mixturd,e. given a stater; at time k, the probability density of
the posterior intensity at any subsequent time step is alsagegeiving the observatior, € Z is
Gaussian mixture. Moreover, closed form recursions for the

weights, means, and covariances of the constituent Gaussian 9k (zx |- @)
components are derived. The resulting filter propagates therpe probability density of the state, at time & given all
Gaussian mixture posterior intensity in time as measuremeﬁb%ervationszl:k = (21,...,2,) Up to timek, denoted by
arrive in the same spirit as the Gaussian sum filter of [32],

[33]. The fundamental difference is that the Gaussian sum pr(Tk|21:k), 3)

filter propagates a probability density using the Bayes recur-

sion, F\)/vhgregas the gaussianymixtureyPHD g1?ilter progagateslfﬁr?a”ed theposterior density(or filtering density at time k.
intensity using the PHD recursion. An added advantage ofo™ an initial densityp(-), the posterior density at time
the Gaussian mixture representation is that it allows sttd" be computed using the Bayes recursion

estimates to be extracted from the posterior intensity in a

much more efficient and reliable manner than clustering in th&k—1(Zklz15-1) = /fk\k*(x’“‘x)pkfl(x‘zlikfl)dx’ )
particle-baseq approach. In ge'neral,.the' number of 'Gau.ssian  gr(zler)prje—1 (@rl 211 5
components in the posterior intensity increases with time. pr(@kl21x) = T ox Gl e (@l )da (5)
However, this problem can be effectively mitigated by keeping

only the dominant Gaussian components at each instand#.information about the state at timeis encapsulated in the
Two extensions to nonlinear target dynamics models are apesterior densityy (-|z1.x), and estimates of the state at time
proposed. The first is based on linearizing the model while thecan be obtained using either the MMSE (Minimum Mean
second is based on the unscented transform. Simulation resGgiared Error) criterion or the MAP (Maximum A Posteriori)
are presented to demonstrate the capability of the propositerior?.

approach.

Preliminary results on the closed form solution to the PHB. Random Finite Set Formulation of Multi-target Filtering
recursion have been presented as a conference paper [34]. The

current paper is a more complete version of this work. Now consider a multiple target scenario. Le(k) be the
) . umber of targets at timg, and suppose that, at tinie— 1,
The structure of the paper is as follows. Section Il preselﬂ‘I

S
the random finite set formulation of multi-target filtering, and < target states arey—i,1,.. ., Tx-1.m(k-1) € & Atthe
. . ; next time step, some of these targets may die, the surviving
the PHD filter. Section lll presents the main result of thi :
argets evolve to their new states, and new targets may appeatr.

paper, namely the analytical solution to the PHD recursiaf : .
under linear Gaussian assumptions. An implementation of ?{ﬂéls results inM (k) new statessy,1,. .., Zy,p(x)- NOte that
hé order in which the states are listed has no significance

PHD filter and simulation results are also presented. Section ; .
! in_the RFS multi-target model formulation. At the sensor,

IV extends the proposed approach to nonlinear models usi .

. . k) measurementsy, 1,..., 2, k) € Z are received at

ideas from the extended and unscented Kalman filters. Dem |rr1ne & The origins of ihe measurements are not known. and

strations with tracking nonlinear targets are also given. Final . 9 '

concluding remarks and possible future research directions s the order in which they appear bears no significance.
. . : nly some of these measurements are actually generated
given in Section V.

by targets. Moreover, they are indistinguishable from the
false measurements. The objective of multi-target tracking
is to jointly estimate the number of targets and their states
from measurements with uncertain origins. Even in the ideal

This section presents a formulation of multi-target filteringase where the sensor observes all targets and receives no
in the random finite set (or point process) framework. We begffutter, single-target filtering methods are not applicable since
with a review of single-target Bayesian filtering in Section Iithere is no information about which target generated which
A. Using random finite set models, the multi-target trackingPservation.
pmb!em is then .formUIa.lted as a B.ayeSIan filtering prOb.Iem InlFor notational simplicity, random variables and their realizations are not
Section 1I-B. This provides sufficient background leading t@stinguished.

Section 1I-C, which describes the PHD filter. 2These criteria are not necessarily applicable to the multi-target case.

Il. PROBLEM FORMULATION
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Since there is no ordering on the respective collections of The RFS measurement model, which accounts for detection
target states and measurements at timthey can be naturally uncertainty and clutter, is described as follows. A given

represented as finite sets, i.e. targetx;, € X is either detected with probabilﬂyppyk (k)
or missed with probabilityl — pp  (x%). Conditional on
X = A1, 2} € F(X), ) detection, the probability density of obtaining an observation
Zy = {21, 2N ) € F(2), (7) 2, from z;, is given by (2), i.e.gx(zx|zx). Consequently, at

where F(X) and F(Z) are the respective collections of alime k, each stater; € X generates an RFS

finite subsets oft and Z. The key in the random finite set O (z1) (10)

formulation is to treat the target sef;, and measurement ) )

set Z;, as themulti-target stateand multi-target observation that can take on eithefz;.} when the target is detected, or

respectively. The multi-target tracking problem can then tfeWwhen the target is not detected. In addition to the target

posed as a filtering problem with (multi-target) state spadiginated measurements, the sensor also receives &set

F(X) and observation spacg(Z). of false measurements, or clutter. Thus, given a multi-target
In a single-target system, uncertainty is characterized E}ﬂtexk at imek, the multi-target measuremef, received

modelling the state;, and measuremeny, as random vectors. & the sensor is formed by the union of target generated

Analogously, uncertainty in a multi-target system is charactdpéasurements and clutter, i.e.

ized by modelling the multi-target stat€, and multi-target

measurementZ;, as random finite set{RFS). An RFSX Zy = KU [ U O ()

is simply a finite-set-valued random variable, which can be Xy,

described by a discrete probability distribution and a family js assumed that the RFSs constituting the union in (11) are
of joint probability densities [11], [35], [36]. The discretejndependent of each other. The actual formiqf is problem
distribution characterizes the cardinality of, while for a gdependent; some examples will be illustrated in Section I1I-D.
given cardinality, an appropriate density characterizes the jointiy 3 similar vein to the single-target dynamical model in
distribution of the elements oX.. (1) and (2), the randomness in the multi-target evolution and
In the following, we describe an RFS model for the timgpservation described by (9) and (11) are respectively captured
evolution of the multi-target state, which incorporates targgt the multi-target transition densityfy;_1(-|-) and multi-
motion, birth and death. For a given multi-target staig ; target likelihoo® g (-|-) [5], [17]. Explicit expressions for
at timek — 1, eachx,_; € Xj_1 either continues to exist at Frie—1(Xx|Xe—1) and g, (Zx|X;) can be derived from the
time & with probability® ps . (z4-1), or dies with probability ynderlying physical models of targets and sensors using Finite
1 — ps,k (zk—1). Conditional on the existence at tinke the get Statistics (FISST)[5], [11], [15], although these are not
probability density of a transition from state,_; to x5 IS peeded for this paper.
given by (1), i.€.fyx—1(zk|ze—1). Consequently, for a given | et p,(.|Z;.,) denote themulti-target posterior density
stater,_; € Xy attimek —1, its behavior at the next time Then, the optimal multi-target Bayes filter propagates the

