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Abstract

This paper revisits blind source separation of instantaslganixed quasi-stationary sources (BSS-
QSS), motivated by the observation that in certain appdoat(e.g., speech) there exist time frames during
which only one source is active, mcally dominant Combined with non-negativity of source powers, this
endows the problem with a nice convex geometry that enaldgaiet and efficient BSS solutions. Local
dominance is tantamount to the so-calfade pixel/ separabilityassumption in hyperspectral unmixing
/ non-negative matrix factorization, respectively. Builgl on this link, a very simple algorithm called
successive projection algorith(8PA) is considered for estimating the mixing system in @tb®rm. To
complement SPA in the specific BSS-QSS context, an algepraiprocessing procedure is proposed to
suppress short-term source cross-correlation interéerérhe proposed procedure is simple, effective, and
supported by theoretical analysis. Solutions basedadmme minimizatiorfVolMin) are also considered.
By theoretical analysis, it is shown that VolMin guarantpesfect mixing system identifiability under
an assumption more relaxed than (exact) local dominanceehwheans wider applicability in practice.
Exploiting the specific structure of BSS-QSS, a fast VolMuogithm is proposed for the over-determined
case. Careful simulations using real speech sources sBewiga simplicity, efficiency, and accuracy of
the proposed algorithms.
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Index Terms

Blind Source Separation, Local Dominance, Pure-pixel,agaglity, Volume Minimization, Identi-

fiability, Speech, Audio.

. INTRODUCTION

We consider the problem of blind source separation of inate@ous mixtures of quasi-stationary
sources (BSS-QSS), whose second-order statistics (SO%)freen frame to frame, while remaining
approximately constant within each frame. Such SOS varatcan be exploited to estimate the mixing
matrix, or its inverse; see [3] for a recent overview. BSSSQS practically important because many
types of mixtures can be approximately modeled as QSS, wikah and audio being two very familiar
signal processing examples [4], and with applications lecenferencing, mobile communications, and
pre-processing for speech recognition, to name a few.

BSS-QSS is usually treated as a joint (approximate) didgation (JD) problem [5]-[7], or as a
decomposition problem that can be cast within the framevadrkarallel factor analysis (PARAFAC)
[8]-[10] (see also [11], [12] for a subspace variation). PHRC treats BSS-QSS as a three-way tensor
decomposition problem, and it can ensure identifiabilityttef mixing system even innder-determined
cases where the number of the sources exceeds that of ttmrseHs3, on the other hand, tries to recover
the inverse (or pseudo-inverse) of the mixing system, wioigly exists in the (over-)determined case.
When applicable, JD algorithms often exhibit better efficiethan PARAFAC-based ones.

In this paper we take a different approach. We begin with thepdon of one additional assumption
regarding the sources—namelgcal dominance-and take advantage of it to develop an alternative
BSS-QSS framework. In the context of this paper, local demi® means that, among a collection of
SOSs estimated locally in time, there are particular timgaints in which the SOSs are dominated
by one source. However, we do not know where these locallyimkomh SOSs are, and the SOSs in
the other time instants comprise contributions from midtifpossibly all) sources. Local dominance is
considered a reasonable assumption for certain ‘sparsgeta® such as speech; e.g., speech contains
unvoiced segments between utterances, and such segmentsgode frequently.

It is interesting to note that assumptions that are conedlgtsimilar to local dominance have appeared
in several rather different contexts. The one that is closeshe BSS area can be found in the prior
works under the framework of BSS using time-frequency ifistions (BSS-TFD), wherein sources are
assumed to exhibit some level of sparsity and disjointnasthé time-frequency (TF) domain [13]-

[18]. This is a form of local dominance that has proven to bipfaéin blindly separating speech and
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audio sources, even in the under-determined case. TF fypaesas later evolved inteparse component
analysis(SCA) [3, Chapter 3], wherein some advanced sparsity-ptimgdools are applied to find sparser
sources in various transform domains. On the other handnwigelook at the remote sensing field, there
is an important research topic called hyperspectral umgiXHU), which essentially deals with BSS.
There, the use of local dominance is extensive and has a listgnh see, e.g., [19] and the references
therein. In other topics such as non-negative BSS (nBSS)nfage separation, non-negative matrix
factorization (NMF) and text mining, the local dominanceswaaption and its exploitation have also
received significant attention [20]-[22]. In these conentrdevelopments, local dominance is identical
to thepure pixel assumptiom HU [19] andseparability[23] / sufficient spread24] conditions in NMF.

We should however distinguish how approaches arising fleearaforementioned contexts exploit local
dominance. In sparsity-based BSS-TFD or SCA, the genetiahede is to detect locally-dominant data
points using some problem-specific structures resultimgnfiocal dominance; e.g., by the rank-one
structure of the local correlation matrix or the quadrati€é point [13]-[16], or by some measures
concerning certain low-variance or high-correlation stwes [17], [18]. In such approaches, a clustering
algorithm is usually required to group the detected datatpdor constructing an estimate of the overall
mixing system. In HU, nBSS and NMF, a different way is soudbpecifically, the sources in those
contexts are non-negative. By utilizing the source noratiely, together with the local dominance
assumption, an elegant concept caltetvex geometrwas used to devise approaches for estimating the
mixing system. While convex geometry has been recognizdxk tpowerful in applications such as HU,
it has not been considered for the BSS-QSS application—gdsecause speech and audio sources do
not seem to fall into the nBSS problem class at first look.

The starting point of this work is to connect the seeminglfedent topics of BSS-QSS and convex
geometry-based nBSS / NMF, thereby providing a novel BSS-@8mework. We should additionally
mention that NMF has recently been considered for blind @séiparation [25], [26]. The NMF used
there is based on a statistical generative model, and isreliff from the locally dominant and convex

geometry model used in this work.

Contributions: We begin by showing that under the local dominance assumatiol the non-negativity
of source powers, the BSS-QSS problem can be converted tgnal snhodel that admits nice convex
geometry, and thus be solved in closed form. To be specificplsi manipulation of the SOS enables
using the so-calleduccessive projection algorithg®PA) [19], [27], [28] from nBSS. Exploiting the

underlying convex geometry, the system response to eacbesoan be determined by SPA in closed form,
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in over-determined as well as under-determined cases. ©wottier hand, our preliminary experiments
revealed that SPA is sensitive to short-term source crog®lations, which sometimes yield serious
performance degradation. We propose a simple algebraiprpeessing (pre-whitening and subspace
projection) step to overcome this problem in the over-dwrileed case. The proposed pre-processing is
computationally very simple, and its effectiveness is leaicky theoretical analysis. In practice the local
dominance assumption may only hold approximateWhen this is the case, we propose to usime
minimization(VolMin) [29], [30] instead of SPA to exploit the convex geetry in spatial-covariance
domain. VolMin was empirically known to be robust to inex&mtal dominance conditions, but here we
go a step further—we provide a theoretical identifiabilihalysis that shows that VolMin can perfectly
identify the mixing system under a condition that is moreaxel than the exact local dominance, and
is more readily fulfilled in BSS-QSS applications. Explogithe specific structure of BSS-QSS, a fast
VolMin algorithm is proposed for the over-determined cas®] is shown to guarantee convergence to a
Karush-Kuhn-Tucker (KKT) [31] point of the correspondingtimization criterion. Careful simulations
using real speech sources showcase the simplicity, effigieand accuracy of the proposed algorithms.
Extensions that enable separating mixtures of dense so(iree, music) and convolutive mixtures of
speech sources are also considered, following the joinsgpiag-transform approach [3, Chapter 3] and
the frequency-domain approach [4], [32], respectively.

Early versions of parts of this paper were presented in cent® form at ICASSP [1], [2]. This journal
version includes detailed proofs of our previous resuliss the new fast VolMin-type algorithm, its KKT
point analysis, the new sufficient condition for identifidiiand its proof, and extensive simulation results.

For the purpose of reproducible research, we provide theceocode of the proposed algorithms

online; see http://www.ee.cuhk.edu.kwkma/publications/bsgg.rar.

