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The Gaussian Mixture Probability Hypothesis
Density Filter

Ba-Ngu Vo, and Wing-Kin Ma

Abstract— A new recursive algorithm is proposed for jointly
estimating the time-varying number of targets and their states
from a sequence of observation sets in the presence of data associ-
ation uncertainty, detection uncertainty, noise and false alarms.
The approach involves modelling the respective collections of
targets and measurements as random finite sets and applying the
probability hypothesis density (PHD) recursion to propagate the
posterior intensity, which is a first order statistic of the random
finite set of targets, in time. At present, there is no closed form
solution to the PHD recursion. This work shows that under linear,
Gaussian assumptions on the target dynamics and birth process,
the posterior intensity at any time step is a Gaussian mixture.
More importantly, closed form recursions for propagating the
means, covariances and weights of the constituent Gaussian
components of the posterior intensity are derived. The proposed
algorithm combines these recursions with a strategy for managing
the number of Gaussian components to increase efficiency. This
algorithm is extended to accommodate mildly nonlinear target
dynamics using approximation strategies from the extended and
unscented Kalman filters.

Index Terms— Multi-target tracking, optimal filtering, point
processes, random sets, intensity function.

I. I NTRODUCTION

In a multi-target environment, not only do the states of the
targets vary with time, but the number of targets also changes
due to targets appearing and disappearing. Often, not all of
the existing targets are detected by the sensor. Moreover, the
sensor also receives a set of spurious measurements (clutter)
not originating from any target. As a result, the observation
set at each time step is a collection of indistinguishable partial
observations, only some of which are generated by targets.
The objective of multi-target tracking is to jointly estimate, at
each time step, the number of targets and their states from
a sequence of noisy and cluttered observation sets. Multi-
target tracking is an established area of study, for details on
its techniques and applications, readers are referred to [1], [2].
Up to date overviews are also available in more recent works
such as [3]–[5].

An intrinsic problem in multi-target tracking is the unknown
association of measurements with appropriate targets [1], [2],
[6], [7]. Due to its combinatorial nature, the data association
problem makes up the bulk of the computational load in multi-
target tracking algorithms. Most traditional multi-target track-
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ing formulations involve explicit associations between mea-
surements and targets. Multiple Hypotheses Tracking (MHT)
and its variations concern the propagation of association
hypotheses in time [2], [6], [7]. The joint probabilistic data
association filter (JPDAF) [1], [8], the probabilistic MHT
(PMHT) [9], and the multi-target particle filter [3], [4] use
observations weighted by their association probabilities. Al-
ternative formulations that avoid explicit associations between
measurements and targets include Symmetric Measurement
Equations [10] and Random Finite Sets (RFS) [5], [11]–[14].

The random finite set (RFS) approach to multi-target track-
ing is an emerging and promising alternative to the traditional
association-based methods [5], [11], [15]. A comparison of the
RFS approach and traditional multi-target tracking methods
has been given in [11]. In the RFS formulation, the collection
of individual targets is treated as aset-valued state, and the
collection of individual observations is treated as aset-valued
observation. Modelling set-valued states and set-valued obser-
vations as RFSs allows the problem of dynamically estimating
multiple targets in the presence of clutter and association
uncertainty to be cast in a Bayesian filtering framework [5],
[11], [15]–[17]. This theoretically optimal approach to multi-
target tracking is an elegant generalization of the single-target
Bayes filter. Indeed, novel RFS-based filters such as themulti-
target Bayes filter, the Probability Hypothesis Density (PHD)
filter [5], [11], [18] and their implementations [16], [17], [19]–
[23] have generated substantial interest.

The focus of this paper is the PHD filter, a recursion that
propagates the first-order statistical moment, or intensity, of
the RFS of states in time [5]. This approximation was devel-
oped to alleviate the computational intractability in the multi-
target Bayes filter, which stems from the combinatorial nature
of the multi-target densities and the multiple integrations on
the (infinite dimensional) multi-target state space. The PHD
filter operates on the single-target state space and avoids the
combinatorial problem that arises from data association. These
salient features render the PHD filter extremely attractive.
However, the PHD recursion involves multiple integrals that
have no closed form solutions in general. A generic sequential
Monte Carlo technique [16], [17], accompanied by various
performance guarantees [17], [24], [25], have been proposed
to propagate the posterior intensity in time. In this approach,
state estimates are extracted from the particles representing
the posterior intensity using clustering techniques such as
K-mean or expectation maximization. Special cases of this
so-called particle-PHD filter have also been independently
implemented in [21] and [22]. Due to its ability to handle
the time-varying number of nonlinear targets with relatively
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low complexity, innovative extensions and applications of
the particle-PHD filter soon followed [26]–[31]. The main
drawbacks of this approach though, are the large number of
particles, and the unreliability of clustering techniques for
extracting state estimates. (The latter will be further discussed
in Section III-C.)

In this paper, we propose an analytic solution to the PHD
recursion for linear Gaussian target dynamics and Gaussian
birth model. This solution is analogous to the Kalman filter
as a solution to the single-target Bayes filter. It is shown
that when the initial prior intensity is a Gaussian mixture,
the posterior intensity at any subsequent time step is also a
Gaussian mixture. Moreover, closed form recursions for the
weights, means, and covariances of the constituent Gaussian
components are derived. The resulting filter propagates the
Gaussian mixture posterior intensity in time as measurements
arrive in the same spirit as the Gaussian sum filter of [32],
[33]. The fundamental difference is that the Gaussian sum
filter propagates a probability density using the Bayes recur-
sion, whereas the Gaussian mixture PHD filter propagates an
intensity using the PHD recursion. An added advantage of
the Gaussian mixture representation is that it allows state
estimates to be extracted from the posterior intensity in a
much more efficient and reliable manner than clustering in the
particle-based approach. In general, the number of Gaussian
components in the posterior intensity increases with time.
However, this problem can be effectively mitigated by keeping
only the dominant Gaussian components at each instance.
Two extensions to nonlinear target dynamics models are also
proposed. The first is based on linearizing the model while the
second is based on the unscented transform. Simulation results
are presented to demonstrate the capability of the proposed
approach.

Preliminary results on the closed form solution to the PHD
recursion have been presented as a conference paper [34]. The
current paper is a more complete version of this work.

The structure of the paper is as follows. Section II presents
the random finite set formulation of multi-target filtering, and
the PHD filter. Section III presents the main result of this
paper, namely the analytical solution to the PHD recursion
under linear Gaussian assumptions. An implementation of the
PHD filter and simulation results are also presented. Section
IV extends the proposed approach to nonlinear models using
ideas from the extended and unscented Kalman filters. Demon-
strations with tracking nonlinear targets are also given. Finally,
concluding remarks and possible future research directions are
given in Section V.

II. PROBLEM FORMULATION

This section presents a formulation of multi-target filtering
in the random finite set (or point process) framework. We begin
with a review of single-target Bayesian filtering in Section II-
A. Using random finite set models, the multi-target tracking
problem is then formulated as a Bayesian filtering problem in
Section II-B. This provides sufficient background leading to
Section II-C, which describes the PHD filter.

A. Single-target filtering

In many dynamic state estimation problems, the state is
assumed to follow a Markov process on the state spaceX ⊆
Rnx , with transition densityfk|k−1(·|·), i.e. given a statexk−1

at timek−1, the probability density of a transition to the state
xk at timek is1

fk|k−1(xk|xk−1). (1)

This Markov process is partially observed in the observation
spaceZ ⊆ Rnz , as modelled by thelikelihood functiongk(·|·),
i.e. given a statexk at time k, the probability density of
receiving the observationzk ∈ Z is

gk(zk|xk). (2)

The probability density of the statexk at time k given all
observationsz1:k = (z1, . . . , zk) up to timek, denoted by

pk(xk|z1:k), (3)

is called theposterior density(or filtering density) at timek.
From an initial densityp0(·), the posterior density at timek
can be computed using the Bayes recursion

pk|k−1(xk|z1:k−1) =
∫

fk|k−1(xk|x)pk−1(x|z1:k−1)dx, (4)

pk(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

. (5)

All information about the state at timek is encapsulated in the
posterior densitypk(·|z1:k), and estimates of the state at time
k can be obtained using either the MMSE (Minimum Mean
Squared Error) criterion or the MAP (Maximum A Posteriori)
criterion2.