(11)

step is modelled as the RFS multi-target posterior in time via the recursion
Skik—1(Tk-1) (8) Prjk—1(Xk| Z1:1-1)

that can take on eithefz;} when the target survives, dr — /fk|k—1(ch‘X)pkfl(X|Zl-k71)/Js(dX) (12)

when the target dies. A new target at tithecan arise either ' ’

by spontaneous births (i.e. independent of any existing target) — Pr(Xk|Z1:1)
or by spawning from a target at timke- 1. Given a multi-target 1 (Zr) Xi)Projro—1 (Xk| Z1:6—1)

? . , = 13
stateX;,—; at timek — 1, the multi-target stateX; at time k J 912k X)prje—1 (X ] Zrik—1) s (dX) (13)
is given by the union of the surviving targets, the spawned i i
targets and the spontaneous births: wherep is an appropriate reference measurefm’) [17],

[37]. We remark that although various applications of point
process theory to multi-target tracking have been reported in

Xe=| U Su-1O|U]| U Bup—1(Q)|UTk, (9) the literature (e.g. [38]-[40]), FISST [5], [11], [15] is the first
CEXk—1 CEXk—1 systematic approach to multi-target filtering that uses RFSs in
where the Bayesian framework presented above.

The recursion (12)-(13) involves multiple integrals on the
spaceF (X), which are computationally intractable. Sequential
Monte Carlo implementations can be found in [16], [17],
[19], [20]. However, these methods are still computationally
It is assumed that the RFSs constituting the union in (9)

_ . . . .
are independent of each other. The actual formdpfand ~ /NOt thatpp,x(xx) is a probability parameterized by y
The same notation is used for multi-target and single-target densities.

Bk\k—l(’) are prOblem dependent; some examples are givehbre is no danger of confusion since in the single-target case the arguments
in Section IlI-D. are vectors whereas in the multi-target case the arguments are finite sets.
Sstrictly speaking, FISST vyields the set derivative of the belief mass
3Note thatps » (zx—1) is a probability parameterized fy, 1. functional, but this is in essence a probability density [17].

T = RFS of spontaneous birth at tinke
Brx—1(¢) = RFS of targets spawned at timiefrom
a target with previous statg
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intensive due to the combinatorial nature of the densities,Remark 1 Assumptions A.1 and A.2 are standard in most
especially when the number of targets is large [16], [17fracking applications (see for example [1], [2]) and have
Nonetheless, the optimal multi-target Bayes filter has beaiready been alluded to earlier in Section II-B. The additional
successfully applied to applications where the number atsumption A.3 is a reasonable approximation in applications

targets is small [19]. where interactions between targets are negligible [5]. In fact,
it can be shown that A.3 is completely satisfied when there is
C. The Probability Hypothesis Density (PHD) filter no spawning and the RFSE;,_, andT', are Poisson.

Let vx and vy, denote the respective intensities associ-
ed with the multi-target posterior densjty and the multi-
E’arget predicted densityy,—; in the recursion (12)-(13).
nder assumptions A.1-A.3, it can be shown (using FISST [5]

tm;e, thte tP':D Ifllter prO?a??rt]es thet p(_)sterlolrt_l?tens:ty:{ 5; firs r classical probabilistic tools [37]) that the posterior intensity
order statistical moment of the posterior multi-target state [ an be propagated in time via the PHD recursion:

This strategy is reminiscent of the constant gain Kalman filter,

which propagates the first moment (the mean) of the singlg; ,  (z) = /ps k(€ frjp—1(@[Q)vk—1(C)d¢
target state. ’

The PHD filter is an approximation developed to aIIeviatSt
the computational intractability in the multi-target Bayes filte
Instead of propagating the multi-target posterior density

For a RFSX on X with probability distributionP, its first- / d 15
order moment is a non-negative functionon X, called the ) Buir-1(@lOve—1 ()¢ + e (2), (15)
intensity such that for each regiofi C X’ [35], [36] vk(z) = [1 = ppk(@)]vkk—1(x)

PD k() gk (2] )V -1 ()
X PdX) = dz. 14 + : 16
Jixnsipax)= [ o 1) 2 5T+ oo @i Ok OO

In other words, the integral ob over any regionS gives |t js clear from (15)-(16) that the PHD filter completely
the expected number of elements ¥fthat are inS. Hence, avoids the combinatorial computations arising from the un-
the total massV = [wv(z)dz gives the expected number ofknown association of measurements with appropriate targets.
elements ofX. The local maxima of the intensity are points Fyrthermore, since the posterior intensity is a function on the
in X with the highest local concentration of expected numbgfngle-target state spacg, the PHD recursion requires much
of elements, and hence can be used to generate estimatesel computational power than the multi-target recursion (12)-
the elements ofX. The simplest approach is to roumd (13), which operates off(X'). However, as mentioned in the
and choose the resulting number of highest peaks from tip@roduction, the PHD recursion does not admit closed form

intensity. The intensity is also known in the tracking literaturgg|utions in general, and numerical integration suffers from
as the PrObablllty HypothESiS DenSity (PHD) [18], [41] the ‘curse of dimensiona”ty"

An important class of RFSs, namely the Poisson RFSs, are
those completely characterized by their intensities. A RFS 1. THE PHD RECURSION FOR LINEARGAUSSIAN
is Poissonif the cardinality distribution ofX, Pr(|X| = n), MODELS
is Poisson with meanV, and for any finite cardinality, the  1hig section shows that for a certain class of multi-target
elementse of X are independently and identically dlstnbuteqnodds, herein referred to dimear Gaussian multi-target

according to the probability density()/N [35], [36]. For models, the PHD recursion (15)-(16) admits a closed form

the multi-target problem described in the subsection II-B, it |ytion. This result is then used to develop an efficient multi-
common to model the clutter RFS], in (11)] and the birth (546t tracking algorithm. The linear Gaussian multi-target