I[I. CONVEX GEOMETRY PRELIMINARIES

This section briefly mentions several preliminary conceptonvex geometry, which we will exten-

sively use. Given a set of real-valued vectdss, ..., x,} C R™, we have the following definitions.

Definition 1 The affine hullof {xi,...,x,} is defined as

X = ixlez,zn:ez = 1,9@ S R,V’i} .
=1 =1

aff{x1,....x,} = {X

Local dominance was originally defined [20] as the idealagitn where only a single source is active, instead of onecgou

being dominant while others can be present at lower levetsth@ name might suggest.
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Definition 2 The convex hullof {xi,...,x,} is defined as

X = Zn:XZHZ,Xn:HZ == 1,9i 2 O,\V/Z} .
i=1 =1

conv{xy,...,X,} = {x

Definition 3 A convex hullconv{xy,...,x,} is called asimplexif x1,...,x, are affinely independent,
i.e., x9 — X1,...,X, — X1 are linearly independent.
Definition 4 The convex conef {xi,...,x,} is defined as
n
cone{xy,...,X,} = {x X = szﬂi,ﬁi > O,Vi} .
i=1
Definition 5 LetX = [x1,...,x, | € R™*", and denoteone(X) = cone{x;, ..., x,} for convenience.

The dual coneof cone(X) is
cone(X)* = {y e R | yix>0x¢ cone(X)} .
Convex cones and dual cones have several nice propertiestolibwing lemmas will be needed in

our context:

Lemma 1 If A and B are convex cones, and C B, thenB* C A*, whereX* denotes the dual cone

of coneX’.

Lemma 2 If A is invertible, thencone(A)* = cone(A~7T).

Readers are referred to [33], [34] for detalils.

Fig. 1 shows an example to illustrate how affine hull, convak and convex cone may look like. If
conv{xy,...,Xx,} IS a simplex, then its set of vertices{&,...,x,} itself as shown in the figure. All
the above concepts are also applicable to complex-vajued .., x,,}, since a complex-valued vector

x can be equivalently represented by a real-valued vecter| Re{x” },Im{x”} ]7.

I1l. SIGNAL MODEL AND LOoCAL DOMINANCE

The signal model used in this paper is standard in the BSS-€@&&xt, and is concisely described

as follows. We consider the linear instantaneous mixtureaho
x(t) = As(t), t=1,2,... Q)

wherex(t) = [x1(t),...,zn(t)]" € CV denotes the received signai§t) = [si(t),...,sx(t)]T € CK

denotesK sources I is assumed to be known\ = [ ay,...,ax | € CV*K is an unknown mixing
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cone{xj,Xz2,X3}

Fig. 1. lllustration of affine hull, convex hull and convex e for the three vectors case. In this
exampleaff{x;, x2,x3} is the entire plane containing the shadowed triangle area;{x;,xs2,x3} IS

the shadowed triangle area; anthe{x;, x2,x3} is the whole space among the three rays corresponding
to x1, X2, x3. The setconv{xy, x2,x3} is also a simplex in this example, &g — x; andxs — x; are

linearly independent.

system, anch;, € CV denotes the system response to sourc®ur objective here is to blindly identify
the mixing systemA, which can then be used for separating the sources. The esoare assumed
to bewide-sense quasi-stationary with quasi-static perioe-that means that,(¢)'s are nonstationary
but their SOSs remain static under any lengtiiime window. By also assuming that the sources are

zero-mean and uncorrelated from one another, we have
E{s(t)s™(t)} = Diag(d[m]), for all t € [(m — 1)L + 1, mL),

where! denotes Hermitian transposei¢ reserved for conjugationgi[m] = [di[m], ..., dx[m]]", and
di[m] = E{|sk(t)?}, for anyt € [(m — 1)L + 1,mL], is the average power of souréefor the m-th
time frame.
Let us denote
R[m] = E{x(t)x" (1)}, t € [(m — 1)L 4 1,mL]

to be the local covariance of the received signals in timen&an, which in practice can be estimated
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by local sampling

1 mL
R[m| = - > xmx"().
t=(m—1)L+1

Under the above signal modd[m] can be expressed as
K

R[m] = ADiag(d[m])A" =" di[m]aaf. 2)
k=1

We begin by adopting the (exact) local dominance assumpiliostrated in Fig. 2 with a practical

example comprising two real speech sources.

(Al) (local dominancg20]) For each sourcg, there exists a time frame, indexed hy., such that

di[my] > 0 andd;[m;] = 0 for all j # k.

As mentioned in the Introduction, assumptions similar(/Ad) have been considered previously in
the sparsity-based BSS-TFD / SCA literature [13]-[18]. &ally speaking, the strategy in these prior
works is to detect locally dominant TF areas, and then egtirtiee system responses from the detected
TF areas. The same strategy can also be applied to the BS$@BIBm here, and herein we describe
how this can be done. Undé€Al), the local covariance model (2) at locally dominant framaa be
written as

R[mk] = dk[mk]akakH, for k = 1,..., K. (3)

Hence, if we know where the locally dominant frames are, thencan retrievea,’s up to a scaling
factor by computing the principal eigenvector of the logalbminantR[m|. By also noting that (3) takes
a rank-one structure, a practically working algorithm isf@kws: i) detect locally dominant frames by
evaluating the ranks of alR[m]’s; ii) extract the principal eigenvector of each detecRefan]; iii) apply

a K-means clustering algorithm to the obtained principal migetors, and then use the centroids of the
K clusters to construct the mixing matriX. The above procedure will be called tbkistering-based
algorithmin the sequel.

The existing BSS-TFD and SCA algorithms [13]-[18] basigdbllow the same clustering-based
procedure described above, and their differences maialynlithe detection criteria in Step i), which
depend on the type of transform used. We should also notdhbaion-negativity of the source powers
dx[m]’s have not been exploited in BSS-TFD or SCA. In the next sestiwe will explain how the non-
negativity property enables us to convert (2) into a signatlel with a nice convex geometry structure,

which will then be exploited to come up with different BSS-®8&lgorithms.

February 6, 2015 DRAFT



interval only contributed by source 1

e D

Sl(t) M' ‘

so(t m’w | M—z

interval only contributed by source 2

Fig. 2: lllustration of local dominance using two real spgeemurces. The shadowed areas are time

intervals (which may contain many time frames) where onlg source is active, or dominant.

IV. LocAL DOMINANCE-BASED BSS-QSS

In this section we develop an algebraically simple BSS-Q%$houd, accomplished by exploiting the

geometry induced byAl) and nonnegativity of source powers.

A. A Virtual Mixture Model and Underlying Convex Geometry
Let us vectorize all the local covariances in (2) to obtain

ylm] = vec(R[m])

K (4)
= dy[mlh, =Hd[m], m=1,...,M,
k=1

where vec(-) denotes the vectorization operator (note that—!(-) denotes the corresponding inverse

operation, which will be used later);

h;, = vec(akakH) = a; @ a;€ cN’, (5a)

H=[hy,....,hg] = A*® Ae CV'*K, (5b)
in which ® and® denote the Kronecker and Khatri-Rao product, respectiv@he can observe from the
above equations thatlfy, . .., hx are estimated, then we can easily retrieve the correspgiaglin. . , a;,

(up to a scale factor) by

ay :qmax(vec_l(hk)), k=1,..., K,
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whereqax(X) denotes the principal eigenvector Bf. Hence the BSS-QSS task can be posed as that
of estimatingH.

We make two assumptions for the model. The first is
rank(H) = K,

which holds under some fairly mild conditions in theory as@asy to satisfy in practice; e.gank(H) =
K holds almost surely ifA is drawn from a continuous distribution ad < N2 [9]. The second, which
is without loss of generality (w.l.0.g.), is thdty| =1 for k=1,... K. 2

Now, we give a formulation that links up the model in (4) andneex geometry. Byllag|2 = 1, we
have

2 = [lag @ agll = [lagll3 = 1, (6)

and

Te(R[m]) = Y dy[m]llag |3 = 17d[m], (7)
k=1

where1 is a vector whose elements are all equal to one. Hence, weucdref manipulate the signal

model by constructing
[m] = _ylm]
Te(R[m])

whered[m] = d[m]/Tr(R[m]) = d[m]/17d[m] following (7). By the nonnegativity ofi[m)], it follows

=Hd[m], m=1,..., M, (8)

that
17d[m] =1, d[m] > 0. (9)

The virtual mixture model in (8)-(9) comprises nonnegateeirces that sum to one at all ‘timesn,.

