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ABSTRACT process (ATGP) [5], vertex component analysis (VCA) [6],

This paper studies a multiple-measurement vector (MMV)—and more recently, successive volume maximization (SV-

. . MAX) [7] and the recursive algorithm family in [8]; see [1]
based sparse regression approach to blind hyperspeciral %r a review. In this paper, we are interested in a very re-

mixing. In general rse regression requir ictionar . . .
9 general, sparse regression requires a dictjona pt development introduced in [9, 10], where a compressive

. e
The considered approach uses the measured hyperSpeCt(s%gnsing formulation is used to tackle pure pixels identifi-

data as the dictionary, thereby intending to represent the ion. The idea is to use the measured spectral vectors

. cq
whole measured data using the fewest number of measure - .
as the dictionary to perform multiple-measurement vector

hyperspectral vectors. We tackle this self-dictionary MMV(MMV)-based sparse regression [11,12]. By doing so, one

(SD-MMV) approach using greedy pursuit. It is shown that: .
the resulting greedy algorithms are identical or very simil intends to use the fewest number of measured data, which

to some representative pure pixels identification algorgh would be the pure pixels, to represent the whole set of mea-

such as vertex component analysis. Hence, our study prg,_ured data. This self-dictionary MMV (SD-MMV) approach

vides a new dimension on understanding and interpretinwas previously studied under convex relaxation [9, 10]. The

pure pixels identification methods. We also prove that irﬁresent work considers SD-MMV under greedy pursuit. We

the noiseless case, the greedy SD-MMV algorithms guarari’y'” show that several representative pure pixels idertific

tee perfect identification of pure pixels when the pure pixe lon algorithms are identical or very similar to greedy-as
perte pure p PUTE PX€sp-MMV. This result is interesting, and establishes a new
assumption holds.

connection between the conventional pure pixels identifica
tion and relatively novel SD-MMV approaches. The pure
1. INTRODUCTION pixel identifiability of the greedy-based SD-MMV algoritlsm

. L ) ) ) ) ~ will also be studied.
Hyperspectral imaging is a sensing technique in which an in-

strument acquires a set of spectral vectors from a surface of
interest. The spectral vector of each pixel carries inferma 2. REVIEW OF MMV
tion of how the reflectance of surface materials interadhén t
corresponding surface patch. Under the linear mixing modelThis section reviews the MMV problem in a general con-
a measured spectral vector can be represented by a conwext [11-13]. The connection between MMV and hyperspec-
combination of the so-called pure spectral vectors — spkctr tral unmixing will be discussed in the next section. In MMV,
vectors that are purely constituted by a single surface -matave consider the following signal model
rial [1].

Pure pixels identificatioraims at determining the pure X = BC, Q)
spectral vectors, or simply pure pixels, from the measured
hyperspectral data, assuming that pure pixels exist in t@m where X ¢ R*L is a multiple-measurement matrix, in
sured data. It represents an important class of technigques which each column, denoted by €¢ RM, i = 1,....L, is
blind hyperspectral unmixing, since many algorithms fagli  a single-measurement vector (SM\B,c R™*V is a basis,
in this class are efficient. Numerous pure pixels identificaandC € RY*% is a coefficient matrix. Here, note thBt is
tion algorithms have been developed for more than a decadan overcomplete (and given) dictionary. We wish to use the
e.g., pure pixel index (PPI) by Boardmah alin 1995 [2], fewest number of columns @, also known astoms to do
Winter's N-FINDR [3] and its many variants, successivethe representation in (1). This problem is the same as finding
projections algorithm (SPA) [4], automatic target genierat a C whose number of nonzero rows is the smallest. Hence,



the MMV problem can be formulated as which is analogous to (3).
) It has been shown that SOMP can perfectly solve the
céﬁglu IClzow-o 2) MMV problem (2) under certain sufficient conditions on the
st. X = BC, mutual coherence dB; see [11].

where||C||.ow—o denotes the number of nonzero rowsGn 2.2, Reduced MMV and Boost
thatis, ifc’ denotes théth row vector ofC, then||C||,ow_0 = ] _ ]
ZM 1(|c*|l2), where]| - ||, denotes thé,-norm, andl () = Dealing with the MMV problem (2) can be computationally

1 hi:; > 0andI(z) = 0if = = 0. Notice that whenl, = expensive when the number of measureméntsvery large.