RFSs [y, and Byjx—1(zx—1) in (9)] as Poisson RFSs. _ models are specified in Section IlI-A, while the solution to
To present the PHD filter, recall the multi-target evolutiog,e pHp recursion is presented in Section I11-B. Implementa-
and observation models from Section II-B with tion issues are addressed in Section IlI-C. Numerical results

() = intensity of the birth RFS";, at time k, are presented in Section 1ll-D and some generalizations are
Brik—1(:I¢) = intensity of the RFSBy;,—1(¢) spawned  discussed in Section IlI-E.
at time k by a target with previous statg
ps.k(C) = probability that a target still exists at time A. Linear Gaussian multi-target model
K given 'that Its previous _state s Our closed form solution to the PHD recursion requires,
pp(r) = probability of detection given a stateat  j, aqgition to assumptions A.1-A.3, a linear Gaussian multi-
fume k.’ , target model. Along with the standard linear Gaussian model
() = intensity of the clutter RFS(;, attimek ¢, gividual targets, the linear Gaussian multi-target model
and consider the following assumptions: includes certain assumptions on the birth, death and detection
A.l1. Each target evolves and generates observations indétargets. These are summarized below:
pendently of one another, A.4. Each target follows a linear Gaussian dynamical model
A.2. Clutter is Poisson and independent of target-originateed the sensor has a linear Gaussian measurement model, i.e.
measurements,

A.3. The predicted multi-target RFS governed fay;,_; is Tupp=1 (21€) = N3 Froa G, Qi -1), (17)
Poisson. gi(2|x) = N(2; Hyz, Ry), (18)
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where N'(-;m, P) denotes a Gaussian density with mean of the form

and covarianceP, F,_, is the state transition matrixQ,_1 Jis

is the process noise C(_)varran_afé,t is the observation matrix, b1 Z w N(z; mk)ltplgi)l)' (23)
and R;, is the observation noise covariance.

A.5. The survival and detection probabilities are state inde_—herl the predicted intensity for time is also a Gaussian

endent, i.e. . S
P mixture, and is given by
Ps,k(T) = psik, (19)
Vklk—1(T) = Vg pjp—1(2) + Vg k1) +W(2),  (24)
Ppk(T) = PD k- (20)
where is given in (21),
A.6. The intensities of the birth and spawn RFSs are (@) is g (1)
Gaussian mixtures of the form Jr1 ) )
VS klk—1( pSkZ wk AN (= mSk|k—1’PSk\k L), (25)
Zw Nwmfy)k’Pm) (1) ) ()
Sjk|k 1 Fk—lmk—p (26)
o D) A (e ) G A0 PY) = Qi1+ F PO FL @7)
ﬂk\k 1 ‘TK Zw F57k_14+d5,k_17Q57k—1)7 Syk[k—1 _] k1T kD
Je—1 3,k
14 14 4
(22) v -1 ( Z Zwk 1ngN (z; m(ﬁjkfk—ltpt(ijk\)k 1)
1 ¢=1
where J, 1, w(’)k, m! k, P(’,)f, i = 1,...,J,, are given = (28)
model parameters that determrne the shape of the birth in- ;) 0 (j) 0
tensity; similarly, Js. 5, wS), FS)_,, d¥)_,, and QY) |, mﬂm 1 Fﬁk vy +dg gy, (29)
j=1,...,Js, determine the shape of the spawning intensity p( pre Qﬁ )+ Fﬁ(el)c lpﬁ(ﬂg 1(F,(§£1171)T (30)

of a target with previous state

Some remarks regarding the above assumptions are in org&gposition 2 Suppose that Assumptions A.4-A.6 hold and
Remark 2 Assumptions A.4 and A.5 are commonly useghat the predicted intensity for time is a Gaussian mixture
in many tracking algorithms [1], [2]. For clarity in the pre-of the form
sentation, we only focus on state independeni andpp i,
although closed form PHD recursions can be derived for more () ()
general cases (see Subsection IlI-E). Ukl Z wklk Ny Pjgy)-
Remark 3In assumption A.6m" )k, i=1,..,J, are the
peaks of the spontaneous birth intensity in (21) These poirtden. the posterior intensity at time is also a Gaussian
have the highest local concentrations of expected number'@iture, and is given by
spontaneous births, and represent, for example, airbases or (@) = (1= pp.&)vkj( Z vpi(@; 2) (32)
airports where targets are most likely to appear. The covariance
matrix P ;, determines the spread of the b|rth intensity in

where
the vrcrnrty of the peakm . The werghtw gives the
expected number of new targets orrgrnatrng fI’Oﬁ‘i A ) : @) NN (22 ) pl) 33
similar interpretation applies to (22), the spawning mtensny vD.k(w;2) Z we (N (@imyg(2), By, (33)
of a target with previous staté, except that thejth peak, G ()
Bk ¢+ dj,C » is an affine function of¢. Usually, a w (2) = Pk Wijp 195 () (34)
spawned target is modelled to be in the proximity of its parent. k k(2 )+pDkngk 1 ](CEL 1ql(cf)( )
For example,( could correspond to the state of an aircraft !

Jr)k—1

(1)

z€Z},

(') _ ) ) ()

carrier at timek — 1, while F/)_,¢ +dY)_, is the expected "(2) = N (= Hemyly o R+ He Py Hy ), (35)

state of fighter planes spawned at timeNote that other forms (J) (2) = mW) K(j)( — HomW) ) (36)
Mk k|k— 1t KM E k-1

of birth and spawning intensities can be approximated, to any ) ) )

desired accuracy, using Gaussian mixtures [42]. Py = — K Hy [Py, (37)
K =Py HF(HPY)_ HE + Ry~ (39)

B. The Gaussian mixture PHD recursion

For the linear Gaussian multi-target model, the followin
two propositions present a closed form solution to the PH

recursion (15)-(16). More concisely, these propositions show

how the Gaussian components of the posterior intensity ar% ma 1 GivenF, d, @, m, and P of appropriate dimen-
analytically propagated to the next time. sions, and that) and P are positive definite,

Propositions 1 and 2 can be established by applying the
llowing standard results for Gaussian functions:

. . _ . T
Proposition 1 Suppose that Assumptions A.4-A.6 hold an N(@; FC+d,QIN(Gm,P)d¢ = N(w; Fm+d,Q+FPF)
that the posterior intensity at timle— 1 is a Gaussian mixture (39)
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Lemma 2 GivenH, R, m, and P of appropriate dimensions, TABLE |
and thatR and P are positive definite, PSEUDO-CODE FOR THEGAUSSIAN MIXTURE PHD FILTER.
N(z; Hz, RN (z;m, P) = q(2)N (z;m, P)  (40)
where given {wl(cizﬂml(cizv P,ii)l};]i;l, and the measurement set Zj,.
step 1. (prediction for birth targets)
q(2) = N(z; Hm,R+ HPHT) (41) i=0.
m=m+ K(z — Hm) (42) forj=1,....Jyk
~ ti=1+1. ) _ ) )
P=(I-KH)P (43) oy =0 m =ml P =PY.
K =PH"(HPH" + R)™! (44) end
forj=1,...,Jg%
Note that Lemma 1 can be derived from Lemma 2, which in fore=1,...,J5_1
turn can be found in [43] or [44] (Section 3.8), though in a i=i+1. .
slightly different form. wi = wi? w),
Proposition 1 is established by substituting (17), (19), (21), m;ﬂgk_l - dg}H +F,é{,171m}(flly |
(22) and (23) into the PHD prediction (15), and replacing p]g‘zkil - Q(ﬁ],)k—l + Fﬁ(g%_lpégl(F[g{z_l)T_

integrals of the form (39) by appropriate Gaussians as given end

by Lemma 1. Similarly, Proposition 2 is established by substi- end

tuting (18), (20) and (31) into the PHD update (16), and thengep 2. (prediction for existing targets)
replacing integrals of the form (39) and product of Gaussians o j —1,..., 7, ,
of the form (40) by appropriate Gaussians as given by Lemmas ;.= + 1.

1 and 2 respectively. wih_y = psxwi,
It follows by induction from Propositions 1 and 2 that if the ml(c?kfl =F_ym p,i‘l)ﬁl = Qr1+F, PP FT |,

initial prior intensity vy is a Gaussian mixture (including the  end

case whereyy = 0), then all subsequent predicted intensities ~ Jkjx—1 = t.

v k—1 and posterior intensities, are also Gaussian mixtures. step 3. (construction of PHD update components)
Proposition 1 provides closed form expressions for computing forj =1,..., Jy,_1

the means, covariances and weightsupf,_; from those of n = Hem{ S = Ry + HPY)HT
vp—1. Proposition 2 then provides closed form expressions for K = p,g{;_ng[s,gﬂ]—l, ng\jzi — - Klij)Hk}Pg]i_l_
computing the means, covariances and weights;offrom end

those ofv,,—; when a new set of measurements arrivesstep 4. (update)
Propositions 1 and 2 are, respectively, the prediction and forj=1,...,Jy_,

update steps of the PHD recursion for a linear Gaussian multi- ) = (1 _pD’k)wfcﬂl'L_l,
target model, herein referred to as Baussian mixture PHD m = mmily P = Pli\jli—l'
recursion For completeness, we summarize the key steps of end
the Gaussian mixture PHD filter in Table I. £:=0.
Remark 4 The predicted intensity,,_, in Proposition for each z € Z,
1 consists of three termsg x—1, vg k-1 and -, due, fi:A“l-
respectively, to the existing targets, the spawned targets, and for 5 = 1""*‘]#!'@*1
the spontaneous births. Similarly, the updated posterior in- wff‘le_lﬂ) =PD,k w;?&fl/\f(z;n,iﬁ,l,séj))-
tensity v;, in Proposition 2 consists of a mis-detection term, ml(vwm,ﬁj) _ m;(f\'ifl +K£j>(2*7h(f\'zlfl)'
(1 = ppk)Vkjk—1, and |Z;| detection termsyp x(-;z), one Pliwmflﬂ‘) :Pli‘j]l’

for each measuremente Z,. As it turns out, the recursions

. end
for the means and covariances @©f ;,,—1 and vg ;1 are

(LTg ke —1+7)
W

Kalman predictions, and the recursions for the means and wy Tt @ 1=
covariances obp ;(-; z) are Kalman updates. Lo et AP

Given the Gaussian mixture intensitieg;_; and v, the end
corresponding expected number of targléfm,l and N, can Ik = k-1 + Jr|k—1-

b_e obtained by summing up the_z appropriate weights. _Propos@,utput {(w® m® POy
tions 1 and 2 lead to the following closed form recursions for
Nk\k—l and Ng:

Corollary 1 Under the premises of Proposition 1, the meafrrellary 2 Under the premises of Proposition 2, the mean
of the predicted number of targets is of the updated number of targets is

Jow Sy Tee—1
Nijk—1 = Nig—1 | psk+ Z w}f}c + Z w%@a (45) Ny = Nij—1(1 = pp.x) + Z Z w,(g)(z) (46)
J=1 J=1 z€Z j=1
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TABLE I

In Corollary 1, the mean of the predicted number of targets
PRUNING FOR THEGAUSSIAN MIXTURE PHD FILTER.

is obtained by adding the mean number of surviving targets,
the mean number of spawnings and the mean number of births:
A similar interpretation can be drawn from Corollary 2. When gjyen {w;;), m;(c) p}@};fil, atruncation threshold T, a merging thresh-
there is no clutter, the mean of the updated number of targets isd U/, and a maximum allowable number of Gaussian terms Jyna..

the number of measurements plus the mean number of targedg ¢ =0, and I = {i = 1,..., Jy|w” > T}.

that are not detected. repeat
0:=/¢+1.
(4)

j = arg max w,, .
J ST Yk

C. Implementation issues . . . . .
, _ . , L= {z er ‘ (m$) = mHT (P =1 () — )y < U}.
The Gaussian mixture PHD filter is similar to the Gaussian ) * )
sum filter of [32], [33] in the sense that they both propagate “* ~ ;wk '
Gaussian mixtures in time. Like the Gaussian sum filter, the ;) _ 1 Zw;(f)gﬁz(f)-
L

i

E=

Gaussian mixture PHD filter also suffers from computation , “koieL , , , ,
problems associated with the increasing number of Gaussian 2" = — S wd (P + () —m{)m —m{)7T).
components as time progresses. Indeed, attiniee Gaussian 7= I\L_k ek
mixture PHD filter requires until T = 0. .
. ~ (2 ~ (1 () e
(Jk—l(l + Jﬁ,k) +J ,k)(l + |Zk‘) _ O(Jk—1|Zk|) if £ > Jmax then replace {wk sy, Py }i_y by those of the Jmax