B. Random Finite Set Formulation of Multi-target Filtering

Now consider a multiple target scenario. LetM(k) be the
number of targets at timek, and suppose that, at timek − 1,
the target states arexk−1,1, . . . , xk−1,M(k−1) ∈ X . At the
next time step, some of these targets may die, the surviving
targets evolve to their new states, and new targets may appear.
This results inM(k) new statesxk,1, . . . , xk,M(k). Note that
the order in which the states are listed has no significance
in the RFS multi-target model formulation. At the sensor,
N(k) measurementszk,1, . . . , zk,N(k) ∈ Z are received at
time k. The origins of the measurements are not known, and
thus the order in which they appear bears no significance.
Only some of these measurements are actually generated
by targets. Moreover, they are indistinguishable from the
false measurements. The objective of multi-target tracking
is to jointly estimate the number of targets and their states
from measurements with uncertain origins. Even in the ideal
case where the sensor observes all targets and receives no
clutter, single-target filtering methods are not applicable since
there is no information about which target generated which
observation.

1For notational simplicity, random variables and their realizations are not
distinguished.

2These criteria are not necessarily applicable to the multi-target case.
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Since there is no ordering on the respective collections of
target states and measurements at timek, they can be naturally
represented as finite sets, i.e.

Xk = {xk,1, . . . , xk,M(k)} ∈ F(X ), (6)

Zk = {zk,1, . . . , zk,N(k)} ∈ F(Z), (7)

whereF(X ) andF(Z) are the respective collections of all
finite subsets ofX andZ. The key in the random finite set
formulation is to treat the target setXk and measurement
set Zk as themulti-target stateand multi-target observation
respectively. The multi-target tracking problem can then be
posed as a filtering problem with (multi-target) state space
F(X ) and observation spaceF(Z).

In a single-target system, uncertainty is characterized by
modelling the statexk and measurementzk as random vectors.
Analogously, uncertainty in a multi-target system is character-
ized by modelling the multi-target stateXk and multi-target
measurementZk as random finite sets(RFS). An RFSX
is simply a finite-set-valued random variable, which can be
described by a discrete probability distribution and a family
of joint probability densities [11], [35], [36]. The discrete
distribution characterizes the cardinality ofX, while for a
given cardinality, an appropriate density characterizes the joint
distribution of the elements ofX.

In the following, we describe an RFS model for the time
evolution of the multi-target state, which incorporates target
motion, birth and death. For a given multi-target stateXk−1

at timek − 1, eachxk−1 ∈ Xk−1 either continues to exist at
time k with probability3 pS,k(xk−1), or dies with probability
1 − pS,k (xk−1). Conditional on the existence at timek, the
probability density of a transition from statexk−1 to xk is
given by (1), i.e.fk|k−1(xk|xk−1). Consequently, for a given
statexk−1 ∈ Xk−1 at timek−1, its behavior at the next time
step is modelled as the RFS

Sk|k−1(xk−1) (8)

that can take on either{xk} when the target survives, or∅
when the target dies. A new target at timek can arise either
by spontaneous births (i.e. independent of any existing target)
or by spawning from a target at timek−1. Given a multi-target
stateXk−1 at timek − 1, the multi-target stateXk at timek
is given by the union of the surviving targets, the spawned
targets and the spontaneous births:

Xk =


 ⋃

ζ∈Xk−1

Sk|k−1(ζ)


∪


 ⋃

ζ∈Xk−1

Bk|k−1(ζ)


∪Γk, (9)

where

Γk = RFS of spontaneous birth at timek,
Bk|k−1(ζ) = RFS of targets spawned at timek from

a target with previous stateζ.

It is assumed that the RFSs constituting the union in (9)
are independent of each other. The actual forms ofΓk and
Bk|k−1(·) are problem dependent; some examples are given
in Section III-D.

3Note thatpS,k(xk−1) is a probability parameterized byxk−1.

The RFS measurement model, which accounts for detection
uncertainty and clutter, is described as follows. A given
targetxk ∈ Xk is either detected with probability4 pD,k (xk)
or missed with probability1 − pD,k (xk). Conditional on
detection, the probability density of obtaining an observation
zk from xk is given by (2), i.e.gk(zk|xk). Consequently, at
time k, each statexk ∈ Xk generates an RFS

Θk(xk) (10)

that can take on either{zk} when the target is detected, or
∅ when the target is not detected. In addition to the target
originated measurements, the sensor also receives a setKk

of false measurements, or clutter. Thus, given a multi-target
stateXk at timek, the multi-target measurementZk received
at the sensor is formed by the union of target generated
measurements and clutter, i.e.

Zk = Kk ∪
[ ⋃

x∈Xk

Θk(x)

]
(11)

It is assumed that the RFSs constituting the union in (11) are
independent of each other. The actual form ofKk is problem
dependent; some examples will be illustrated in Section III-D.

In a similar vein to the single-target dynamical model in
(1) and (2), the randomness in the multi-target evolution and
observation described by (9) and (11) are respectively captured
in the multi-target transition densityfk|k−1(·|·) and multi-
target likelihood5 gk(·|·) [5], [17]. Explicit expressions for
fk|k−1(Xk|Xk−1) and gk(Zk|Xk) can be derived from the
underlying physical models of targets and sensors using Finite
Set Statistics (FISST)6 [5], [11], [15], although these are not
needed for this paper.

Let pk(·|Z1:k) denote themulti-target posterior density.
Then, the optimal multi-target Bayes filter propagates the
multi-target posterior in time via the recursion

pk|k−1(Xk|Z1:k−1)

=
∫

fk|k−1(Xk|X)pk−1(X|Z1:k−1)µs(dX), (12)

pk(Xk|Z1:k)

=
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(X|Z1:k−1)µs(dX)
, (13)

whereµs is an appropriate reference measure onF(X ) [17],
[37]. We remark that although various applications of point
process theory to multi-target tracking have been reported in
the literature (e.g. [38]–[40]), FISST [5], [11], [15] is the first
systematic approach to multi-target filtering that uses RFSs in
the Bayesian framework presented above.

The recursion (12)-(13) involves multiple integrals on the
spaceF(X ), which are computationally intractable. Sequential
Monte Carlo implementations can be found in [16], [17],
[19], [20]. However, these methods are still computationally

4Note thatpD,k(xk) is a probability parameterized byxk.
5The same notation is used for multi-target and single-target densities.

There is no danger of confusion since in the single-target case the arguments
are vectors whereas in the multi-target case the arguments are finite sets.

6Strictly speaking, FISST yields the set derivative of the belief mass
functional, but this is in essence a probability density [17].
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intensive due to the combinatorial nature of the densities,
especially when the number of targets is large [16], [17].
Nonetheless, the optimal multi-target Bayes filter has been
successfully applied to applications where the number of
targets is small [19].

C. The Probability Hypothesis Density (PHD) filter

The PHD filter is an approximation developed to alleviate
the computational intractability in the multi-target Bayes filter.
Instead of propagating the multi-target posterior density in
time, the PHD filter propagates the posterior intensity, a first-
order statistical moment of the posterior multi-target state [5].
This strategy is reminiscent of the constant gain Kalman filter,
which propagates the first moment (the mean) of the single-
target state.