1, Problem (2) reduces to the familiarized SMV problem inR€MBO tackles this issue by reducing the MMV problem to

compressive sensing. an SMV problem, and using the subsequent SMV problem
Like its SMV counterpart, the MMV problem in (2) is NP- fto determine a sparse basis matrix for MMV [14]. The idea

hard in general. As such, approximation approaches shoulg t© merge the sLlngIe-measurement vectqro one. To b_e

be sought. One obvious approach is convex relaxation, foSPECIfiC, €€ € R™ be arandomly generated vector following

lowing the ¢, -norm approximation in SMV. Specifically, the some contmuous distribution (e.g., Gaussian distrilm)ti8y

approach works by replacintC|;ow_o in Problem (2) by a  considering the merged SMV

convex surrogate, such 4€|/,1 = Zf;l llc?||, for a given % = X¢

q > 1, and then solve the subsequent convex problem to ap-

proximate Problem (2). Readers are referred to [11, 13] foand lettinge = X¢&, we consider a reduced MMV problem

the details. Here, our interest lies in the greedy approach.

We will review two methods, namely, simultaneous orthogo- }gﬂi{r}v llello

nal matching pursuit (SOMP) and reduced MMV and boost ¢ B B (6)

(ReMBO). S.t. X = BC,

. ) . where||c||o denotes the number of nonzero elements.in
2.1. Simultaneous Orthogonal Matching Pursuit Problem (6) is essentially an SMV problem, and we can de-

SOMP can be seen as a direct extension of orthogonal matciffMine a sparse basis matrix from Problem (6) by applying
ing pursuit (OMP) for SMV [11, 12]. It aims at determining Standard compressive sensing algorithms such as OMP (the

a set of indices, say, is, .. ., 4, for somer > 1, such that SMV-reduced version of the above introduced SOMP) and
Bs = [b; ,b; ,....b; | forms a sparse basis matrix for ¢1-norm relaxation.
MMV. SOMP starts by determining the first index as In ReMBo we may run the reduced MMV problem (6)
X multiple times for different randomly generated realiaat
i1 = arg max 1X7b; |4, (3) of & and pick the best one. It was empirically shown that

such process can boost the atom selection performance.
for someg > 1. The intuition behind (3) is that X is mostly

contributed by one atom, saly;, then the value OMXTbin 3. SELF-DICTIONARY MMV FOR BLIND

is likely to be the largest among the OtHFXTijq, j # i HYPERSPECTRAL UNMIXING

SOMP then follows a similar way to recursively determine

i, with an additional process known as successive nullingNow, we turn our attention back to the context of blind hy-
To describe it, suppose that we have previously determinedgerspectral unmixing. We consider a standard linear mextur

number ofk — 1 atoms, indexed by, . .. ,ix—1, and the next model setting, described as follows. The measured hyper-
task is to determine a new atom indexed%p.yLeth“_l) = spectral pixel vectors are modeled by
[b;,,. . by, ], and consider the residual
x[n] = As[n|, n=1,...,L, @)
(k—1) _ (k—1) ~(k—1
R =X-Bs cty (4a) wherex[n] denotes the measured hyperspectral pixel vector
C* Y —arg min ||X— B(S’“’l)CH% (4b)  atpixeln, A = [ay,...,ay | € R®*Y js the endmember
CeR(k-xk signature matrix, in which each, € R corresponds to
= (Bgﬁl))TX (4c)  the hyperspectral signature vector of a distinct endmember

(or material),s[n] € R¥ is the abundance vector of thgh
epixel, M is the number of spectral bands,is the number of
endmembers and is the number of hyperspectral pixels. The
endmember matriA is assumed to have full column rank.
Also, the abundance vectasB| satisfy the non-negative and
sum-to-one constraints, i.e[n] > 0 and1”s[n] = 1 where

where nulling is applied to the measurement maXixo re-
move signal components related to the previously detenin
atomsb; ,...,b; . We determine, by

ik

i =arg_max |[RED b, (5)