Gaussians with largest weights.
Gaussian components to represeptwhere.J,,_; is number  output (@), i), B{Ye_, as pruned Gaussian components.
of components ob,_;. This implies the number of compo-
nents in the posterior intensities increases without bound.
A simple pruning procedure can be used to reduce the
number of Gaussian components propagated to the next time
step. A good approximation to the Gaussian mixture posterior

TABLE Il
MULTI-TARGET STATE EXTRACTION

intensity , given {w'?, m{? Pk
. k > =
_ ) Nf (o () ) Set Xy = 0.
vk(ac)—Zwk N (@smy”, Py) fori=1,...,Jx
=1 if w” > 0.5,

can be obtained by truncating components that have weak
weights w,(j). This can be done by discarding those with
weights below some preset threshold, or by keeping only a cer-
tain number of components with strongest weights. Moreover,
some of the Gaussian components are so close together that™"
they could be accurately approximated by a single Gaussiafi. " _ .
. . . output X as the multi-target state estimate.
Hence, in practice these components can be merged into one.
These ideas lead to the simple heuristic pruning algorithm

shown in Table II.
Having computed the posterior intensity, the next task numbper of targets due to these peaks is small, even though the

is to extract multi-target state estimates. In general, suChy@gnitudes of the peaks are large. A better alternative is to
task may not be simple. For example, in the particle-PHEyject the means of the Gaussians that have weights greater

forj=1,... ,round(w,ii))
update X}, := [Xhm,(j)}

filter [17], the estimated number of targed§. is given by than some threshold e.g.5. This state estimation procedure

the total mass of the particles representing The estimated for the Gaussian mixture PHD filter is summarized in Table Ill.
states are then obtained by partitioning these particles into

Ny, clusters, using standard clustering algorithms. This works )

well when the posterior intensity, naturally hasV,, clusters. D- Simulation Results

Conversely, whenV,, differs from the number of clusters, the Two simulation examples are used to test the proposed

state estimates become unreliable. Gaussian mixture PHD filter. An additional example can be
In the Gaussian mixture representation of the posterifwund in [34].

intensity v, extraction of multi-target state estimates is 1) Example 1:For illustration purposes, consider a two-

straightforward since the means of the constituent Gaussi@imensional scenario with an unknown and time varying

components are indeed the local maximavpf provided that number of targets observed in clutter over the surveillance

they are reasonably well-separated. Note that after pruniregion[—1000, 1000] x [—1000,1000] (in m). The statery =

(see Table II) closely spaced Gaussian components would h&ve, i, py k. Px.k, Pyx )© Of €ach target consists of position

been merged. Since the height of each peak depends on Heths, p, ) and velocity (p, «, py,k), While the measurement

the weight and covariance, selecting tNg highest peaks of is a noisy version of the position.

v may result in state estimates that correspond to GaussianEach target has survival probabilitys, = 0.99, and

with weak weights. This is not desirable because the expecfetlows the linear Gaussian dynamics (17) with
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time. Targets 1 and 2 are born at the same time but at two

L AL NS AT different locations. They travel along straight lines (their tracks
F,= |2 20, Q=02 852 272, cross atk = 53s) and atk = 66s target 1 spawns target 3.
02 I2 ATIQ A2IQ
where I, and 0, denotes, respectively, the x n identity - R = e T
and zero matricesA = 1s is the sampling period, and g s ‘
o, = 5(m/s?) is the standard deviation of the process noise.§ [ ?
Targets can appear from two possible locations as well a‘g
spawned from other targets. Specifically, a Poisson RES 8 e
with intenSity BT 2 2 40 50 60 70 % 0 100
time step
(@) = 0.IN (z3mD), P,) + 0N (5 m?), Py), @
where ; 500 ‘
m{}) = [ 250,250,0,0 |”, g o ‘
m® =[ —250,-250,0,0 ], g \

P, = diag([ 100, 100, 25, 25]7),

is used to model spontaneous births in the vicinitym%l)
andm(f). Additionally, the RFSB,;,_ (¢) of targets spawned Fig.
from a target with previous statgis Poisson with intensity

Brjk—1(2[¢) = 0.05N (23 ¢, Qp),
Qg = diag([ 100, 100, 400,400 ]7).

Each target is detected with probabiliyy , = 0.98, and
the measurement follows the observation model (18) with
H, = [ I 0 ], Ry = o%I, whereo. = 10m is the
standard deviation of the measurement noise. The detecte
measurements are immersed in clutter that can be modelle::
as a Poisson RF&;, with intensity

kr(z) = AVu(z),

whereu(+) is the uniform density over the surveillance region,
V = 4x10%n? is the ‘volume’ of the surveillance region, and

e = 12.5x107%m =2 is the average number of clutter returns
per unit volume (i.e. 50 clutter returns over the surveillance

x coordinate (in m)

(47)

y coordinate (in m)
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50
time step

60 70 80 90 100

(b)

2. Measurements and true target positions.
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-1000

O PHD filter estimates
= True tracks
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.
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500

0 =

-500

-1000 L
10

L
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L
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.
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time step
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60 70 80 920 100

(b)

region).

400

Target 1;
born at k=1;
dies at k=100

200

Target 2;
born at k=1;
dies at k=100
-200

400t

y coordinate (in m)

Target 3;
born at k=66;
dies at k=100

-600

-800

-1000

400 -200 0 200 400 600 800
x coordinate (in m)

Fig. 1.
locations at which targets die.

1000

Target trajectories O’ locations at which targets are borri;1-

Fig. 3. Position estimates of the Gaussian mixture PHD filter.

The Gaussian mixture PHD filter, with parametédrs=
1075, U = 4, and J,,,. = 100 (see Table Il for the meanings
of these parameters) is applied. From the position estimates
shown in Figure 3, it can be seen that the Gaussian mixture
PHD filter provides accurate tracking performance. The filter
not only successfully detects and tracks targets 1 and 2,
but also manages to detect and track the spawned target 3.
The filter does generate anomalous estimates occasionally, but
these false estimates die out very quickly.

2) Example 2:In this example we evaluate the performance
of the Gaussian mixture PHD filter by benchmarking it against
the JPDA filter [1], [8] via Monte Carlo simulations. The
JPDA filter is a classical filter for tracking a known and fixed
number of targets in clutter. In a scenario where the number of
targets is constant, the JPDA filter (given the correct number
of targets) is expected to outperform the PHD filter, since the
latter has neither knowledge of the number of targets, nor even

Figure 1 shows the true target trajectories, while Figure knowledge that the number of targets is constant. For these
plots these trajectories with cluttered measurements agaif¢isons, the JPDA filter serves as a good benchmark.
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The experiment settings are the same as those of Examp & *
1, but without spawning, as the JPDA filter requires a knowr %0-8*
and fixed number of targets. The true tracks in this exampli £0s
are those of targets 1 and 2 in Figure 1. Target trajectorie §0_4
are fixed for all simulation trials, while observation noise and - ,|
clutter are independently generated at each trial. d .