For a RFSX onX with probability distributionP , its first-
order moment is a non-negative functionv on X , called the
intensity, such that for each regionS ⊆ X [35], [36]

∫
|X ∩ S|P (dX) =

∫

S

v(x)dx. (14)

In other words, the integral ofv over any regionS gives
the expected number of elements ofX that are inS. Hence,
the total massN̂ =

∫
v(x)dx gives the expected number of

elements ofX. The local maxima of the intensityv are points
in X with the highest local concentration of expected number
of elements, and hence can be used to generate estimates for
the elements ofX. The simplest approach is to round̂N
and choose the resulting number of highest peaks from the
intensity. The intensity is also known in the tracking literature
as the Probability Hypothesis Density (PHD) [18], [41].

An important class of RFSs, namely the Poisson RFSs, are
those completely characterized by their intensities. A RFSX
is Poissonif the cardinality distribution ofX, Pr(|X| = n),
is Poisson with mean̂N , and for any finite cardinality, the
elementsx of X are independently and identically distributed
according to the probability densityv(·)/N̂ [35], [36]. For
the multi-target problem described in the subsection II-B, it is
common to model the clutter RFS [Kk in (11)] and the birth
RFSs [Γk andBk|k−1(xk−1) in (9)] as Poisson RFSs.

To present the PHD filter, recall the multi-target evolution
and observation models from Section II-B with

γk(·) = intensity of the birth RFSΓk at timek,
βk|k−1(·|ζ) = intensity of the RFSBk|k−1(ζ) spawned

at timek by a target with previous stateζ,
pS,k(ζ) = probability that a target still exists at time

k given that its previous state isζ,
pD,k(x) = probability of detection given a statex at

time k,
κk(·) = intensity of the clutter RFSKk at timek

and consider the following assumptions:
A.1. Each target evolves and generates observations inde-

pendently of one another,
A.2. Clutter is Poisson and independent of target-originated

measurements,
A.3. The predicted multi-target RFS governed bypk|k−1 is

Poisson.

Remark 1. Assumptions A.1 and A.2 are standard in most
tracking applications (see for example [1], [2]) and have
already been alluded to earlier in Section II-B. The additional
assumption A.3 is a reasonable approximation in applications
where interactions between targets are negligible [5]. In fact,
it can be shown that A.3 is completely satisfied when there is
no spawning and the RFSsXk−1 andΓk are Poisson.

Let vk and vk|k−1 denote the respective intensities associ-
ated with the multi-target posterior densitypk and the multi-
target predicted densitypk|k−1 in the recursion (12)-(13).
Under assumptions A.1-A.3, it can be shown (using FISST [5]
or classical probabilistic tools [37]) that the posterior intensity
can be propagated in time via the PHD recursion:

vk|k−1(x) =
∫

pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ

+
∫

βk|k−1(x|ζ)vk−1(ζ)dζ + γk(x), (15)

vk(x) = [1− pD,k(x)]vk|k−1(x)

+
∑

z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)
κk(z) +

∫
pD,k(ξ)gk(z|ξ)vk|k−1(ξ)dξ

.(16)

It is clear from (15)-(16) that the PHD filter completely
avoids the combinatorial computations arising from the un-
known association of measurements with appropriate targets.
Furthermore, since the posterior intensity is a function on the
single-target state spaceX , the PHD recursion requires much
less computational power than the multi-target recursion (12)-
(13), which operates onF(X ). However, as mentioned in the
introduction, the PHD recursion does not admit closed form
solutions in general, and numerical integration suffers from
the ‘curse of dimensionality.’

III. T HE PHD RECURSION FOR LINEARGAUSSIAN

MODELS

This section shows that for a certain class of multi-target
models, herein referred to aslinear Gaussian multi-target
models, the PHD recursion (15)-(16) admits a closed form
solution. This result is then used to develop an efficient multi-
target tracking algorithm. The linear Gaussian multi-target
models are specified in Section III-A, while the solution to
the PHD recursion is presented in Section III-B. Implementa-
tion issues are addressed in Section III-C. Numerical results
are presented in Section III-D and some generalizations are
discussed in Section III-E.

A. Linear Gaussian multi-target model

Our closed form solution to the PHD recursion requires,
in addition to assumptions A.1-A.3, a linear Gaussian multi-
target model. Along with the standard linear Gaussian model
for individual targets, the linear Gaussian multi-target model
includes certain assumptions on the birth, death and detection
of targets. These are summarized below:

A.4. Each target follows a linear Gaussian dynamical model
and the sensor has a linear Gaussian measurement model, i.e.

fk|k−1(x|ζ) = N (x; Fk−1ζ, Qk−1), (17)

gk(z|x) = N (z; Hkx,Rk), (18)
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whereN (·;m, P ) denotes a Gaussian density with meanm
and covarianceP , Fk−1 is the state transition matrix,Qk−1

is the process noise covariance,Hk is the observation matrix,
andRk is the observation noise covariance.

A.5. The survival and detection probabilities are state inde-
pendent, i.e.

pS,k(x) = pS,k, (19)

pD,k(x) = pD,k. (20)

A.6. The intensities of the birth and spawn RFSs are
Gaussian mixtures of the form

γk(x) =
Jγ,k∑

i=1

w
(i)
γ,kN (x; m(i)

γ,k, P
(i)
γ,k), (21)

βk|k−1(x|ζ) =
Jβ,k∑

j=1

w
(j)
β,kN (x; F (j)

β,k−1ζ + d
(j)
β,k−1, Q

(j)
β,k−1),

(22)

where Jγ,k, w
(i)
γ,k, m

(i)
γ,k, P

(i)
γ,k, i = 1, . . . , Jγ,k, are given

model parameters that determine the shape of the birth in-
tensity; similarly, Jβ,k, w

(j)
β,k, F

(j)
β,k−1, d

(j)
β,k−1, and Q

(j)
β,k−1,

j = 1, . . . , Jβ,k, determine the shape of the spawning intensity
of a target with previous stateζ.

Some remarks regarding the above assumptions are in order:
Remark 2. Assumptions A.4 and A.5 are commonly used

in many tracking algorithms [1], [2]. For clarity in the pre-
sentation, we only focus on state independentpS,k andpD,k,
although closed form PHD recursions can be derived for more
general cases (see Subsection III-E).

Remark 3. In assumption A.6,m(i)
γ,k, i = 1, ..., Jγ,k are the

peaks of the spontaneous birth intensity in (21). These points
have the highest local concentrations of expected number of
spontaneous births, and represent, for example, airbases or
airports where targets are most likely to appear. The covariance
matrix P

(i)
γ,k determines the spread of the birth intensity in

the vicinity of the peakm(i)
γ,k. The weight w(i)

γ,k gives the

expected number of new targets originating fromm(i)
γ,k. A

similar interpretation applies to (22), the spawning intensity
of a target with previous stateζ, except that thejth peak,
F

(j)
β,k−1ζ + d

(j)
β,k−1, is an affine function ofζ. Usually, a

spawned target is modelled to be in the proximity of its parent.
For example,ζ could correspond to the state of an aircraft
carrier at timek− 1, while F

(j)
β,k−1ζ + d

(j)
β,k−1 is the expected

state of fighter planes spawned at timek. Note that other forms
of birth and spawning intensities can be approximated, to any
desired accuracy, using Gaussian mixtures [42].

B. The Gaussian mixture PHD recursion

For the linear Gaussian multi-target model, the following
two propositions present a closed form solution to the PHD
recursion (15)-(16). More concisely, these propositions show
how the Gaussian components of the posterior intensity are
analytically propagated to the next time.