The convex geometry that underlies (8)-(9) can be read#walized by the fact that
z[m] € conv{ hy,...,hg }, Vm, (10)

that is,z[m| lives in the convex hull spanned Ry, ..., hg. Also, hy,..., hg are the vertices of the
convex hull, sinceH is of full column rank. Fig. 3 gives an illustration of the gmetry of (10) for
K = 3. The take-home point is that estimatihg, ..., hx boils down to estimating the vertices of a
convex hull; and, undefAl), hy is ‘touched down’ byz|m| at thosem where thek-th source is locally

dominant. Finding those vertices is an nBSS problem, asthasountered in HU [35] and NMF [28].

?In fact, any scaling of the 2-norm oh, can be absorbed in the power of theth source, ie.x(t) =
Z,f:l ﬁu—z (llak||2sk(t)), whereay/||lax||2 can be considered as the equivalent unit 2-norm system nisspof sourcek

and ||a||2sk(t) the new sourcé.
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B. Solution via Successive Projection Algorithm

Under(Al), the aforementioned convex geometry problem can be solyduhding m, ..., mg, i.e.,
the indices of the locally dominant frames, sinde:;] = hy for all k. Here, we achieve this task by
applying the so-calleduccessive projection algorithg®PA) [19], [27], [28]. The main idea of SPA is
that we can find a locally dominant frame by

iy = : 11
iy =arg max - ||z[m][|2 (11)

sery

The reason is that «

D _difm

k=1

1z[rm][l2 =

, ? (12)
Z m||[hgll2 =1,

which is by the triangle inequality and nonnegatlwtydifm]. SinceH is of full column rank, equality
holds if and only ifd[m] is a unit vector—which is equivalent to saying that frames locally dominant.

Moreover, by modifying (11), we can locate other locally doamt frames: suppose that we have found

k — 1 locally dominant frames, denoted b, ..., 7y_1 (Wherek — 1 < N). By letting Hy.;,_q =
[hy,...,hy_y |, whereh; = z[ih;], we can obtain the next locally dominant frame by
- pL ‘
my = arg max o H A, z[m] ) (13)
wherePx denotes the orthogonal complement projectoXofin particular, the presence ﬁﬁ in
l:k—1

(13) nulls out the previously found system resporisgs. ., h,_; from the data, so that (13) can find a
new source’s locally dominant frame; see [19], [28] for mdegails. The resulting SPA-based BSS-QSS
algorithm is summarized in Algorithm 1.

SPA has several very attractive features. The most apeialiits simplicity: combined with adaptive
orthogonal projection algorithms, SPA is within reach dlfgme implementation. In our specific context
of BSS-QSS, the conditiorank(H) = K is easy to satisfy, even in the under-determined case where t
number of sources exceeds the that of the sensors (recaMtlm of size N? x K). Last but not least,
Gillis and Vavasis have proved that SPA is robust to bounaegen{28]: if z[m| = Hd[m]+v[m], where
lom]]ls < e < O( in () ) then SPA identifies the columns &f up to errorO(ex?(H)), where

VEr 2(H)
Kk(H) = omax(H)/omin(H) is the condition number dff, ando,i, (X) andom,.x(X) denote the smallest

and the largest singular values Xf, respectively. This robustness result is very desirablpractice.
Despite the advantages described above, our experimewntsreéeealed that directly applying SPA in

some BSS-QSS applications such as speech separation raigbtisies yield unexpectedly inaccurate
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11

estimation ofA in practice; this will be demonstrated in the simulationtsec The main reason is that
subtle short-termsource cross-correlations occasionally combine to gémeranoise termv[m| that is
beyond the tolerance level of SPA. Hence, to enhance therpeathce of SPA, we are motivated to deal

with the cross-correlation issue in advance.

Algorithm 1. SPA-based BSS-QSS
input : R[1],...,R[M];
1 z[m] = vec(R[m])/Te(R[m]), m =1,..., M;

2 fll = Z[’Ihl], where

pax | [zfm] |

3 obtaina; = Qmax (vec_l(fu));
4 for k=2,..., K do

5 hy = z[ri], where

)

a7,

6 obtainay, = qmax (Vecfl(flk)).
7 end

output: A = [ ay,..., a4k |.

C. Pre-Processing: Cross-Correlations Mitigation

As discussed previously, short-term source cross-caivaka give rise to modeling errors and sub-
sequently can lead to performance deterioration. To dpvalaemedy, we first reconsider the local
covariance model with source cross-correlations incateal. Assuming tha¢x(¢) may be correlated at

times, the model in (4) should be modified as
R[m] = AC[m]A", (14)

whereC[m] = E{s(t)s ()} for (m —1)L+1 <t < mL, andC[m] may contain non-zero off-diagonal
elements. Letd,[m| = [C[m]],, as before. Also lek; jim| = [C[m]]; ;, 7 # i, which represent the
cross-correlation components. As an example, in Fig. 4 wevshe cross-correlation componenty [m]
of two real speech sources with respecttoWe see that the cross-correlations are weak and intenitte
but not zeros at all times. Taking the cross-correlatiots &tcount, the model of[m] in (4) is replaced
by

y[m] = Hd[m] + Ge[m], (15)
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z[ms]

1,hs, h3 }

Fig. 3: Geometry of data pointg1],...,z[M] and the underlying convex hull. The visualization in this
figure (and the forthcoming figures in the sequel) is by assgrthiat K = 3 and that the viewers are
facing the affine hull = aff{ h;, hy, hs }.

i i L. [l I 3
0 50 100 150 200 250 300 350 400
m

gl i3 gl il il . i it I i il
0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400

Fig. 4: The values of the source powers and the cross-ctioreleerms of two real speech sources over
m; L = 200.
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Fig. 5: Geometry of z[m]}M_, using three real speech sources and a randomly generategrajstem;

source duratios 6 seconds{N, K) = (4, 3); L = 200.

Fig. 6: Geometry of{z[m|}M_,, wherez[m] is constructed following (8) except thgfm] is replaced

m=1"’

by y[m] and that{R[m]}_, are pre-whitened; the other settings are the same as thddg.ib.
m=1

whereG € CV**(N*=K) ande[m] € CX*~K are defined as follows

G:[Gaé]a (16a)
G:[le"'7GK—1]7é:[é27"'7éK]7 (16b)
G =[a}®ap,...,a; ®ag Je CNXEH), (16c¢)
Gy = [a) ®ag_1,...,a,Qay |€ CNzX(’f*U7 (16d)

DRAFT
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e[m] = [&"[m],&"[m] |", (16e)

elm] = [ef[m],..., &k _4[m] |7, (16f)
&lm] = [&;[m],...,&k[m] ], (169)
ex[m] = [ exprr[ml, ..., enrlm] |Te CER), (16h)
&rlm] = [ ej_1,m],... e}, [m] |Te CE7. (16i)

We illustrate the impact oGGe[m] on the signal geometry in Fig. 5, using three real speechcesur
and a randomly generated real-valu&dWe observe that owing to the existence(@é|m|, some of the
z[m]'s live outside the convex hultonv{ hy, hs, hs }, which violates the underlying signal geometry
for applying SPA (cf. Fig. 3).

Here, we propose a simple and efficient cross-correlatipprassion method for the over-determined

case (i.e.,N > K). To begin, let us assume
(A2) A € CK*K js unitary, i.e., ATA = AAY =1.