We study track loss performance by using the following cir- = ©°7 075 08 08 09 095 ! @
cular position error probability (CPEP) (see [45] for example)

E{| |X

o
©
T

1
CPEP(r) = i Z pr(z, ),
z€Xg

=3
2
T

for some position error radius where

CPEP(r) (time averaged)

o

o o
» =
V

pr(z,7) = Prob{|H& — Hz|y > r for all € Xy},

0.75 0.8 0.85 0.9 0.95 1

Ppke (b)

o
3

H =[1,0; ] and||-|2 is the2-norm. In addition, we measure

the expecte(_j absolute e_rror on the number of targets for Tﬁ& 5. Tracking performance versus detection probability. The clutter rate
Gaussian mixture PHD filter: is fixed atA. = 12.5 x 10-%m—2. The CPEP radius i = 20m.

E{| | Xx| — Xkl I}.

Note that standard performance measures such as the nfZé@ft knowledge of the number of targets is not affected by
square distance error are not applicable to multi-target filtdf¥€ Increase in detection uncertainty.
that jointly estimate the number of targets and their states (such
as the PHD filter). E. Generalizations to exponential mixtusg ;, andpg i

As remarked in Section llI-A, closed form solutions to the
PHD recursion can still be obtained for a certain class of state-
] dependent probability of survival and probability of detection.
Indeed, Propositions 1 and 2 can be easily generalized to
handlepg 1 (z) andpp x(z) of the forms:

-

=)
@

=)
)

=}
~

JIs,k

psi(Q) = wih+ > whN(Gm) PY).  (48)
j=1

=}
N}

E{| |X¢| — [ X [} (time averaged)
S

-

JID K

pop(z) = wi+ > wd N(z;m$),, PY)), (49)
j=1

o
)

o
o
T

I

o
>
I

|

0 ] 3 1 .
WhereJ&_k, wg’;, wg’)k{m(sl’)k, Pg?ﬁ, 1=1,.., JS,k- and JDJg,
w([(,)?k, wg?k, m%{k, Pg?k,, it =1,..,Jp are given model
s T Y g parameters such thak . (z) andpp () lie between 0 and
1 for all .
Fig. 4. Tracking performance versus clutter rate. The detection probability The closed form predicted intensi%k_l can be obtained

is fixed atpp = 0.98. The CPEP radius is = 20m. by applying Lemma 2 to COfWeI’ps,k(C)vkq(C) into a

Figure 4 shows the tracking performance of the two fi|te|@au§sian mixture, which is then integrated with the transition
for various clutter rates\, [cf., EqQ. (47)] with the CPEP densityfy,_i(x|¢) using Lemma 1. The closed form updated
radius fixed at- = 20m. Observe that the CPEPs of the twdntensity v, can be obtained by applying Lemma 2 once
filters are quite close for a wide range of clutter rates. Thi€ PD.k(%)vkjk—1(z) and twice topp k(z)gk(|2) vk (2)
is rather surprising considering that the JPDA filter has exd@ convert these products to Gaussian mixtures. For com-
knowledge of the number of targets. Figure 4(a) suggests tRIg€ness, the Gaussian mixture expressionsvfgr_; and
the occasional overestimation/underestimation of the numBer @€ given in the following Propositions, although their
of targets is not significant in the Gaussian mixture PHD filtefTPlementations will not be pursued.

Figure 5 shows the tracking performance for various values . . . .
of detection probability 1, 1, with the clutter rate fixed at, = roposition 3 Under the premises of Proposition 1, with
12.5 x 10~5m~2. Observe that the performance gap betweé%’k(x) given by (48) instead of (19), the predicted intensity

the two filters increases asp ;. decreases. This is becaus&klk—1 is given by (24) but with

CPEP(r) (time averaged)

o

the PHD filter has to resolve higher detection uncertainty on Jr_1 sk
top of uncertainty in the number of targets. When detection,, , ,(z) = Z Z wg’;fk—1N($?m/g’Zﬁk—1vPéi};?k-—ﬂ
uncertainty increase®f , decreases), uncertainty about the =1 j=0 ’ '

number of targets also increases. In contrast, the JPDA filter's (50)
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wgiho = il ywia”,

) - (4.5)
szz\k 1 = Feamy, e

Pg}cj\k 1 = Qr—1+ Fe 1P1§”1)Fk 1

8 =1, m =2, P < PO,
R e

8 =il K ], i),

PI&? = (I - Kl(clijl))Plg—)1a
Kl(cli) = P;ii)l(Pz@l + Pgi)_l
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elling assumptions A.5 and A.6 are still required, but the state
and observation processes can be relaxed to the nonlinear
model:

Ty = Pk(Th—1, V1), (52)
2k = hi(Tr, €x), (53)

where ¢, and h; are known nonlinear functions,_; and

€, are zero-mean Gaussian process noise and measurement
noise with covariances),_; and Ry, respectively. Due to

the nonlinearity ofy, and hy, the posterior intensity can no
longer be represented as a Gaussian mixture. Nonetheless,
the proposed Gaussian mixture PHD filter can be adapted to

Proposition 4 Under the premises of Proposition 2, withaccommodate nonlinear Gaussian models.

pp.k(z) given by (49) instead of (20)

vk (%) = Vpjp—1(7) — vp i (x
z2€Z},

where

Jrik—1 Jp,k

vp k(T) = Z Zwl(cﬁ]g)l'/\/x mg\lz)l’Pli\zkj)l)
i=1 j5=0

(&,5) _ , () (Z) (4,5)
wk\lg | = wp KWk — 1%\13 1

(3,0) _ (1,0) m'® (i,0) _ p(d)
D= =1 klk—1 = Mk—1> Pk|k 1 Pk|k 1

Zkaxz (51)

TABLE IV
PSEUDO-CODE FOR THEEK-PHD FILTER.

given {w,(j ,msf) b P(’Ql}ﬁfl, and the measurement set Zj,.
step 1. (construction of birth target components)
follow Step 1. of Table I.
step 2. (prediction for existing targets)
forj=1,...,Jx_1
i:=14 1.