Proposition 1 Suppose that Assumptions A.4-A.6 hold and
that the posterior intensity at timek−1 is a Gaussian mixture

of the form

vk−1(x) =
Jk−1∑

i=1

w
(i)
k−1N (x; m(i)

k−1, P
(i)
k−1). (23)

Then, the predicted intensity for timek is also a Gaussian
mixture, and is given by

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + γk(x), (24)

whereγk(x) is given in (21),

vS,k|k−1(x) = pS,k

Jk−1∑

j=1

w
(j)
k−1N (x; m(j)

S,k|k−1, P
(j)
S,k|k−1), (25)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1, (26)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1, (27)

vβ,k|k−1(x) =
Jk−1∑

j=1

Jβ,k∑

`=1

w
(j)
k−1w

(`)
β,kN (x;m(j,`)

β,k|k−1, P
(j,`)
β,k|k−1),

(28)

m
(j,`)
β,k|k−1 = F

(`)
β,k−1m

(j)
k−1 + d

(`)
β,k−1, (29)

P
(j,`)
β,k|k−1 = Q

(`)
β,k−1 + F

(`)
β,k−1P

(j)
β,k−1(F

(`)
β,k−1)

T (30)

Proposition 2 Suppose that Assumptions A.4-A.6 hold and
that the predicted intensity for timek is a Gaussian mixture
of the form

vk|k−1(x) =
Jk|k−1∑

i=1

w
(i)
k|k−1N (x; m(i)

k|k−1, P
(i)
k|k−1). (31)

Then, the posterior intensity at timek is also a Gaussian
mixture, and is given by

vk(x) = (1− pD,k)vk|k−1(x) +
∑

z∈Zk

vD,k(x; z), (32)

where

vD,k(x; z) =
Jk|k−1∑

j=1

w
(j)
k (z)N (x;m(j)

k|k(z), P (j)
k|k), (33)

w
(j)
k (z) =

pD,k w
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k

∑Jk|k−1

`=1 w
(`)
k|k−1q

(`)
k (z)

, (34)

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1, Rk + HkP

(j)
k|k−1H

T
k ), (35)

m
(j)
k|k(z) = m

(j)
k|k−1 + K

(j)
k (z −Hkm

(j)
k|k−1), (36)

P
(j)
k|k = [I −K

(j)
k Hk]P (j)

k|k−1, (37)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k + Rk)−1. (38)

Propositions 1 and 2 can be established by applying the
following standard results for Gaussian functions:

Lemma 1 Given F , d, Q, m, and P of appropriate dimen-
sions, and thatQ and P are positive definite,
∫
N (x; Fζ+d,Q)N (ζ; m,P )dζ = N (x; Fm+d,Q+FPFT )

(39)
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Lemma 2 GivenH, R, m, andP of appropriate dimensions,
and thatR and P are positive definite,

N (z; Hx,R)N (x;m,P ) = q(z)N (x; m̃, P̃ ) (40)

where

q(z) = N (z; Hm,R + HPHT ) (41)

m̃ = m + K(z −Hm) (42)

P̃ = (I −KH)P (43)

K = PHT (HPHT + R)−1 (44)

Note that Lemma 1 can be derived from Lemma 2, which in
turn can be found in [43] or [44] (Section 3.8), though in a
slightly different form.

Proposition 1 is established by substituting (17), (19), (21),
(22) and (23) into the PHD prediction (15), and replacing
integrals of the form (39) by appropriate Gaussians as given
by Lemma 1. Similarly, Proposition 2 is established by substi-
tuting (18), (20) and (31) into the PHD update (16), and then
replacing integrals of the form (39) and product of Gaussians
of the form (40) by appropriate Gaussians as given by Lemmas
1 and 2 respectively.

It follows by induction from Propositions 1 and 2 that if the
initial prior intensityv0 is a Gaussian mixture (including the
case wherev0 = 0), then all subsequent predicted intensities
vk|k−1 and posterior intensitiesvk are also Gaussian mixtures.
Proposition 1 provides closed form expressions for computing
the means, covariances and weights ofvk|k−1 from those of
vk−1. Proposition 2 then provides closed form expressions for
computing the means, covariances and weights ofvk from
those of vk|k−1 when a new set of measurements arrives.
Propositions 1 and 2 are, respectively, the prediction and
update steps of the PHD recursion for a linear Gaussian multi-
target model, herein referred to as theGaussian mixture PHD
recursion. For completeness, we summarize the key steps of
the Gaussian mixture PHD filter in Table I.

Remark 4. The predicted intensityvk|k−1 in Proposition
1 consists of three termsvS,k|k−1, vβ,k|k−1 and γk due,
respectively, to the existing targets, the spawned targets, and
the spontaneous births. Similarly, the updated posterior in-
tensity vk in Proposition 2 consists of a mis-detection term,
(1 − pD,k)vk|k−1, and |Zk| detection terms,vD,k(·; z), one
for each measurementz ∈ Zk. As it turns out, the recursions
for the means and covariances ofvS,k|k−1 and vβ,k|k−1 are
Kalman predictions, and the recursions for the means and
covariances ofvD,k(·; z) are Kalman updates.

Given the Gaussian mixture intensitiesvk|k−1 and vk, the
corresponding expected number of targetsN̂k|k−1 andN̂k can
be obtained by summing up the appropriate weights. Proposi-
tions 1 and 2 lead to the following closed form recursions for
N̂k|k−1 and N̂k:

Corollary 1 Under the premises of Proposition 1, the mean
of the predicted number of targets is

N̂k|k−1 = N̂k−1


pS,k+

Jβ,k∑

j=1

w
(j)
β,k


 +

Jγ,k∑

j=1

w
(j)
γ,k, (45)

TABLE I

PSEUDO-CODE FOR THEGAUSSIAN MIXTURE PHD FILTER.

given {w
(i)
k−1, m

(i)
k−1, P

(i)
k−1}

Jk−1

i=1 , and the measurement set Zk .
step 1. (prediction for birth targets)

i = 0.
for j = 1, . . . , Jγ,k

i := i + 1.
w

(i)
k|k−1

= w
(j)
γ,k

, m
(i)
k|k−1

= m
(j)
γ,k

, P
(i)
k|k−1

= P
(j)
γ,k

.
end
for j = 1, . . . , Jβ,k

for ` = 1, . . . , Jk−1

i := i + 1.
w

(i)
k|k−1

= w
(`)
k−1w

(j)
β,k

,

m
(i)
k|k−1

= d
(j)
β,k−1 + F

(j)
β,k−1m

(`)
k−1,

P
(i)
k|k−1

= Q
(j)
β,k−1 + F

(j)
β,k−1P

(`)
k−1(F

(j)
β,k−1)

T .

end
end

step 2. (prediction for existing targets)

for j = 1, . . . , Jk−1

i := i + 1.
w

(i)
k|k−1

= pS,k w
(j)
k−1,

m
(i)
k|k−1

= Fk−1m
(j)
k−1, P

(i)
k|k−1

= Qk−1+Fk−1P
(j)
k−1F T

k−1,
end
Jk|k−1 = i.

step 3. (construction of PHD update components)

for j = 1, . . . , Jk|k−1

η
(j)
k|k−1

= Hkm
(j)
k|k−1

, S
(j)
k

= Rk + HkP
(j)
k|k−1

HT
k

,

K
(j)
k

= P
(j)
k|k−1

HT
k

[S
(j)
k

]−1, P
(j)
k|k

= [I − K
(j)
k

Hk]P
(j)
k|k−1

.
end

step 4. (update)

for j = 1, . . . , Jk|k−1

w
(j)
k

= (1 − pD,k)w
(j)
k|k−1

,

m
(j)
k

= m
(j)
k|k−1

, P
(j)
k

= P
(j)
k|k−1

.
end
` := 0.
for each z ∈ Zk

` := ` + 1.
for j = 1, . . . , Jk|k−1

w
(`Jk|k−1

+j)

k
= pD,k w

(j)
k|k−1

N (z; η
(j)
k|k−1

, S
(j)
k

).

m
(`Jk|k−1

+j)

k
= m

(j)
k|k−1

+ K
(j)
k

(z − η
(j)
k|k−1

),

P
(`Jk|k−1

+j)

k
= P

(j)
k|k

,

end

w
(`Jk|k−1

+j)

k
:=

w
(`Jk|k−1

+j)

k

κk(z) +
�Jk|k−1

i=1 w
(`Jk|k−1

+i)

k

, for j =

1, . . . , Jk|k−1.
end
Jk = `Jk|k−1 + Jk|k−1.

output {w(i)
k

, m
(i)
k

, P
(i)
k

}
Jk

i=1.