In practice, we can apply pre-whitening ¢iR[m]}*_; to transformA to a unitary matrix, provided
N > K and that the sources are uncorrelated in the long term; sgeg,[8], [36]. Under(A2), our

rationale of cross-correlations suppression is to proyéet] onto a principal component subspace. Let

M

W= 3 vy . (17)

m=1
and consider its eigen-decompositidn = UAU* | where U is the (unitary) eigenvector matrix, and
A is the (diagonal) eigenvalue matrix in which the diagonanents or eigenvalues are arranged in

descending order. We use the following projection process
y[m] :Ul;KUﬁKy[m], m=1,...,M, (18)

to mitigate the undesired ter@e[m]. The intuition is that the main terfild[m] is often much stronger
than the cross-correlation ter@e[m] in practice, and therefof®,.x, which contains the firsk” principal
components of’, should be dominated b d[m].

By simulations, we found that the projection process in (t&8h lead to significant performance
improvements. Here, we establish a theoretical justificatty modelingd[m| and e[m] as random

processes. Let us assume

(A3) Eachdim], k = 1,...,K is a wide-sense stationary (WSS) random process, eaghn/|, i =
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1,...,K—-1,j=k+1,..., K is a zero-mean circularly symmetric WSS random processa#ntj |

ande; jm] are statistically uncorrelated of one another.

We show that

Proposition 1 Suppose thatA2)-(A3) hold true, thatM — oo such that® = E{y[m]y’[m]}, and that

kiminK var{di[m]} > r?jjx E{lei j[m]|*}. (19)

Then, the projection process (&8) completely eliminates the cross-correlation term and ketbp main
term intact; i.e.,

y[m] = Hd[m].

Proposition 1 implies that if the sources exhibit significkkleme-wise power variations and the cross-
correlations are weak, then the projection process in (iBattenuate the short-term cross-correlations
very substantially for sufficiently largé/. The proof of Proposition 1 is relegated to Appendix A.

In Fig. 6, we show the geometry of the projected data aftemgriégening and the projection in (18),
using the same real speech sources and setup as those usgdinAs can be seen in the figure, the
data points now live well ironv{ hy, hy, hs }, an indication of successful cross-correlations elimarat
Hence, we may safely run SPA by applying it on the projected.da the sequel, we will refer to this
procedure (specifically, pre-whitening, projection in }18nd then SPA) as thgrojected SPAProSPA).

ProSPA offers an efficient and simple-to-implement sohutimBSS-QSS und€Al1) and over-determined
mixing systems. But there are more challenging cases, wyarhalt (A1) might not hold well enough
in some situations; for example, wheh is relatively large and/or the recording is relatively ghdar
might be difficult to find frames exactly dominated by one seuiThe first question is whether it is still
possible to exploit the virtual mixing model in (4) and thennegativity ofd[m] in such cases? Second,
the proposed short-term cross-correlations suppresseaihad only works in the over-determined case.
Can we fend against short-term cross-correlations in tlieudetermined case? These questions will be

addressed in the next section.

V. VOLUME MINIMIZATION -BASED BSS-QSS

In this section, we relax the local dominance assumpd). To exploit the virtual mixture model (8)
and its underlying geometry under such circumstances, weose to employ the volume minimization
(VoIMin) criterion, which was originally used in HU. In HU,0lMin was empirically found to be robust

to violation of the pure pixel assumption, i.e., the locahdioance assumption in our context. We will
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Fig. 7: Geometry of VolMin. The minimum-volume enclosingmgiex is readily seen to be

conv{hy,...,hg} in this case.

show that this is indeed true in theory, by proving a new siefficcondition for perfect identifiability
of VoIMin. Then, we explore the special signal structure &BQSS to propose a new efficient VolMin

algorithm for the over-determined case.

A. Volume Minimization Criterion and New Identifiability

The intuition of VoIMin is as follows. As revealed in (10), weave z[m] € conv{hy,... hg}.
Whenrank(H) = K, one can always find a simplex atif{hy, ..., hx}, such that the data points
z[1],...,z[M] are all enclosed by this simplex [30]. In the so-calledhig’s belief [37], it is believed
that as long as there are enough data points and they areieufficspread inconv{h;,... , hx}, a
data-enclosing simplex with the minimum volume shouldbev{h, ... hx} itself. Hence, estimating
H amounts to finding a full-rank matriB = [by,...,bx] such thatconv{b,...,bg} corresponds
to the minimum-volume enclosing simplex ofl], ..., z[M] on aff{h;,... hx}. Fig. 7 illustrates this
intuition for K = 3.

When B is a square matrixjdet(B)| was adopted as a measure of the volume of its simplex [29].
Since in our cas® is usually tall, we employ the Gram matrix fordet(B B) to measure the volume;

see, e.g., [33]. The VolMin criterion for BSS-QSS is forntath as follows:

February 6, 2015 DRAFT



17

VoIMin Criterion:

min det(BB) (20a)
BG(CNzXK,eeRKXNI
s.t. zlm] =BO,,, m=1,..., M, (20b)
0,,>0, 179,, =1, Vm, (20c)
where 8,, ¢ R represents then-th column of ® for m = 1,..., M. In VolMin, a fundamentally

exciting challenge is whether one can prove its identifighithereby providing mathematically precise
and non-heuristic explanations of Craig’s belief. Ideabfiity of VoIMin was previously established
under the pure pixel assumption [30], which(&1) and is believed to be a loose sufficient condition.
Here, we provide a more relaxed sufficient conditiemder which Problem (20) uniquely identifi&

(up to a permutation ambiguity). To proceed, let
D = [d[l],...,d[M]]
and consider the following assumption:

(A4) The matricesH andD satisfyrank(H) = rank(D) = K. Also, cone(D) satisfies

(i) C C cone(D), whereC is a second order cone
C={xeRE1Tx > VK —1|x|]2};
(i) cone(D) Z cone(Q), for any unitary matrixQ € RX*X that is not a permutation matrix.

We show that(A4) is a sufficient condition for identifiability of VolMin:

Theorem 1 Under (A4), the VoIMin criterion uniquely identifies botH and D up to a permutation.
Specifically, any optimal solution to Problef20) under(A4) takes the form

B=HII, ©=II"D,

whereIl is a permutation matrix.
3Condition (A4) and the proof of Theorem 1 were developed during X. Fu's ¥isithe University of Minnesota, in the fall
of 2013. At the same time, W.-K. Ma collaborated with C.-Hnland C.-Y. Chi, from National Tsinghua University, Taiwan,

and they independently proved anotiseifficient condition [38], based on a different approach. Weéeild like to acknowledge

that these were parallel independent developments.
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The proof of Theorem 1 can be found in Appendix B. We provideition regarding/A4) and Theorem 1

using graphical examples fakk = 3; see Fig. 8. In these examples, we visualize the cones on the

hyperplanel”x = 1. Specifically,C corresponds to a balRf is an equilateral triangle anebne(D)

is a polytope inside this equilateral triangle. The colurnh€) also span equilateral triangles such that

each facet is tangent to the ball corresponding tmote that these equilateral triangles determined by

Q are actually rotated versions of the triangle determinedRL’iy In Fig. 8 (a), we show a situation

where(A4) is satisfied a€ is contained incone(D) and no rotation oRY can contaircone(D). Fig. 8

(b) shows a situation where Conditions (i)-(ii) are violate Hig. 8 (c¢), Condition (i) is satisfied while

Condition (i) is not, as one can see that there iQ auch thatcone(D) C cone(Q). In Fig. 8 (d), we

show a situation wher@Al) holds. It is clear in this figure thgiAl) is a special case dA4) and thus

our proposed sufficient condition for identifiability of \Min is tighter than the previous one in [30].
From a practical point of view, if each source overpowersrts in some frames, thd4) is likely

to be fulfilled. Note that we also want each source to prevedeveral frames, so thatne(D) exhibits

roughly symmetric shape fRfS [cf. Fig. 8 (a)]. In some BSS-QSS problems such as speech separation,

such rough symmetric shape afne(D) is empirically true. Hence(A4) is easier to satisfy tha(Al)

for such BSS-QSS problems.