](g?k 1 *pskw}(j)l m;l')k 1= L:Dk(nglvO%

Gty = NmBmif . P+ Pi_y). P 1 = O Qe G+ B PO R
() @)y ) () ® M Oer(k_1,0)
klk—1 = M1 T Bppla(Mpi — My R o ,
(i.9) (i.0) \pi) Pl ekammy
P’y = (1= Kyl 3) Py G Oenm? 1)
) _ pli) 0] () y-1 e
KyiZy = Py (P + Ppi) ™ o V-1 B
Jklk—1 Dk end
UD,k(xéz) Z Z w(l J) 1‘ ml(c|k)( ) P;S}f))» Jklk—1 =% .
i1 i— step 3. (construction of PHD update components)
(ig) (6:9) forj=1,..., Jpje—1
w,(f’j)(z) = Dkle—1%k ) nl(ﬂ]\?c 1 _hk(ml(ej\chpo)'
‘ Tkik—1 Jp ’ G) _ 7G) T o g pl) T
s) Sy U R U TT + H P HYTT,
ri(2) + Z Z w7 (2) K(g) PO OISO, e
g (= )ZN(Z'Hkmg\}g)17Rk+HkP;§\ij)1HkT)v P]E,‘Je%e - K(])H“)}Pliljll v
m(l J)(Z) (2 7) + K(Z J)( —H, m(l J) ), W G) _ Ohy(zg,0)
klk M =1 klk—1 B = e o
(ir§) _ (i) (i,9) L
Pl =0 - K H)PG 0 Ohi(my) . ex)
(2 2, —_ U = K.
K¢ = PP HE (HG PP HT + Ry . 2

Conceptually, the Gaussian mixture PHD filter implemen- end

tation can be easily extended to accommodate exponentlf 4 (UPdae)

mixture probability of survival. However, for exponential oo Step“ of Tble | to obtain {u”

mixture probability of detection, the updated intensity contairf¥trut {wi?,mi?, POYE,

Gaussians with negative and positive weights, even though the

updated intensity itself (and hence the sum of the weights)

is non-negative. Although these Gaussians can be propagatekh single-target filtering, analytic approximations of the

using Propositions 3 and 4, care must be taken in the implsnlinear Bayes filter include the extended Kalman (EK) filter

mentation to ensure non-negativity of the intensity functiof#6], [47] and the unscented Kalman (UK) filter [48], [49]. The

after merging and pruning. EK filter approximates the posterior density by a Gaussian,

which is propagated in time by applying the Kalman recursions

IV. EXTENSION TONONLINEAR GAUSSIAN MODELS to local linearizations of the (nonlinear) mappings and
This section considers extensions of the Gaussian mixturg. The UK filter also approximates the posterior density

PHD filter to nonlinear target models. Specifically, the modsy a Gaussian, but instead of using the linearized model, it

(2) i)\ J
PRALTN 7P]§ )}1:kl




PREPRINT: IEEE TRANSACTIONS SIGNAL PROCESSING, VOL. 54, NO. 11, PP. 4091-4104, NOV 2006 11

computes the Gaussian approximation of the posterior densityrollowing the development in Section I11-B, it can be shown
at the next time step using the unscented transform. Detalisit the posterior intensity of the multi-target state propagated
for the EK and UK filters are given in [46], [47] and [48],by the PHD recursions (15)-(16) is a weighted sum of various

[49], respectively.

TABLE V
PSEUDO-CODE FOR THEUK-PHD FILTER.

given {w,@l, mgﬁl, P,Eijl};]ijl and the measurement set Zj,.

step 1. (construction of hirth target components)
follow Step 1. of Table I.
forj=1,...,¢
(4) (4)
= |TEE=1| O = Pik— 0

0 0 Ry,
- use the unscentéd transformation (see [46], [47]) with mean p

and covariance C' to generate a set of sigma points and weights,
denoted by {y\"), u(¥}L_ .
- partition y,(f) =[@®Y T, (e,(f))T 1T for£=0,1,...,L.

k-1
- compute

(£) — (£) O] _
Zplk—1 = hk(ka\k—l’Ek ), £=0,...,L,

) _ 2) ,(€)
771@]|k71 = ;z:o ul >Zk\k71’

) _ £) ¢, ) (1) (£) [€)) T
8y = ZZL:O ul )(zk|k—1 - 77k]|k71)(zk\k71 - nkj\kfl) '

) _ £)(,.(0) () (£) ©)] T
G,j‘ _Zgzoqf( )(Ik\k—limkj\k—l)(zk\k—l777kj\k—1) '
K<'<g>> _ GJ&?[S?]T-‘) ()1—1 ()T

J) _ J J IN— J
Pk|k_Pk\k717Gk [Sk ] [Gk } -

end
step 2. (construction of existing target components)
forj=1,...,Jp_1
-1 = i+ 1.

(7) (4)
my” P.7 0 0
pi=1 0 C:=10 Q-1 0

0 0 0 Ry,
- use the unscented transformation with mean p and covariance

C to generate a set of sigma points and weights, denoted by
€) (o)L
{yk ;U }e:o-

L. 7 ¢ ) ¢
- partiton 4 = [ ()7, (2T ()T I for € =
0,1,...,L.
- compute
£ ¢ 4
ml(c\zefl =@ ), e=o0,...,L,

ko = (g =0, L,

: L
m;ﬂ)k—l = ZLZZOU(O”CI(;/\L—1'
(€2 £),.(€) (5) (£) [€)) T
Prli—1 —ZZL:O“( R%\kffmk]wfl)(xk|k4*mkj\k4) ,
(%) _ (0),,(€)
Me(k—1 = 24:0“ Zhlk—1"
(i) _ L 2)(£) (4) (£) ©)] T
Sy = Z/L:D ul >(Zk\k—1 - nk7\k—1)(’zk:\k—1 _nkrj\k—l) s
(4) _ £)(,.(0) (4) O] [€)) T
Gk_ _Z%:Oq_‘< )("”k\kq* k]|k71)(zk|k71*’7kj\k71) '
19 = GITSO

pl _ pl) _Géi)[slii)]fl[gg)]T_

klk — 'k|k—1
end
Jrjk—1 =1

step 3. (update)

follow Step 4. of Table | to obtain {wfj), m,(f), P,E“}fil.
output {wlii), mfj), P,i“ };.]il.

functions, many of which are non-Gaussian. In the same vein
as the EK and UK filters, we can approximate each of these
non-Gaussian constituent functions by a Gaussian. Adopting
the philosophy of the EK filter, an approximation of the
posterior intensity at the next time step can then be obtained
by applying the Gaussian mixture PHD recursions to a locally
linearized target model. Alternatively, in a similar manner to
the UK filter, the unscented transform can be used to compute
the components of the Gaussian mixture approximation of the
posterior intensity at the next time step. In both cases, the
weights of these components are also approximations.