Corollary 2 Under the premises of Proposition 2, the mean
of the updated number of targets is

N̂k = N̂k|k−1(1− pD,k) +
∑

z∈Zk

Jk|k−1∑

j=1

w
(j)
k (z) (46)
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In Corollary 1, the mean of the predicted number of targets
is obtained by adding the mean number of surviving targets,
the mean number of spawnings and the mean number of births.
A similar interpretation can be drawn from Corollary 2. When
there is no clutter, the mean of the updated number of targets is
the number of measurements plus the mean number of targets
that are not detected.

C. Implementation issues

The Gaussian mixture PHD filter is similar to the Gaussian
sum filter of [32], [33] in the sense that they both propagate
Gaussian mixtures in time. Like the Gaussian sum filter, the
Gaussian mixture PHD filter also suffers from computation
problems associated with the increasing number of Gaussian
components as time progresses. Indeed, at timek, the Gaussian
mixture PHD filter requires

(Jk−1(1 + Jβ,k) + Jγ,k)(1 + |Zk|) = O(Jk−1|Zk|)
Gaussian components to representvk, whereJk−1 is number
of components ofvk−1. This implies the number of compo-
nents in the posterior intensities increases without bound.

A simple pruning procedure can be used to reduce the
number of Gaussian components propagated to the next time
step. A good approximation to the Gaussian mixture posterior
intensity

vk(x) =
Jk∑

i=1

w
(i)
k N (x; m(i)

k , P
(i)
k )

can be obtained by truncating components that have weak
weights w

(i)
k . This can be done by discarding those with

weights below some preset threshold, or by keeping only a cer-
tain number of components with strongest weights. Moreover,
some of the Gaussian components are so close together that
they could be accurately approximated by a single Gaussian.
Hence, in practice these components can be merged into one.
These ideas lead to the simple heuristic pruning algorithm
shown in Table II.

Having computed the posterior intensityvk, the next task
is to extract multi-target state estimates. In general, such a
task may not be simple. For example, in the particle-PHD
filter [17], the estimated number of targetŝNk is given by
the total mass of the particles representingvk. The estimated
states are then obtained by partitioning these particles into
N̂k clusters, using standard clustering algorithms. This works
well when the posterior intensityvk naturally hasN̂k clusters.
Conversely, when̂Nk differs from the number of clusters, the
state estimates become unreliable.

In the Gaussian mixture representation of the posterior
intensity vk, extraction of multi-target state estimates is
straightforward since the means of the constituent Gaussian
components are indeed the local maxima ofvk, provided that
they are reasonably well-separated. Note that after pruning
(see Table II) closely spaced Gaussian components would have
been merged. Since the height of each peak depends on both
the weight and covariance, selecting theN̂k highest peaks of
vk may result in state estimates that correspond to Gaussians
with weak weights. This is not desirable because the expected

TABLE II

PRUNING FOR THEGAUSSIAN MIXTURE PHD FILTER.

given {w
(i)
k

, m
(i)
k

, P
(i)
k

}
Jk

i=1, a truncation threshold T , a merging thresh-
old U , and a maximum allowable number of Gaussian terms Jmax.
Set ` = 0, and I = {i = 1, . . . , Jk|w

(i)
k

> T}.
repeat

` := ` + 1.
j := arg max

i∈I
w

(i)
k

.

L :=
�
i ∈ I ���(m

(i)
k

− m
(j)
k

)T (P
(i)
k

)−1(m
(i)
k

− m
(j)
k

) ≤ U�.
w̃

(`)
k

=�
i∈L

w
(i)
k

.

m̃
(`)
k

= 1

w̃
(`)
k

�
i∈L

w
(i)
k

x
(i)
k

.

P̃
(`)
k

= 1

w̃
(`)
k

�
i∈L

w
(i)
k

(P
(i)
k

+ (m̃
(`)
k

− m
(i)
k

)(m̃
(`)
k

− m
(i)
k

)T ).

I := I\L.

until I = ∅.
if ` > Jmax then replace {w̃

(i)
k

, m̃
(i)
k

, P̃
(i)
k

}`
i=1 by those of the Jmax

Gaussians with largest weights.
output {w̃(i)

k
, m̃

(i)
k

, P̃
(i)
k

}`
i=1 as pruned Gaussian components.

TABLE III

MULTI -TARGET STATE EXTRACTION

given {w
(i)
k

, m
(i)
k

, P
(i)
k

}
Jk

i=1.
Set X̂k = ∅.
for i = 1, . . . , Jk

if w
(i)
k

> 0.5,

for j = 1, . . . , round(w
(i)
k

)

update X̂k :=
�̂
Xk , m

(i)
k �

end

end

end
output X̂k as the multi-target state estimate.

number of targets due to these peaks is small, even though the
magnitudes of the peaks are large. A better alternative is to
select the means of the Gaussians that have weights greater
than some threshold e.g.0.5. This state estimation procedure
for the Gaussian mixture PHD filter is summarized in Table III.

D. Simulation Results

Two simulation examples are used to test the proposed
Gaussian mixture PHD filter. An additional example can be
found in [34].

1) Example 1: For illustration purposes, consider a two-
dimensional scenario with an unknown and time varying
number of targets observed in clutter over the surveillance
region [−1000, 1000]× [−1000, 1000] (in m). The statexk =
[ px,k, py,k, ṗx,k, ṗy,k ]T of each target consists of position
(px,k, py,k) and velocity(ṗx,k, ṗy,k), while the measurement
is a noisy version of the position.

Each target has survival probabilitypS,k = 0.99, and
follows the linear Gaussian dynamics (17) with
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Fk =
[
I2 ∆I2

02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

where In and 0n denotes, respectively, then × n identity
and zero matrices,∆ = 1s is the sampling period, and
σν = 5(m/s2) is the standard deviation of the process noise.
Targets can appear from two possible locations as well as
spawned from other targets. Specifically, a Poisson RFSΓk

with intensity

γk(x) = 0.1N (x; m(1)
γ , Pγ) + 0.1N (x; m(2)

γ , Pγ),

where

m(1)
γ = [ 250, 250, 0, 0 ]T ,

m(2)
γ = [ − 250,−250, 0, 0 ]T ,

Pγ = diag([ 100, 100, 25, 25 ]T ),

is used to model spontaneous births in the vicinity ofm
(1)
γ

andm
(2)
γ . Additionally, the RFSBk|k−1(ζ) of targets spawned

from a target with previous stateζ is Poisson with intensity

βk|k−1(x|ζ) = 0.05N (x; ζ, Qβ),

Qβ = diag([ 100, 100, 400, 400 ]T ).

Each target is detected with probabilitypD,k = 0.98, and
the measurement follows the observation model (18) with
Hk = [ I2 02 ], Rk = σ2

εI2, where σε = 10m is the
standard deviation of the measurement noise. The detected
measurements are immersed in clutter that can be modelled
as a Poisson RFSKk with intensity

κk(z) = λcV u(z), (47)

whereu(·) is the uniform density over the surveillance region,
V = 4×106m2 is the ‘volume’ of the surveillance region, and
λc = 12.5×10−6m−2 is the average number of clutter returns
per unit volume (i.e. 50 clutter returns over the surveillance
region).