B. Over-determined-case Algorithm: Alternating Optintiza

Under (A4), H can be estimated using any of the existing VolMin algorit2@], [30], albeit their
computational cost can be a burden, due to the form of the Moldfiterion in (20). In the specific
context of over-determined BSS-QSS, however, VolMin carsigaificantly simplified by exploiting the
special signal structure, as we explain next. Recall thahe over-determined case, we can use the
pre-whitened and principal subspace-projected data] = y[m]/Tr(R[m])})._, as input, for fending
against the short-term source cross-correlation probkesra result, the operationd is unitary, and the

correspondindd is semi-unitary; namely, und€A?2),
HH=(A*0A)f(A* 0 A)
= ((A")7A") o (AFA) =1,

where o denotes the element-wise (Hadamard) product. Therefoeecam add a ‘property restoring’

constraint to the VoIMin criterion to ensure thBt is likewise semi-unitary. Sincéet(B”B) = 1 for
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Fig. 8: Some examples abne(D) by assuming thak = 3 and that the viewers are facing the hyperplane

17x = 1 from the positive orthant. In subfigurés)-(d), the inner circle corresponds @ the shadowed
polytope corresponds tane(D), the outer circle corresponds @ = {x € RX[17x > |x|]2}, and the

red dots correspond td[m]’s.

any semi-unitaryB, we can convert Problem (20) wiB’ B = I to the following equivalent form:
~ 2
min HZ — B('-)H
B,® F
st. BYB=1, (21)
0,, >0, 170,, =1, Vm,

whereZ = [z[1],...,z[M]].

Problem (21) is non-convex, but it can be tackled using rdténg block-coordinate optimization,
which admits simple block updates as we explain next. Inrrdtiing optimization (AO) we alternate
between two conditional updates; namely, via solving Rnob(21) with respect t@& for © fixed, and
that with respect t@® for B fixed, respectively. UpdatinB for a fixed® is simple; it admits an optimal

solution via singular value decomposition (SVD) [39]-[41]
Bopt = VsUfa (22)
whereU, € CK*K andV, € CN**K are the left and right singular vector matrices®%. Updating

February 6, 2015 DRAFT



20

® for a fixed B is even simpler: the problem is separable with respedf,tofor m = 1,..., M.

Furthermore, sinc@ is semi-unitary,

arg emeigk |z[m] — BO,, |5 (23a)

= arg min 10,13 — 2Re {2 [m|B6,, } (23b)
m ESK

_ in |6, — Re {B¥z[m]} | 23

arg min [0, — Re {B"z[m]} |, (23¢)

where S = {x € R¥|17x = 1,x > 0} is the probability simplex. Hence, instead of solving (23a)
directly, we can solve (23c) to obtaéh,. Note that (23c) aims at finding the projectionié {BHZ[m]}
on S, which can be solved very easily by a simple ordering apgromith complexity O(K log K);
see [42] for a detailed implementation.

The above AO algorithm for VoIMin (VoIMin-AO) is summarizeid Algorithm 2. It features the

following convergence property:

Proposition 2 Every limit point of the solution sequence created by Alpomi 2 is a KKT point of
Problem(21).

Proof: The proof is based on a convergence result for rieeximum block improvemel(BI)
algorithm [43]. We skip the description of MBI owing to spdamitation, but point out key results and
connections to our problem. MBI can be regarded as a vamiaifoalternating optimization, where it
selects to update the block that yields maximum improvernéttie objective in each step. While MBI
and alternating optimization are generally differentythee identical in the two-block case. It was shown
that every limit point of the solution sequence generatedmyMBI algorithm is a KKT point if i) all
the constraint sets are compact, and ii) the partial problane optimally solved in all iterations; see

[43]. Since the above two conditions are satisfied in our cageobtain the desired result. [ |

C. VolMin for Under-determined BSS-QSS

Note that our VoIMin identifiability condition(A4) requires a full column-ran, but has no such
restriction onA, which can be fat. As a result, VoIMin can be naturally applie the under-determined
case (with respect td), albeit outliers caused by short-term cross-correlatiofithe sources (cf. Fig. 5)
can no longer be eliminated via our simple cross-corralatisuppression method in Section IV-C. In
such a case, we propose to employ fimplex identification via split augmented Lagrangi@iSAL)

algorithm by Bioucas-Dias [29]. SISAL is an outliers-robuariation of the VolMin criterion. It modifies
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Algorithm 2: Two-block AO for VolMin (VolMin-AQ)
input : Z; K; (B, ®) (initializations).

1 repeat

2 apply SVDZ"© = U, X, VI,

3 | B:=V,UZ;

4 apply the ordering-based algorithm [44] to solve

- 2
® = arg min HRe {BHZ} - @H ; (24)
{0"7L GSI(}S{:I F

5 until some stopping criterion is satisfied
output: H = B.

the VolMin criterion as
mi log |det(B)| + A\ - hi ®
BeiHl o og |det(B)] inge(®)

st.170,, =1, Ym (25)
z[m] = BO,,, Vm,

wherehinge(®©) = "M S max{—[©]..,0} is an element-wise hinge function, and> 0 is a
regularization parameter. The idea of SISAL is to apply & pehalty hinge(®) in place of the hard
constraint® > 0. In particular,hinge(®) penalizes negative values of element®inwhich correspond
to outliers outside the desired simplex. A few outliers agenfitted (and discounted) in this way, thereby
endowing the method with some robustness against outhlertice that SISAL requires th&l be a real-
valued square matrix, i.eH € RE*X_ In our signal model, this can be accomplished by concatemat
the real and imaginary parts efm], and using principal component analysis-based or othehadst

[30] to reduce the dimension before applying SISAL.

V1. SIMULATIONS

We first test the proposed algorithms using instantaneoxtiras. Then, an extension to convolutive

mixtures will be considered.

A. Instantaneously Mixed Speech Sources

1) Simulation settings:Throughout this subsection, real speech sources are usededeh inde-
pendent trial, the sources are randomly picked from a dase lsantaining23 different speech seg-

ments. The speech segments are sampletbléHz. For each simulation trial, we use a real-valued
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mixing matrix A, which is also randomly generated following the i.i.d. zerean unit-variance Gaus-
sian distribution and each column & is normalized to be of unit 2-norm. The results are averaged

over 1000 trials. To get more frames, we employ local averaging winslomith 50%-overlap; i.e.,

= T 2 05(m-1)Lt1 x(t)x”'(t). Moreover, we consider noisy received signals

x(t) = As(t) +v(t), t =1,2,3...

where v(t) is Gaussian noise with zero mean and varianée Under such circumstances, the local

covariances should be modeled as
R[m] = AC[m]AT + ¢°L (26)

In our simulations, we remove’I from R[m| by the following procedure [12]: It can be easily shown
that for locally dominant frames (or, more generally, faarfres satisfyind|d[m]|jo < N, where|x]|o
counts the nonzero elementsst), the least significant eigenvector Bffm] lies in the noise subspace.
Hence, we can estimate? by

62 = min | Apin(R[m]), (27)

where A, (X) denotes the magnitude-wise smallest eigenvaluX pfind then seR[m] = R[m] —
%1 as noise-removed local covariances. In the over-detedniase, we also apply pre-whitening to
{R[ml}niy
We define the signal-to-noise ratio (SNR) as
T—
T 2o ElAs(t)]3
E{lv®)3}

whereT is the total number of available samples. The average measreaerror (MSE) is adopted as

SNR =

(28)

the performance measure, which is defined as

K ~
1
MSE = miﬁl = Z || akH . | f‘“” ’ 29)
€Il, a A
Cl7~~~77;K€{:t1} k=1 k112 T 12 |2
wherell is the set of all permutations ¢fl, 2, ..., K'}; a; anda, are the ground truth of theth column

of the mixing matrix and the corresponding estimate, retbgsy.