> denotes the element-wise inequality, ahds an all-one 3.1. SOMP for the SD-MMYV Problem
vector of appropriate length. o

Several mild assumptions are in order. First, to facili-1he SD-MMV problem (8) is still not exactly the same as the
tate exposition of the underlying ideas of SD-MMV, we as-MMV problem (2). Specifically, the former has additional
sume the noiseless noise. Note that the resulting algasithnfonstraints orC, namely, (8c). In order to employ SOMP
will work in the presence of noise, at least by simulations/ntroduced in Sec. 2.1, we simply drop the constraints in (8¢
although noise sensitivity is not the interest of the prepan ~ @nd directly apply SOMP. The resulting algorithm, which we
per. Second, like many works in hyperspectral unmixing, th&@ll SD-SOMP, is shown in Algorithm 1.
number of endmemberd is assumed to be known. Third,
we assume that thaure pixel assumptioholds. Specifically, Algorithm 1: SD-SOMP
the pure pixgl assumption i_s said Fo bg satisfied if, for each input_: X, andg > 1;
endmember indek, there exists a pixel index; such that L setxg’) — 4 RO = X andk = 1.

2fork=1:Ndo
3 determine an index of a pure pixel by

x[nk] = ag,

or equivalently,s[n;] = ey whereey, is a unit vector (i.e., . (k—1\T
[er]: = 1for k =i and[e;); = 0 for k # 4). Tk =alg Max IRETD) ]l (9)
Our problem here is to identify the unknown endmember
matrix A from the multiple hyperspectral measurement ma- 4 Xg“) = [ng*1)7x[ﬁk} I;
trix X = [x[1],...,x[L]]. In particular, we are interested in 5 R® — X X(k’)(X(k))TX_
. . . . . . . . - S S L]
the following criterion which is recently introduced in [[4]:

6 end
output: A = X (pure pixels).
i Cllrow—o0, 8a
chin - [[Cllrow—o (8a)
st. X =XC, (8b) Now, an interesting question arises—how does SD-SOMP
5 . . )
c>0 17C=17. (8¢) work? We should point out that in the previous work, the

constraints in (8c) play a role in identifying the optimglaf
We call Problem (8) theself-dictionary MMV (SD-MMV) convex relaxation [9_’10] for_SD-MMV._Sinpe SE_)TSQI_\/IPdoes
problem in this paper. The rationale of the SD-MMV prob- not use (8c), would it affect its pure pixel identifiabilitfhe

lem is as follows: Since eactin] can always be represented answer turns out to be no.
as a convex combination dfa;,...,ay}, or equivalently,

a distinct set of pure pixelfx[ni], ... ,x[ny]}, we can see  Theorem 1 In the noiseless case and under the pure pixel
that there exists & that satisfies (8b)-(8c) and has many re-assumption, SD-SOMP correctly identifies the pure pixels of
dundant, or all-zero, rows. For examplenif = 1,n2 =  all the distinct endmembers for agy> 1.
2,...,ny = N, then suchC is given by
Before proceeding to the proof, we should note that the
C = [S} , pure pixels identifiability claim in Theorem 1 is as good
as that in convex relaxation. Also, Theorem 1 implies that
SOMP perfectly solves the SD-MMV problem when the pure

whereS = [s[l],...,s[L] ], cf. (7). Hence, SD-MMV in- pixel assumption holds.

tends to identify the pure pixels by enforcigto be as row-
sparse as possible. Comparing Problems (8) and (2), we see . .
that SD-MMV takes an MMV form. In particular, the dic- raof of The_orem_ _1Suppose_ that after — 1 |terafuons, SD-
tionary employed by SD-MMV is the measurement makix SOMP has identified: — 1 dlstlnct_pure pixels mdexed_by
itself. Hence, SD-MMV has a flavor of selecting a subset oi“l’l' - +5 g1, Wherek < N__ L. ,\thom IO}:S Olf gende[ﬁllty
the measurement vectors as the basis matrix for sparse rep%'('k'gi?')' we assume(f;] = a;, i=1,... v an . ug
sentation of the whole measurement data. Xg " = [ay,...,a; |. By mathematical induction, it