−400 −200 0 200 400 600 800 1000
−1000

−800

−600

−400

−200

0

200

400

Target 1; 
born at k=1; 
dies at k=100

Target 2; 
born at k=1; 
dies at k=100

Target 3; 
born at k=66; 
dies at k=100

x coordinate (in m)

y 
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or
di

na
te

 (
in

 m
)

Fig. 1. Target trajectories. ‘◦’– locations at which targets are born; ‘¤’–
locations at which targets die.

Figure 1 shows the true target trajectories, while Figure 2
plots these trajectories with cluttered measurements against

time. Targets 1 and 2 are born at the same time but at two
different locations. They travel along straight lines (their tracks
cross atk = 53s) and atk = 66s target 1 spawns target 3.
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Fig. 2. Measurements and true target positions.
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Fig. 3. Position estimates of the Gaussian mixture PHD filter.

The Gaussian mixture PHD filter, with parametersT =
10−5, U = 4, andJmax = 100 (see Table II for the meanings
of these parameters) is applied. From the position estimates
shown in Figure 3, it can be seen that the Gaussian mixture
PHD filter provides accurate tracking performance. The filter
not only successfully detects and tracks targets 1 and 2,
but also manages to detect and track the spawned target 3.
The filter does generate anomalous estimates occasionally, but
these false estimates die out very quickly.

2) Example 2:In this example we evaluate the performance
of the Gaussian mixture PHD filter by benchmarking it against
the JPDA filter [1], [8] via Monte Carlo simulations. The
JPDA filter is a classical filter for tracking a known and fixed
number of targets in clutter. In a scenario where the number of
targets is constant, the JPDA filter (given the correct number
of targets) is expected to outperform the PHD filter, since the
latter has neither knowledge of the number of targets, nor even
knowledge that the number of targets is constant. For these
reasons, the JPDA filter serves as a good benchmark.
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The experiment settings are the same as those of Example
1, but without spawning, as the JPDA filter requires a known
and fixed number of targets. The true tracks in this example
are those of targets 1 and 2 in Figure 1. Target trajectories
are fixed for all simulation trials, while observation noise and
clutter are independently generated at each trial.

We study track loss performance by using the following cir-
cular position error probability (CPEP) (see [45] for example)

CPEPk(r) =
1
|Xk|

∑

x∈Xk

ρk(x, r),

for some position error radiusr, where

ρk(x, r) = Prob{‖Hx̂−Hx‖2 > r for all x̂ ∈ X̂k},
H = [ I2 02 ] and‖·‖2 is the2-norm. In addition, we measure
the expected absolute error on the number of targets for the
Gaussian mixture PHD filter:

E{| |X̂k| − |Xk| |}.
Note that standard performance measures such as the mean
square distance error are not applicable to multi-target filters
that jointly estimate the number of targets and their states (such
as the PHD filter).
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Fig. 4. Tracking performance versus clutter rate. The detection probability
is fixed atpD,k = 0.98. The CPEP radius isr = 20m.

Figure 4 shows the tracking performance of the two filters
for various clutter ratesλc [cf., Eq. (47)] with the CPEP
radius fixed atr = 20m. Observe that the CPEPs of the two
filters are quite close for a wide range of clutter rates. This
is rather surprising considering that the JPDA filter has exact
knowledge of the number of targets. Figure 4(a) suggests that
the occasional overestimation/underestimation of the number
of targets is not significant in the Gaussian mixture PHD filter.

Figure 5 shows the tracking performance for various values
of detection probabilitypD,k with the clutter rate fixed atλc =
12.5× 10−6m−2. Observe that the performance gap between
the two filters increases aspD,k decreases. This is because
the PHD filter has to resolve higher detection uncertainty on
top of uncertainty in the number of targets. When detection
uncertainty increases (pD,k decreases), uncertainty about the
number of targets also increases. In contrast, the JPDA filter’s
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Fig. 5. Tracking performance versus detection probability. The clutter rate
is fixed atλc = 12.5× 10−6m−2. The CPEP radius isr = 20m.

exact knowledge of the number of targets is not affected by
the increase in detection uncertainty.

E. Generalizations to exponential mixturepD,k and pS,k

As remarked in Section III-A, closed form solutions to the
PHD recursion can still be obtained for a certain class of state-
dependent probability of survival and probability of detection.
Indeed, Propositions 1 and 2 can be easily generalized to
handlepS,k(x) andpD,k(x) of the forms:

pS,k(ζ) = w
(0)
S,k +

JS,k∑

j=1

w
(j)
S,kN (ζ; m(j)

S,k, P
(j)
S,k), (48)

pD,k(x) = w
(0)
D,k +

JD,k∑

j=1

w
(j)
D,kN (x; m(j)

D,k, P
(j)
D,k), (49)

whereJS,k, w
(0)
S,k, w

(i)
S,k, m

(i)
S,k, P

(i)
S,k, i = 1, ..., JS,k andJD,k,

w
(0)
D,k, w

(i)
D,k, m

(i)
D,k, P

(i)
D,k, i = 1, ..., JD,k are given model

parameters such thatpS,k(x) and pD,k(x) lie between 0 and
1 for all x.

The closed form predicted intensityvk|k−1 can be obtained
by applying Lemma 2 to convertpS,k(ζ)vk−1(ζ) into a
Gaussian mixture, which is then integrated with the transition
densityfk|k−1(x|ζ) using Lemma 1. The closed form updated
intensity vk can be obtained by applying Lemma 2 once
to pD,k(x)vk|k−1(x) and twice topD,k(x)gk(x|z)vk|k−1(x)
to convert these products to Gaussian mixtures. For com-
pleteness, the Gaussian mixture expressions forvk|k−1 and
vk are given in the following Propositions, although their
implementations will not be pursued.

Proposition 3 Under the premises of Proposition 1, with
pS,k(x) given by (48) instead of (19), the predicted intensity
vk|k−1 is given by (24) but with

vS,k|k−1(x) =
Jk−1∑

i=1

JS,k∑

j=0

w
(i,j)
S,k|k−1N (x; m(i,j)

S,k|k−1, P
(i,j)
S,k|k−1)

(50)
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w
(i,j)
S,k|k−1 = w

(i)
k−1w

(j)
S,kq

(i,j)
k−1 ,

m
(i,j)
S,k|k−1 = Fk−1m

(i,j)
k−1 ,

P
(i,j)
S,k|k−1 = Qk−1 + Fk−1P

(i,j)
k−1 FT

k−1,

q
(i,0)
k−1 = 1, m

(i,0)
k−1 = m

(i)
k−1, P

(i,0)
k−1 = P

(i)
k−1,

q
(i,j)
k−1 = N (m(j)

S,k; m(i)
k−1, P

(j)
S,k + P

(i)
k−1),

m
(i,j)
k−1 = m

(i)
k−1 + K

(i,j)
k−1 (m(j)

S,k −m
(i)
k−1),

P
(i,j)
k−1 = (I −K

(i,j)
k−1 )P (i)

k−1,

K
(i,j)
k−1 = P

(i)
k−1(P

(i)
k−1 + P

(j)
S,k)−1.