In all the simulations, VoIMin-AO is initialized by ProSPAnd stopped by checking the absolute
change of the objective value. Specifically, I&f) be the objective value of the optimization criterion
of Algorithm 2 at iterationi, we terminate the algorithm whelf) — fG=1Y| < 10~2. All algorithms
are implemented in Matlab codes and the simulations aréedaaut in a computer with an i7 CPU

@3.40GHz and 4 GB RAM.
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—6—SPA
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—#— FFDIAG
—— VolMin-AO

—#— BGWEDGE
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‘ ‘
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Fig. 9: The MSEs of the estimated mixing system of the alpor# under different SNRN, K) =

(6,5); L = 400; source duratios 6 sec.

TABLE I: The average runtimes of the algorithms correspongdb the simulation in Fig. 9.

Algorithm | runtime (sec.)  Algorithm runtime (sec.)
SPA 0.0011 FFEDIAG 0.0527
ProSPA 0.0013 FastICA 1.9391
VolMin-AO 0.0023 Clustering-based 0.0148
BGWEDGE 0.0437 - -

2) Simulation ResultsWe first test the proposed algorithms in the over-determiceesk. We also
include several BSS algorithms developed under differeathéworks as benchmarks. Specifically, they
are FFDIAG [6], which is known to be a competitive algorithmder the JD-based BSS-QSS framework;
BGWEDGE [7], which is also a JD algorithm that adopts an adeanveighting strategy; FastICA [45],
which is a popular algorithm under the independent compoaealysis (ICA) framework; and the
clustering-based algorithm reviewed in Section Ill, whishinspired by the way BSS-TFD and SCA
algorithms make use of local dominance, particularly, tlgorthms in [14], [15], [18]. For fairness,
all algorithms operate on the same set of (pre-whitenedl loovariances (except for FastlCA, which
directly operates on the received signals).

(5,6),

Fig. 9 shows the MSEs of the estimateéd by the proposed algorithms, whet, N)

L = 400 and the source duration & seconds. We see that the most promising algorithms undse the

February 6, 2015 DRAFT



24

30

251

20f

15¢

101

—o—SPA
—&— ProSPA
| —*—FFDIAG

—o— VolMin-AO
—4— BGWEDGE
-+ - Clustering—based
—pb— FastiCA

SINR (dB)

10 -5 0 5 0 15 20 25 30 35
SNR (dB)

Fig. 10: The average SINRs of the algorithms under diffe@NRs; (N, K) = (6,5); L = 400; source

duration= 6 sec.

settings are ProSPA, VoIMin-AO and the JD-based algorith&pecifically, one can see that when the
SNR is smaller than arourzitdB, ProSPA and VoIMin-AO provide much better MSE performatizan

the benchmark algorithms. For SI¥R4dB, FFDIAG and BGWEDGE catch up and yield lower MSEs.
Also, notice that ProSPA and VoIMin-AO yield essentiallgidical MSE performances, which means that
(A1) is generally satisfied under such settings. In addition,careobserve significant MSE performance
improvement from the original SPA to ProSPA. This verifieatthhort-term source cross-correlations do
exist in practice, and that the proposed cross-correlatsuppression method can handle the issue very
effectively.

Table | shows the corresponding average runtimes of theitiges. It can be seen that SPA exhibits
quite competitive runtime performance—it is at leasttimes faster than the benchmarked algorithms
in this simulation. ProSPA is essentially as fast as SPAesthe projection procedure costs very little
time. VoIMin-AO takes a little bit more time while is still9 times faster than the JD-based algorithms.

Fig. 10 shows the average signal-to-interference-plusea@tio (SINR) of the unmixed signals by the
various BSS algorithms. The evaluation procedure folldved tn [46], wherein minimum-mean-square-
error (MMSE) unmixing is employed. Readers are referredd@] for the details. We see that the SINR
performance differences are not as significant as the MSHEgn%; although the two follow a similar
trend. In particular, VoIMin-AO and ProSPA generally giveethighest SINRs when SNR is lower than
24dB, and the JD-based algorithms exhibit slightly better B$Nvhen SN 24dB.
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TABLE II: The MSEs and runtimes of the algorithms for varyingmber of sources; source duratoi

sec.;N = K +1; L =400; SNR= 10dB.

K
2 4 6 8 10
MSE(dB) |-35.857-28.212 -24.388 -18.486/ -13.833
runtime (sec.) 0.0004| 0.0008| 0.0016| 0.0028| 0.0060
MSE(dB) |-35.727/-28.289 -25.897|-25.091/-21.100
runtime (sec.) 0.0021| 0.0029| 0.0044| 0.0073| 0.0143
MSE(dB) |-27.736 -22.811 -21.574 -20.857-20.461
runtime (sec.) 0.0133| 0.0172| 0.0230| 0.0292| 0.0428

Algorithm | Measuremen

ProSPA

\olIMin-AO

FFDIAG

TABLE lll: The MSEs and runtimes of the algorithms for vareoframe lengths; source durationé

sec.;N = 6; K = 5; SNR= 10dB.

L (frame size)
200 600 | 1000 | 1400 | 1800

Algorithm | Measurement

MSE(dB) | -26.716 -26.957|-26.148| -22.463 -17.154
runtime (sec.) 0.0014 0.0010 |0.0009 | 0.0008 | 0.0008
MSE(dB) |-26.913 -27.203/-27.612| -25.955 -23.980
runtime (sec.) 0.0069 0.0022| 0.0018| 0.0016| 0.0015
MSE(dB) | -21.421 -23.914 -24.669| -24.991| -25.447
runtime (sec.) 0.0381 0.0128| 0.0078| 0.0057| 0.0046

ProSPA

\oIMin-AO

FFDIAG

TABLE IV: The MSEs and runtimes of the algorithms under vagsource durationsy = 6; K = 5;
L = 400; SNR= 10dB.

Source duration (sec.)
2 4 6 8

Algorithm | Measurement

MSE(dB) -14.944| -22.687| -24.390| -25.867| -27.980
runtime (sec.) 0.0010 | 0.0009 | 0.0010 | 0.0012 | 0.0014
MSE(dB) -17.212|-24.258 |-26.207 | -26.820 | -28.465
runtime (sec.) 0.0017 | 0.0017 | 0.0021| 0.0029 | 0.0039
MSE(dB) -19.525| -21.811| -22.601| -22.915| -23.174
runtime (sec.) 0.0033 | 0.0057 | 0.0108| 0.0162 | 0.0211

ProSPA

\VoIMin-AO

FFDIAG
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In Table Il, we show the MSEs and runtimes of the algorithmsmithe number of sourcedys,
changes. Here, we fix SNR10dB and take FFDIAG as benchmark since it exhibits better MR
performance compared to other benchmarked algorithmsn\ihe& 6, the MSE performance of ProSPA
is comparable to those of VoIMin-AO and FFDIAG. The MSEs ad®PA become larger whek = 8, 10,
as it is harder to get locally dominant frames when the nurobepurces is large. The MSEs of VolMin-
AO are still competitive whenk’ = 8, 10. This verifies our claim in Theorem 1, i.e., that the VolMin
criterion can work well even whe(Al) does not hold exactly. By taking the runtime performance int
account, ProSPA is the most attractive algorithm whert 6, while VoIMin-AO provides a good balance
between MSE and runtime whek = 8, 10.

Similar results can be found in Table IlI-IV, where we inugate how the performance of the algorithms
scales with the frame length and source duration, resmdgtiMote that ProSPA works better fdr <
1000 and source duratioxr 4 seconds, i.e., cases in whi¢Al) is more easily fulfilled. Also note in
both tables that VolMin-AO is more robust to changes of theapeeters, as it does not assu(Ad).

In Fig. 11, we show the MSEs of the algorithms in an under+deiteed case wheréV, K) = (5,6).
We apply SPA and the VWolMin-based SISAL algorithm to estintlie mixing system; the regularization
parameter\ of SISAL is set to bes x 10~2 in this simulation. As FFDIAG is no longer applicable in
this case, we benchmark the proposed algorithms usingfARAFAC by simultaneous diagonalization
(PARAFAC-SD) algorithm [9], [47]. Note that VoIMin-SISAL iglds the best estimation of the mixing
system, the MSEs of which are arouddB lower than those of PARAFAC-SD. Also notice that even
with the existence of source cross-correlations, the didsem solution, i.e., SPA, still gives reasonable

estimation results, and thus can serve as initializationtér algorithms.