In the previous works [9, 10], convex relaxation was em-Suffices to show that SD-SOMP identifies a new pure pixel at
ployed to tackle the SD-MMV problem. It was shown thatthekth iteration; i.e., we need to show tHeaR*~)"x[n] |
convex relaxation can lead to the optimal solution of Prob&chieves its maximal value if and onlysifr] is a pure pixel
lem (8) if there are no repeated pure pixels and there is n@Ndx[n] # a; fori =1,...,k — 1. This can be shown by
noise. The greedy alternative has been not considered, holKing insights from the proof of Property 3 in [7].
ever. Our interest in the subsequent subsections will baent  To begin with, notice thaR*~" = Px X, where
greedy approach. the notationP4 denotes the orthogonal complement projec-



tor of A. Then, we have Algorithm 2: SD-ReOMP

N input :X;
H(R(k_l))TX[n] =D silnX Py, a (10a) 1 randomly generatg¢ € R”.
q X
=k a 2 setX) — ¢, x = X¢ andr(® = x;
N . 3fork=1:Ndo
< Z sin] HX PRiw i . (10b) 4 | determine an index of a pure pixel by
i—k
< max HXTPkLHai . 09 i = arg max (7)) Txn; (14)
for ¢ > 1, where (10b) is obtained by the triangle inequal- . X0 _ [X(’“_l) ] ]
ity. Assume w.l.o.g. thamax,— . v [XTP%,  aif, < (ks) s ), (kal
IXTPX, . axl, We see that ifx[n] is a pure pixel of ~ ° | T =X~ Xs (Xs7)
he 7 end

endmembek, then equality in (10) holds and subsequently .
[(R*=)Tx[n]||, achieves the maximum. output: A = X (pure pixels).
We also need to show that equality in (10) does not hold
for any non-pure pixels. Let < ¢ < oco. By Minkowski’s
inequality [15], equality in (10b) may be achieved by a non-Theorem 2 Suppose that the random vectoin SD-ReOMP
pure pixel if there exists an indegx j # k, such that is generated following an absolutely continuous distriduit
Tpl _ xTpl _ Then, in the noiseless case and under the pure pixel assump-
X PRt =XTPR,, 8 (11) tion, SD-ReOMP correctly identifies the pure pixels of ad th
However, this is impossible: it can be shown t&af has  distinct endmembers with probability one.
full column rank if A has full column rank and the pure

pixel assumption holds [16]. Thus, (11) holds only whenProof of Theorem 2:The proof is simil_ar to. that in Theo-
Pﬁl:k,lak _ Pﬁm,laa" which does not hold for a full €M 1. Assume w.l.0.g. that aftér— 1 iterations, we have

column rankA. XD = [ai,...,a;_1 ]. Now our objective is to show that

s
The necessity proof above does not cover the cage-of |(r*~")"x[n]| attains its upper bound if and onlyxfn] is
s0. Forg = oo, the right-hand side of (9) can be expressed ag new pure pixel. To show this, re-expréss®~1))"x[n] by

max [(RETD)x(n] o N
n=1,..., ., | (r(kfl))Tx[n} _ Zsi[n] <€TXTPX1:k71ai> .
= 2L 2 P PP Xl
< max ||Px, . x[n]]3. (12)  Also, by the triangle inequality, we have
n=1,...,L Lk—1
where the inequality in (12) is due to Cauchy-Schwarz in- (k—1\T al ———
equality. Moreover, it is observed that equality in (12) is () x[n]| < , si[n] ‘5 X PR, i
achievable. Hence, we can simplify (9) to =k
fip = arg max |Px, x[n][la. (13)  Wwhere the equality holds if and only Bln] = e; for
n=1,..L i > k (or, x[n] is a new pure pixel), given the premise