Proposition 4 Under the premises of Proposition 2, with
pD,k(x) given by (49) instead of (20),

vk(x) = vk|k−1(x)− vD,k(x) +
∑

z∈Zk

vD,k(x; z), (51)

where

vD,k(x) =
Jk|k−1∑

i=1

JD,k∑

j=0

w
(i,j)
k|k−1N (x;m(i,j)

k|k−1, P
(i,j)
k|k−1),

w
(i,j)
k|k−1 = w

(j)
D,kw

(i)
k|k−1q

(i,j)
k|k−1,

q
(i,0)
k|k−1 = 1, m

(i,0)
k|k−1 = m

(i)
k|k−1, P

(i,0)
k|k−1 = P

(i)
k|k−1,

q
(i,j)
k|k−1 = N (m(j)

D,k; m(i)
k|k−1, P

(j)
D,k + P

(i)
k|k−1),

m
(i,j)
k|k−1 = m

(i)
k|k−1 + K

(i,j)
k|k−1(m

(j)
D,k −m

(i)
k|k−1),

P
(i,j)
k|k−1 = (I −K

(i,j)
k|k−1)P

(i)
k|k−1,

K
(i,j)
k|k−1 = P

(i)
k|k−1(P

(i)
k|k−1 + P

(j)
D,k)−1,

vD,k(x; z) =
Jk|k−1∑

i=1

JD,k∑

j=0

w
(i,j)
k (z)N (x; m(i,j)

k|k (z), P (i,j)
k|k ),

w
(i,j)
k (z) =

w
(i,j)
k|k−1q

(i,j)
k (z)

κk(z) +
Jk|k−1∑

r=1

JD,k∑
s=0

w
(r,s)
k|k−1q

(r,s)
k (z)

,

q
(i,j)
k (z) = N (z; Hkm

(i,j)
k|k−1, Rk + HkP

(i,j)
k|k−1H

T
k ),

m
(i,j)
k|k (z) = m

(i,j)
k|k−1 + K

(i,j)
k (z −Hkm

(i,j)
k|k−1),

P
(i,j)
k|k = (I −K

(i,j)
k Hk)P (i,j)

k|k−1,

K
(i,j)
k = P

(i,j)
k|k−1H

T
k (HkP

(i,j)
k|k−1H

T
k + Rk)−1.

Conceptually, the Gaussian mixture PHD filter implemen-
tation can be easily extended to accommodate exponential
mixture probability of survival. However, for exponential
mixture probability of detection, the updated intensity contains
Gaussians with negative and positive weights, even though the
updated intensity itself (and hence the sum of the weights)
is non-negative. Although these Gaussians can be propagated
using Propositions 3 and 4, care must be taken in the imple-
mentation to ensure non-negativity of the intensity function
after merging and pruning.

IV. EXTENSION TO NONLINEAR GAUSSIAN MODELS

This section considers extensions of the Gaussian mixture
PHD filter to nonlinear target models. Specifically, the mod-

elling assumptions A.5 and A.6 are still required, but the state
and observation processes can be relaxed to the nonlinear
model:

xk = ϕk(xk−1, νk−1), (52)

zk = hk(xk, εk), (53)

where ϕk and hk are known nonlinear functions,νk−1 and
εk are zero-mean Gaussian process noise and measurement
noise with covariancesQk−1 and Rk, respectively. Due to
the nonlinearity ofϕk and hk, the posterior intensity can no
longer be represented as a Gaussian mixture. Nonetheless,
the proposed Gaussian mixture PHD filter can be adapted to
accommodate nonlinear Gaussian models.

TABLE IV

PSEUDO-CODE FOR THEEK-PHD FILTER.

given {w
(i)
k−1, m

(i)
k−1, P

(i)
k−1}

Jk−1

i=1 , and the measurement set Zk .
step 1. (construction of birth target components)

follow Step 1. of Table I.

step 2. (prediction for existing targets)

for j = 1, . . . , Jk−1

i := i + 1.
w

(i)
k|k−1

= pS,k w
(j)
k−1, m

(i)
k|k−1

= ϕk(m
(j)
k−1, 0),

P
(i)
k|k−1

= G
(j)
k−1Qk−1[G

(j)
k−1]

T + F
(j)
k−1P

(j)
k−1[F

(j)
k−1]

T ,
where

F
(j)
k−1 =

∂ϕk(xk−1, 0)

∂xk−1

�
�
�
�
xk−1=m

(j)
k−1

,

G
(j)
k−1 =

∂ϕk(m
(j)
k−1, νk−1)

∂νk−1

�
�
�
�
�
�
νk−1=0

.

end
Jk|k−1 = i.

step 3. (construction of PHD update components)

for j = 1, . . . , Jk|k−1

η
(j)
k|k−1

= hk(m
(j)
k|k−1

, 0),

S
(j)
k

= U
(j)
k

Rk[U
(j)
k

]T + H
(j)
k

P
(j)
k|k−1

[H
(j)
k

]T ,

K
(j)
k

= P
(j)
k|k−1

[H
(j)
k

]T [S
(j)
k

]−1,

P
(j)
k|k

= [I − K
(j)
k

H
(j)
k

]P
(j)
k|k−1

,
where

H
(j)
k

=
∂hk(xk, 0)

∂xk

�
�
�
�
xk=m

(j)
k|k−1

,

U
(j)
k

=
∂hk(m

(j)
k|k−1

, εk)

∂εk

�
�
�
�
�
�
εk=0

.

end

step 4. (update)

follow Step 4. of Table I to obtain {w
(i)
k

, m
(i)
k

, P
(i)
k

}
Jk
i=1.

output {w(i)
k

, m
(i)
k

, P
(i)
k

}
Jk
i=1.

In single-target filtering, analytic approximations of the
nonlinear Bayes filter include the extended Kalman (EK) filter
[46], [47] and the unscented Kalman (UK) filter [48], [49]. The
EK filter approximates the posterior density by a Gaussian,
which is propagated in time by applying the Kalman recursions
to local linearizations of the (nonlinear) mappingsϕk and
hk. The UK filter also approximates the posterior density
by a Gaussian, but instead of using the linearized model, it
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computes the Gaussian approximation of the posterior density
at the next time step using the unscented transform. Details
for the EK and UK filters are given in [46], [47] and [48],
[49], respectively.

TABLE V

PSEUDO-CODE FOR THEUK-PHD FILTER.

given {w
(i)
k−1, m

(i)
k−1, P

(i)
k−1}

Jk−1

i=1 and the measurement set Zk .
step 1. (construction of birth target components)

follow Step 1. of Table I.
for j = 1, . . . , i

- set

µ :=

�
m

(j)
k|k−1

0 �, C :=

�
P

(j)
k|k−1

0

0 Rk�.
- use the unscented transformation (see [46], [47]) with mean µ

and covariance C to generate a set of sigma points and weights,
denoted by {y

(`)
k

, u(`)}L
`=0.

- partition y
(`)
k

= [ (x
(`)
k|k−1

)T , (ε
(`)
k

)T ]T for ` = 0, 1, . . . , L.
- compute

z
(`)
k|k−1

:= hk(x
(`)
k|k−1

, ε
(`)
k

), ` = 0, . . . , L,

η
(j)
k|k−1

=�L

`=0
u(`)z

(`)
k|k−1

,

S
(j)
k

=�L

`=0
u(`)(z

(`)
k|k−1

− η
(j)
k|k−1

)(z
(`)
k|k−1

− η
(j)
k|k−1

)T ,

G
(j)
k

=�L

`=0
u(`)(x

(`)
k|k−1

−m
(j)
k|k−1

)(z
(`)
k|k−1

−η
(j)
k|k−1

)T ,

K
(j)
k

= G
(j)
k

[S
(j)
k

]−1,

P
(j)
k|k

= P
(j)
k|k−1

− G
(j)
k

[S
(j)
k

]−1[G
(j)
k

]T .

end

step 2. (construction of existing target components)

for j = 1, . . . , Jk−1

- i := i + 1.
- w

(i)
k|k−1

= pS,k w
(j)
k−1.

- set

µ := ���m(i)
k−1

0

0

���, C := ���P (i)
k−1 0 0

0 Qk−1 0

0 0 Rk

���.

- use the unscented transformation with mean µ and covariance
C to generate a set of sigma points and weights, denoted by
{y

(`)
k

, u(`)}L
`=0.