B. Extension 1: Separating Music Sources

1) Joint sparsifying TransformMusic sources generally do not satisfy the local dominassemption
(Al). The reason is that music, unlike speech, does not have nausep in general. Nevertheless, our
proposed algorithms can still be applied to music sourcelg\mraging prior work on sparse component
analysis (SCA) [3, Chapter 10]. SCA first transforms the mmes to a transform domain where the
source components are believed to be sparse, e.g., thrbagihort-term Fourier transform (STFT) or a
compressive sensing-based joint sparsifying transfdmem,tany local dominance-based algorithm can be
applied. Taking STFT as an example, the mixtufeé) = As(t) and its transform-domain representation

have the following relationship:
x(t) = As(t) < x(q, f) = As(q, f),
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Fig. 11: The MSEs of the estimated mixing system of the algors under different SNRV, K) =

(5,6); L = 400; source duratios 6 sec.

whereq = 1,2,... denotes the index of the time window for applying the Foutr@nsform, f =
0,...,F —1is the index of the frequency bins, andq, f) = [ z,(q, f), ..., zx(q, f) |T ands(q, f) =
[51(q,f),...,s5x(q, f)]" are the STFTs of the mixtures and the sources at time-fregugoint (¢, f),
respectively. Notice that(q, f) is expected to be sparse evers{t) is not, since not all sources have
non-zero frequency components at all frequencies. Hencal iominance is easier to be fulfilled in the
time-frequency domain.

2) Simulation Settings and Resultist Table V, we show the results of applying ProSPA and VolMin-
AO to separate music sources. The results are averaged 00etridls. At each trial, the sources are
randomly picked from 11 music sources, with 6-seconds-ldangation and sampled &t6KHz. The
transform-domain algorithms TIFROM [17] and TIFCOR [18hieh also make use of local dominance,
are included as benchmarks. We use STFT to transform thedomain signals to 1024 frequency bins,

and the overlapping ratio of the STFT windows is 0.75. Weulale the time-frequency local covariances
L

Rim, f]= (/L) > x(q,/)x"(q,f)

g=(m—1)L+1
with L = 100. The length of the windows of TIFROM and TIFCOR is setl®j following the setting in

the original papers. Under STFT, we see that the resultspfig the convex geometry-based algorithms
on separating music signals are very promising —both Pra&@RAVolMin-AO vyield considerably lower
MSEs than the benchmark algorithms. On the other hand, weéhs¢df we directly apply ProSPA and

VoIMin-AQ in the time domain, where local dominance may notdy then the MSE performance is not
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TABLE V: The MSEs of the algorithms for varying number of musiources; source duratisert sec.;
N=K+1.

K
2 4 6 8 10
time domain| -42.288|-15.6519 -10.1167 -7.7004| -6.0088
TF domain |-51.2911-43.9196 -40.2823 -38.2009 -35.6873
time domain|-42.2875-15.6502 -10.0986 -7.5798| -5.9947
TF domain |-51.2925 -43.9258 -40.2887 -38.2009 -35.6184

Algorithms | measurements

ProSPA

\VoIMin-AO

time domain
TF domain |-37.9022-17.7125 -14.6208 -12.9919 -11.8825
time domain

TF domain |-27.1915-22.8411 -20.9203 -16.2376 -15.7494

TIFROM

TIFCOR

satisfactory.

C. Extension 2: Convolutively Mixed Speech Sources

We also test the performance of the proposed approaches tedmore realistic convolutive mixture
model. For instance, speech mixtures recorded in an indedromment are often convolutive, due to
multipath reflections.

1) Convolutive Mixture Signal ModelThe received signals are modeled as a convolution of theceour

signals and an FIR filter (a frequency-selective mixing eyst

Tmax

ZA s(t—7), t=1,2,...,
whereA (1) is the mixing system’s impulse response atttietime lag, and,.x is the impulse response
length. Convolutive mixtures can be decoupled into mantamsneous mixtures by the frequency-domain

approach [4], [32]. Specifically, by applying STFT on congae time windows, we have

Tmax

ZA st — ) & x(q, f) ~ A()s(q, f),

wherex(q, f), s(q, f), ¢ and f are defined by the same way as in the last subsectionAdrfd is the
frequency component of the mixing filtek(7) at frequencyf. Thus, the BSS-QSS algorithms can be
applied on each frequency to recov&( f) ands(q, f), thereby recovering(t) via the inverse short-
time Fourier transform. The challenge here is to tie togethe different permutations of the source

components at different frequency bins; see [4], [32] fansiard methods for dealing with this issue.
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TABLE VI: The SIRs and runtimes of applying the algorithms convolutive mixtures under various

Tso's; N = 6; K = 5; source duratioa 10 Sec.; number of freg: 1024.

Tso (Ms)

Algorithm | Measuremen 100 | 120 | 160 | 180 | 200
SIR(dB) |19.488 11.386 5.749 | 4.790| 3.900
ProSPA 1\ untime (sec.)1.4044 1.4033 1.4053 1.4030 1.4060
SIR(dB) |19.796 11.654 6.062  4.967 | 4.074
VOIMIN-AQ 1 time (sec.)3.1450 3.4922 3.7669 3.8280 3.9051
SIR(dB) |20.532 12.253 4.886 | 3.313| 2.086
PARAFAC-SDI | ime (sec.)4.4106 6.3356 7.9013 8.2094 8.7697

2) Settings and ResuliVe test the algorithms under the software platform provided]. We follow
every step of the implementation of the frequency-domaior@gch therein except that we replace the
per-frequency instantaneous mixing system estimatioorihgms by our proposed algorithms. The speech
sources used in this subsection are randomly picked 10iddong real speech sources as in [4]. The
convolutive mixtures are obtained by a sensor array in a lsimdi room under different reverberation
time Tyo's; such an environment is simulated by the image method. [#8teneral, largeflsy means
more severe multi-path and a more challenging convolufzesh separation problem. A typical channel
response from a source to a receiver is shown in Fig. 12. Thelaied room is of the sizém x 5m x
2.3m; the sources are located @&, 1,1.6), (2,1.5,1.6), (2,2,1.6), (2,2.5,1.6) and(2,3,1.6), and the
sensors are in positior{8, 1, 1.6), (3,1.4,1.6), (3,1.8,1.6), (3,2.2,1.6), (3,2.6,1.6) and(3,3,1.6). The
performance of the various algorithms is measured by thpubwgignal-to-interference-ratio (SIR) [4],
[32].

In Table VI, we show the SIRs of the algorithms under différégy’s. The convolutive mixture is
decoupled intal 024 frequency bins by short-time Fourier transform (STFT) dmelgroposed algorithms
are applied on each frequency. We also use PARAFAC-SD astediap [4] for benchmarking as it
demonstrates superior performance to other BSS algorithntise application of convolutively mixed
speech separation. The average input SIR at each senses.(42dB and the output average SIRs
are obtained fronb0 trials. Note that the proposed algorithms work well in thisugation under all
Tso's. Specifically, VoIMin-AO and ProSPA yield similar SIRs der all T5o’s under test. In particular,
VoIMin-AQ is slightly better than ProSPA in terms of SIRs, lehthe latter is around three times faster
than the former. PARAFAC-SD is also very competitive, exinlg the best SIR performance when
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Fig. 12: The channel between positiofis 1,1.6) and (3,1,1.6) with the first impulse normalized to

one; Ty = 120ms.