TxTpl S icti
By the same proof as in (10)P4 . x[n]||- is showntobe that&” X Py, a;fori =F,..., N are non-zero distinct
maximized only ifx[n] is a new plukr(_alpixel 0 real numbers. We now show that the above premise holds

with probability one. Indeed, singgis randomly generated
following an absolutely continuous probability distrilart, it
3.2. OMP for the Reduced MMV Problem lives in the null space of a given non-zero vector of dimemsio
Let us consider the ReMBo method introduced in Sec. 2.21 x L with probability zero [14]. Hence, we have
By applying OMP to the reduced MMV problem in ReMBo, e
and employing only one random realization for simplicitg w Prob{¢" X" Py, , ,a; # 0} =1,
obtain a reduced MMV and OMP (ReOMP) algorithm for the Prob{¢"X"Pyx, (a;—a;) #0} =1,
SD-MMV problem (8) as presented in Algorithm 2. '

For convenience, we will call the above algorithm 8i2-  for £ < 4, < N andi # j, which completes the proof. [J
ReOMP algorithm Like the previous SD-SOMP algorithm,
SD-ReOMP does not incorporate the constraints in (8c). We It should be noted that SD-ReOMP guarantees perfect
show that this is not a problem from a viewpoint of pure pixelpure pixel identifiability in a probability one sense, rathe
identifiability: than deterministically. As a further remark, the study abov



does not employ the “boosting” part of ReMBo, that is,
running SD-ReOMP multiple times and picking the best so-
lution. While we already show that SD-ReOMP can perfectly (1
identify all the distinct pure pixels, which means that ratpe

ing it may not be necessary, our empirical experience is that
incorporating the boosting part can improve the pure pixel

. A : : 2
identification performance in the presence of noise. g

4. CONNECTION TO EXISTING ALGORITHMS 3]
Very interestingly, it turns out that the greedy SD-MMV algo
rithms shown in the previous section are equivalent to some
representative pure pixels identification algorithms.

First of all, consider SD-SOMP in Algorithm 1. We are
interested in the case gf= co. As we showed in the proof
of Theorem 1, the main step in (9) can be simplified to

(4]

(5]

A = arg max ||P;gk71)x[n]||2;

see (13). The resulting SD-SOMP algorithm is identical to (6]
SPA [4,8], which is also known to be very similar to ATGP [5]
and SVMAX [7] if we neglect some minor algorithmic de-
tails. We should note that SPA follows an explicit pure pixel
search approach, while SVMAX was derived from Winter's
simplex volume maximization criterion. While their underly
ing principles are different, it is interesting to find thia¢y are
very similar [7]. Now, the present result further enrichieis t
previous finding—SPA has three identities, namely, explicit
pure pixel search, volume maximization, and SD-MMV.

Next, consider SD-ReOMP in Algorithm 2. Lgt= X&,
and note that) is a random vector. The main step in (14) can
be rewritten as

(8]
(9]

g =arg max, |17TP>L<<S’“*”X["“ [10]
The above step is very similar to that used in VCA [6], in
which the principle is to find the vertices of the convex hiill o
the measured pixels, which are the pure pixels under the purgll
pixel assumption, through random projection on a plane.

In summary, we now understand that SPA, ATGP, SV-
MAX and VCA can be alternatively interpreted as greedy al- [12
gorithms under the SD-MMV formulation.
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5. CONCLUSION AND DISCUSSION 1

In this paper we studied blind hyperspectral unmixing urader
self-dictionary MMV formulation. We considered two greedy
algorithms for the formulation, and proved their pure pixel
identifiability in the noiseless case. The resulting aldonis
turn out to be identical or very similar to some represewati
pure pixels identification algorithms. Hence, we provide a
new perspective on re-interpreting existing pure pixeénid
tification algorithms. Future study should focus on further
exploring the potential of SD-MMV, for example, on dealing
with unknown number of endmembers.

(14]

[15]

[16]

] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi,
plex volume maximization framework for hyperspectral endmember
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