Based on the above observations, we propose two nonlinear
Gaussian mixture PHD filter implementations, namely, the
extended Kalman PHOEK-PHD) filter and theunscented
Kalman PHD(UK-PHD) filter. Given that details for the EK
and UK filters have been well-documented in the literature
(see e.qg. [44], [46]-{49]), the developments for the EK-PHD
and UK-PHD filters are conceptually straightforward, though
notationally cumbersome, and will be omitted. However, for
completeness, the key steps in these two filters are summarized
as pseudo codes in Tables IV and V, respectively.

Remark 5 Similar to its single-target counterpart, the
EK-PHD filter is only applicable to differentiable nonlinear
models. Moreover, calculating the Jacobian matrices may be
tedious and error-prone. The UK-PHD filter, on the other hand,
does not suffer from these restrictions and can even be applied
to models with discontinuities.

Remark 6 Unlike the particle-PHD filter, where the particle
approximation converges (in a certain sense) to the posterior
intensity as the number of particle tends to infinity [17], [24],
this type of guarantee has not been established for the EK-
PHD or UK-PHD filter. Nonetheless, for mildly nonlinear
problems, the EK-PHD and UK-PHD filters provide good
approximations and are computationally cheaper than the
particle-PHD filter, which requires a large number of particles
and the additional cost of clustering to extract multi-target state
estimates.

A. Simulation Results for a Nonlinear Gaussian Example

In this example, each target has a survival probability,. =
0.99 and follows a nonlinear nearly-constant turn model [50]
in which the target state takes the form = [ yi,wy |7,
wherey, = [ Pz ks Py.ks Pa ks Py |©» @ndwy, is the turn rate.
The state dynamics are given by

yr = F(wr—1)yp—1 + Gup—1,
W = wp—1 + Aug_1,

where
sin wA 1—coswA A
(].j ? 1 u)‘ A N 53 wA 7 AO2
o —COS W blnu(;d - O A~
Fw)= 0 0 coswA —sinwA G = A 8 ’
0 0 sinwA coswA 0 A
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A = 1s, wy ~ N(0,021), 0 = 15m/s°, and uy ~
N(+0,02), 0, = (7/180)rad/s. We assume no spawning,
and that the spontaneous birth RFS is Poisson with intensit

(@) = 0.IN (z;mlD, Py) + 01N (z;m?, P,),

1000

500~

-500

x coordinate (in m)
°

-100(

where

. . . . . . . . .
5 10 15 20 25 30 35 40 45
time step (a)

m{Y = —1000,500,0,0,0 ],

m{? = [ 1050,1070,0,0,0 |7,

P, = diag([ 2500,2500, 2500, 2500, (6 x 1%5)2 |T).

2000 -

1500 -

1000 -

y coordinate (in m)

Each target has a probability of detectipp , = 0.98. An
observation consists of bearing and range measurements

5 1‘0 1‘5 2‘0 X 2‘5 3‘0 3‘5 4‘0 4‘5
arctan(pz’k /py’k) time step ()
\/Pek T Py , Fig. 7. Position estimates of the EK-PHD filter.

wheree, ~ N (0, R;) with Ry = diag([o3,02]7T), o9 =
2 x (w/180)rad/s and o, = 20m. The clutter RFS follows
the uniform Poisson model in (47) over the surveillance regiol
[—7/2,7/2]rad x [0,2000]m, with A\, = 3.2 x 1073 (radm) !
(i.e. an average of 20 clutter returns on the surveillance region g -seor ]
The true target trajectories are plotted in Figure 6. Target x - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 and 2 appear from 2 different locations, 5s apart. They bot r S e S "
travel in straight lines before making turns fat= 16s. The @
tracks almost cross a = 25s, and the targets resume their
straight trajectories aftgt = 34s. The pruning parameters for
the UK-PHD and EK-PHD filters ar@ = 1 x 107°, U = 4,
and J,,.. = 100. The results, shown in Figures 7 and 8,
indicate that both the UK-PHD and EK-PHD filters exhibit

good tracking performance. 5 0 15w % s 4
time step (b)

1000 -

500

rdinate (in m)

2500

2000

1500

1000

500¢

y coordinate (in m)

1200

Fig. 8. Position estimates of the UK-PHD filter.

1000

— Target 2;

e born at k=6;

£ 8001 dies at k=49 i i . .

o also a Gaussian mixture. More importantly, we have derived
:g’ o00r closed form recursions for the weights, means, and covariances
S o 1 of the constituent Gaussian components of the posterior inten-
o arget 1; . . . .

> bormatet; sity. An implementation of the PHD filter has been proposed

2001 dies at k=40

by combining the closed form recursions with a simple pruning
- s = procedure to manage the growing number of components. Two
x coordinate (in m) extensions to nonlinear models using approximation strategies
from the extended Kalman filter and the unscented Kalman
filter have also been proposed. Simulations have demonstrated
the capabilities of these filters to track an unknown and time-
In many nonlinear Bayes filtering applications, the UK filterarying number of targets under detection uncertainty and false
has shown better performance than the EK filter [49]. Trlarms.
same is expected in nonlinear PHD filtering. However, this There are a number of possible future research directions.
example only has a mild nonlinearity and the performandgosed formed solutions to the PHD recursion for jump
gap between the EK-PHD and UK-PHD filters may not bdlarkov linear models are being investigated. In highly non-
noticeable. linear, non-Gaussian models, where particle implementations
are required, the EK-PHD and UK-PHD filters are obvious
V. CONCLUSIONS candidates for efficient proposal functions that can improve
rformance. This also opens up the question of optimal
portance functions and their approximations. The efficiency
d simplicity in implementation of the Gaussian mixture
recursion also suggest possible application to tracking
sensor networks.

L L
-1000 -500

Fig. 6. Target trajectories O’ locations at which targets are borri;~
locations at which targets die.

Closed form solutions to the PHD recursion are importaﬁﬁ
analytical and computational tools in multi-target filteringan
Under linear Gaussian assumptions, we have shown that wi
the initial prior intensity of the random finite set of targets i§n
a Gaussian mixture, the posterior intensity at any time step is
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