Tso < 120ms. However, when the environment gets more critical, i.e.emify, increases, the proposed
algorithms show better SIRs. As for the execution times,SPf and VoIMin-AO both exhibit more

favorable performances than PAFAFAC-SD in this simulation

VIl. CONCLUSION

In this paper, we proposed a framework of BSS-QSS by exptpitonvex geometry in spatial-
covariance domain. In the case where the local dominancditemm holds, we proposed to employ
SPA to estimate the mixing system in closed form. We developesimple pre-processing procedure
to deal with the short-term source cross-correlation mnobin the over-determined case, and provided
theoretical analysis of its efficacy. We also formulated B8S-QSS problem as a VolMin problem, and
proved that identifiability of VolMin is guaranteed under andition that is more relaxed than local
dominance. We further proposed a fast VolMin algorithm tgtloits the special structure of BSS-QSS
in the over-determined case. The proposed algorithms weengvely tested on both instantaneous
and convolutive mixtures of real speech/music signals.u&ition results indicate that our framework
is very promising for BSS-QSS —the new algorithms featurmparable or better performances than
some state-of-the-art algorithms for both instantanemalscamnvolutive mixtures. The simulation results
also underscore salient features, such as the speed of eof8PVoIMin-AO, and the high accuracy of

VoIMin-SISAL in the under-determined case.
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APPENDIX A

PROOF OFPROPOSITION1

By the definition of H and G in (5) and (16), respectively, it can be verified that theréstsxa

permutation matrixI € RX**X* such that
[H,G ] = (A" ® A)II (30)
By (A2), it can be easily seen that
(A*@ A)P(A* @A) = (AHTAY) 2 (ATA) =1,

which leads toR(H) L R(G) following (30) (note thatR(A) denotes the range space Aj). Hence,
to show that the projection in (18) eliminat€se|m], it suffices to show thaR(U;.x) = R(H).

Given M — oo, W can be expressed as

-y {(Hd[m] + Ge[m]) (Hd[m] + Ge[m])H}

= [H’ G]

E{d[m]d” [m]} E{d[m}eH[m]}]
Efe[m]d"[m]} E{e[m]e [m]}

HH
GH|
By the assumptions thdt{e[m|} = 0, and thate[m| and d[m] are mutually independent, we have
E{d[m]e[m]} = E{e[m])d’[m]} = 0. Taking the above noted fact, and denotibigAqU% as an
eigen-decomposition df{d[m]d[m]”}, we re-expres¥ as

Aq 0

(31)
0 E{e[me[m]}

¥ = [HUy, G| [

(HUg)
GH

Now, to show thatR(H) = R(U.x), we prove two results, namely, that (i) Eq. (31) is an eigen-
decomposition of’, and that (ii) the eigenvectold Uy are aligned tdU;.x, i.e., the firstK principal
eigenvectors ofl, .
To prove the first result, observe th&#lUq4, G] is unitary. Hence, (31) takes an eigen-decomposition
form if E{e[m]e[m]”} is diagonal. In fact, we have
T {E{é[m]éfﬂm]} E{é[m}éH[m]}] |
E{e[mle"[m]} E{e[m]e"[m]}

where, by the assumption that eagh[m| is zero-mean circular symmetric and uncorrelated with one
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other, one can verify that

E{e[m]e [m]} = E{e[m]e" [m]} = 0,

E{ée[m]e" [m]} = Diag([g{ ..., &k 1]"),
E{é[m|e”[m]} = Diag([g3 .- ... 8k]"),
with g = [ E{lexer1[m]*}, .. Bfler,x [m]?} |7 andgr = [E{ler—1ulml*}, ... E{lerx[m]*} 7.

In words, E{e[m]ef’[m]} is a diagonal matrix whose diagonal elements conigie; ;[m]|*} for all
i # j. It also follows that (31) is indeed an eigen-decompositbnp.
To prove the second result, observe from (31) #Haiy are aligned to the firsk” principal eigenvalues
of W if
N > e B{ e fm]). (32)

where\j min = ming—; _x[Aq]rr IS the smallest eignevalue &f{d[m]d”[m]}. Note that
E {d[m]d"[m]} = cov{d[m]d" [m]} + E{d[m]}E{d[m]}",
cov{d[m]d?[m]} = Diag( var{d,[m]},...,var{dg[m]} ),

which is by the assumption thaf,[m] and d;[m]| are independent of each other fbr# j. From the

above two equations, one can easily show that

Ad,min = ”n|r‘1i1r11 z' E {d[m|d”[m]} z > kinlninKvar{dk [m]}.

The above equation suggests thatifn, var{dx[m]} > max; ; E{|e; ;[m]|*}, then (32) holds. It follows

thatHUq are aligned to the firsk” principal eigenvalues o¥, and the proof of Proposition 1 is complete.

APPENDIX B

PROOF OFTHEOREM 1

Let (B, ®) be a feasible solution of Problem (20). Our proof is dividetbithe following steps.
Step 1: By the model in (10) and the constraint in (20b), we can write

HD = BO. (33)

Also, we haverank(®) = K. The proof is as follows: Sinceank(H) = rank(D) = K, we get
rank(B@®) = rank(HD) = K. As a basic matrix resultank(B®) = K holds only whenrank(B) =
rank(®) = K.
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Step 2: Sincerank(®) = K, (33) can be equivalently written as

where

)

with ®F = @7(®@©7T)~! denoting the pseudo-inverse &. The matrixZ has the following properties:
(i) = is invertible.

(i) 1= =17,

(i) 1721 =K.

(iv) cone(D) C cone(E).

The proof of the above properties are as follows. Propeijtfoflows from the fact thatank(D) =

rank(®) = K. To prove Property (i), first note that' D = 17 and1”® = 17. Subsequently, we have
1”2 =1"Def =176 = 17061 =17,

Property (iii) is a direct consequence of Properties (i) @dTo prove Property (iv), we make use of the
fact thatD = Z@ (note that the above fact requires (33), from which one cahtfiatR (D7) = R(©7),
and consequenthiE® = (DOT)® = D.) Letx € cone(D), which by definition takes the form = Dc
for somec > 0. UsingD = EO, x can be expressed as= Z¢ where¢ = Oc¢ > 0 (note that® > 0).
This implies thatx also lies incone(E).

Step 3: Consider the objective value of Problem (20). We show that
det(B¥B) > det(HTH), (34)

and equality holds only i is column-orthogonal. To prove it, we pluB = HE into the objective
function
det(BYB) = det(ETHTHE) = |det(Z)|?det(HTH), (35)

where the second equality is hiet(AB) = det(A)det(B) for squareA, B. Recall Condition (i) in
(A4), i.e.,C C cone(D), C = {x € RE|1Tx > /K — 1||x||2}. The above condition implies

C C cone(E), (36)
which is by Property (iv). By applying Property (i) and Lemsnk-2 to (36), we get

cone(E2-T) C ¢*, (37)
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whereC* is the dual cone of, which can be shown to be
Cr={xe RK|||X||2 < 1TX};

see, e.g., [23]. We have the following chain

|det(E)| ' = |det(E~T)| (38a)
K

< TTIE "Ll (38b)
k=1
K

<[[1"E .. (38¢)
k=1

_ K
< < f:l 1;[5 T]:,Z') (38d)
_— K
_ <71T;( Tl) 1 (38€)

where (38b) is Hadamard’s inequality; (38c) is by (37); (B@gthe arithmetic-geometric mean inequality;
and (38e) is by Property (iii). It follows from (35) and (3&)at det(B”B) > det(H”H). Also, by
Hadamard’s inequality, equality in (38b) holds onh\&f " is column-orthogonal. The latter is equivalent
to saying thatE is column-orthogonal.

Step 4: We ask ourselves whefB, ®) achieves the lower bound in (34). We proved previously that
equality in (38) holds only for column-orthogorial Under the restriction by Condition (i) ¢A4), and

considering Property (iv), the only possible choices ofiomt-orthogonaE are

[

=1I®

)

whereIT € RE*K s any permutation matrix an@ € RX*X is any diagonal matrix with non-zero
diagonals. By Property (i), we must hade= 1. Subsequently, we are left wiB = I, or equivalently,

(B,®) = (HIL, II"D). Such a solution is easily shown to satisfy equality in (24)d hence, optimal
to Problem (20). We therefore conclude that aiy,®) = (HII,II"D) is an optimal solution to

Problem (20), and no other optimal solutions exist.
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