- partition y
(`)
k

= [ (x
(`)
k−1)

T , (ν
(`)
k−1)T , (ε

(`)
k

)T ]T for ` =

0, 1, . . . , L.
- compute

x
(`)
k|k−1

:= ϕk(x
(`)
k−1, ν

(`)
k−1), ` = 0, . . . , L,

z
(`)
k|k−1

:= hk(x
(`)
k|k−1

, ε
(`)
k

), ` = 0, . . . , L,

m
(i)
k|k−1

=�L

`=0
u(`)x

(`)
k|k−1

,

P
(i)
k|k−1

=�L

`=0
u(`)(x

(`)
k|k−1

−m
(j)
k|k−1

)(x
(`)
k|k−1

−m
(j)
k|k−1

)T ,

η
(i)
k|k−1

=�L

`=0
u(`)z

(`)
k|k−1

,

S
(i)
k

=�L

`=0
u(`)(z

(`)
k|k−1

− η
(j)
k|k−1

)(z
(`)
k|k−1

− η
(j)
k|k−1

)T ,

G
(i)
k

=�L

`=0
u(`)(x

(`)
k|k−1

−m
(j)
k|k−1

)(z
(`)
k|k−1

−η
(j)
k|k−1

)T ,

K
(i)
k

= G
(i)
k

[S
(i)
k

]−1,

P
(i)
k|k

= P
(i)
k|k−1

− G
(i)
k

[S
(i)
k

]−1[G
(i)
k

]T .

end
Jk|k−1 = i.

step 3. (update)

follow Step 4. of Table I to obtain {w
(i)
k

, m
(i)
k

, P
(i)
k

}
Jk

i=1.

output {w(i)
k

, m
(i)
k

, P
(i)
k

}
Jk

i=1.

Following the development in Section III-B, it can be shown
that the posterior intensity of the multi-target state propagated
by the PHD recursions (15)-(16) is a weighted sum of various
functions, many of which are non-Gaussian. In the same vein
as the EK and UK filters, we can approximate each of these
non-Gaussian constituent functions by a Gaussian. Adopting
the philosophy of the EK filter, an approximation of the
posterior intensity at the next time step can then be obtained
by applying the Gaussian mixture PHD recursions to a locally
linearized target model. Alternatively, in a similar manner to
the UK filter, the unscented transform can be used to compute
the components of the Gaussian mixture approximation of the
posterior intensity at the next time step. In both cases, the
weights of these components are also approximations.

Based on the above observations, we propose two nonlinear
Gaussian mixture PHD filter implementations, namely, the
extended Kalman PHD(EK-PHD) filter and theunscented
Kalman PHD(UK-PHD) filter. Given that details for the EK
and UK filters have been well-documented in the literature
(see e.g. [44], [46]–[49]), the developments for the EK-PHD
and UK-PHD filters are conceptually straightforward, though
notationally cumbersome, and will be omitted. However, for
completeness, the key steps in these two filters are summarized
as pseudo codes in Tables IV and V, respectively.

Remark 5. Similar to its single-target counterpart, the
EK-PHD filter is only applicable to differentiable nonlinear
models. Moreover, calculating the Jacobian matrices may be
tedious and error-prone. The UK-PHD filter, on the other hand,
does not suffer from these restrictions and can even be applied
to models with discontinuities.

Remark 6. Unlike the particle-PHD filter, where the particle
approximation converges (in a certain sense) to the posterior
intensity as the number of particle tends to infinity [17], [24],
this type of guarantee has not been established for the EK-
PHD or UK-PHD filter. Nonetheless, for mildly nonlinear
problems, the EK-PHD and UK-PHD filters provide good
approximations and are computationally cheaper than the
particle-PHD filter, which requires a large number of particles
and the additional cost of clustering to extract multi-target state
estimates.

A. Simulation Results for a Nonlinear Gaussian Example

In this example, each target has a survival probabilitypS,k =
0.99 and follows a nonlinear nearly-constant turn model [50]
in which the target state takes the formxk = [ yT

k , ωk ]T ,
whereyk = [ px,k, py,k, ṗx,k, ṗy,k ]T , andωk is the turn rate.
The state dynamics are given by

yk = F (ωk−1)yk−1 + Gwk−1,

ωk = ωk−1 + ∆uk−1,

where

F (ω) =




1 0 sin ω∆
ω − 1−cos ω∆

ω

0 1 1−cos ω∆
ω

sin ω∆
ω

0 0 cos ω∆ − sinω∆
0 0 sin ω∆ cos ω∆


 , G =




∆2

2 0
0 ∆2

2
∆ 0
0 ∆


 ,
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∆ = 1s, wk ∼ N (·; 0, σ2
wI2), σw = 15m/s2, and uk ∼

N (·; 0, σ2
u), σu = (π/180)rad/s. We assume no spawning,

and that the spontaneous birth RFS is Poisson with intensity

γk(x) = 0.1N (x; m(1)
γ , Pγ) + 0.1N (x; m(2)

γ , Pγ),

where

m(1)
γ = [ − 1000, 500, 0, 0, 0 ]T ,

m(2)
γ = [ 1050, 1070, 0, 0, 0 ]T ,

Pγ = diag([ 2500, 2500, 2500, 2500, (6× π
180 )2 ]T ).

Each target has a probability of detectionpD,k = 0.98. An
observation consists of bearing and range measurements

zk =

[
arctan(px,k/py,k)√

p2
x,k + p2

y,k

]
+ εk,

where εk ∼ N (·; 0, Rk) with Rk = diag([σ2
θ , σ2

r ]T ), σθ =
2 × (π/180)rad/s and σr = 20m. The clutter RFS follows
the uniform Poisson model in (47) over the surveillance region
[−π/2, π/2]rad× [0, 2000]m, with λc = 3.2×10−3(radm)−1

(i.e. an average of 20 clutter returns on the surveillance region).
The true target trajectories are plotted in Figure 6. Targets

1 and 2 appear from 2 different locations, 5s apart. They both
travel in straight lines before making turns atk = 16s. The
tracks almost cross atk = 25s, and the targets resume their
straight trajectories afterk = 34s. The pruning parameters for
the UK-PHD and EK-PHD filters areT = 1× 10−5, U = 4,
and Jmax = 100. The results, shown in Figures 7 and 8,
indicate that both the UK-PHD and EK-PHD filters exhibit
good tracking performance.
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Fig. 6. Target trajectories. ‘◦’– locations at which targets are born; ‘¤’–
locations at which targets die.

In many nonlinear Bayes filtering applications, the UK filter
has shown better performance than the EK filter [49]. The
same is expected in nonlinear PHD filtering. However, this
example only has a mild nonlinearity and the performance
gap between the EK-PHD and UK-PHD filters may not be
noticeable.

V. CONCLUSIONS

Closed form solutions to the PHD recursion are important
analytical and computational tools in multi-target filtering.
Under linear Gaussian assumptions, we have shown that when
the initial prior intensity of the random finite set of targets is
a Gaussian mixture, the posterior intensity at any time step is
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Fig. 7. Position estimates of the EK-PHD filter.
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Fig. 8. Position estimates of the UK-PHD filter.

also a Gaussian mixture. More importantly, we have derived
closed form recursions for the weights, means, and covariances
of the constituent Gaussian components of the posterior inten-
sity. An implementation of the PHD filter has been proposed
by combining the closed form recursions with a simple pruning
procedure to manage the growing number of components. Two
extensions to nonlinear models using approximation strategies
from the extended Kalman filter and the unscented Kalman
filter have also been proposed. Simulations have demonstrated
the capabilities of these filters to track an unknown and time-
varying number of targets under detection uncertainty and false
alarms.

There are a number of possible future research directions.
Closed formed solutions to the PHD recursion for jump
Markov linear models are being investigated. In highly non-
linear, non-Gaussian models, where particle implementations
are required, the EK-PHD and UK-PHD filters are obvious
candidates for efficient proposal functions that can improve
performance. This also opens up the question of optimal
importance functions and their approximations. The efficiency
and simplicity in implementation of the Gaussian mixture
PHD recursion also suggest possible application to tracking
in sensor networks.
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