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Abstract

This paper revisits blind source separation of instantaneously mixed quasi-stationary sources (BSS-
QSS), motivated by the observation that in certain applications (e.g., speech) there exist time frames during
which only one source is active, orlocally dominant. Combined with non-negativity of source powers, this
endows the problem with a nice convex geometry that enables elegant and efficient BSS solutions. Local
dominance is tantamount to the so-calledpure pixel/ separabilityassumption in hyperspectral unmixing
/ non-negative matrix factorization, respectively. Building on this link, a very simple algorithm called
successive projection algorithm(SPA) is considered for estimating the mixing system in closed form. To
complement SPA in the specific BSS-QSS context, an algebraicpre-processing procedure is proposed to
suppress short-term source cross-correlation interference. The proposed procedure is simple, effective, and
supported by theoretical analysis. Solutions based onvolume minimization(VolMin) are also considered.
By theoretical analysis, it is shown that VolMin guaranteesperfect mixing system identifiability under
an assumption more relaxed than (exact) local dominance—which means wider applicability in practice.
Exploiting the specific structure of BSS-QSS, a fast VolMin algorithm is proposed for the over-determined
case. Careful simulations using real speech sources showcase the simplicity, efficiency, and accuracy of
the proposed algorithms.
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Index Terms

Blind Source Separation, Local Dominance, Pure-pixel, Separability, Volume Minimization, Identi-

fiability, Speech, Audio.

I. INTRODUCTION

We consider the problem of blind source separation of instantaneous mixtures of quasi-stationary

sources (BSS-QSS), whose second-order statistics (SOS) vary from frame to frame, while remaining

approximately constant within each frame. Such SOS variations can be exploited to estimate the mixing

matrix, or its inverse; see [3] for a recent overview. BSS-QSS is practically important because many

types of mixtures can be approximately modeled as QSS, with speech and audio being two very familiar

signal processing examples [4], and with applications in teleconferencing, mobile communications, and

pre-processing for speech recognition, to name a few.

BSS-QSS is usually treated as a joint (approximate) diagonalization (JD) problem [5]–[7], or as a

decomposition problem that can be cast within the frameworkof parallel factor analysis (PARAFAC)

[8]–[10] (see also [11], [12] for a subspace variation). PARAFAC treats BSS-QSS as a three-way tensor

decomposition problem, and it can ensure identifiability ofthe mixing system even inunder-determined

cases where the number of the sources exceeds that of the sensors. JD, on the other hand, tries to recover

the inverse (or pseudo-inverse) of the mixing system, whichonly exists in the (over-)determined case.

When applicable, JD algorithms often exhibit better efficiency than PARAFAC-based ones.

In this paper we take a different approach. We begin with the adoption of one additional assumption

regarding the sources—namely,local dominance—and take advantage of it to develop an alternative

BSS-QSS framework. In the context of this paper, local dominance means that, among a collection of

SOSs estimated locally in time, there are particular time instants in which the SOSs are dominated

by one source. However, we do not know where these locally dominant SOSs are, and the SOSs in

the other time instants comprise contributions from multiple (possibly all) sources. Local dominance is

considered a reasonable assumption for certain ‘sparse’ sources such as speech; e.g., speech contains

unvoiced segments between utterances, and such segments occur quite frequently.

It is interesting to note that assumptions that are conceptually similar to local dominance have appeared

in several rather different contexts. The one that is closest to the BSS area can be found in the prior

works under the framework of BSS using time-frequency distributions (BSS-TFD), wherein sources are

assumed to exhibit some level of sparsity and disjointness in the time-frequency (TF) domain [13]–

[18]. This is a form of local dominance that has proven to be helpful in blindly separating speech and
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audio sources, even in the under-determined case. TF sparsity ideas later evolved intosparse component

analysis(SCA) [3, Chapter 3], wherein some advanced sparsity-promoting tools are applied to find sparser

sources in various transform domains. On the other hand, when we look at the remote sensing field, there

is an important research topic called hyperspectral unmixing (HU), which essentially deals with BSS.

There, the use of local dominance is extensive and has a long history; see, e.g., [19] and the references

therein. In other topics such as non-negative BSS (nBSS) forimage separation, non-negative matrix

factorization (NMF) and text mining, the local dominance assumption and its exploitation have also

received significant attention [20]–[22]. In these concurrent developments, local dominance is identical

to thepure pixel assumptionin HU [19] andseparability[23] / sufficient spread[24] conditions in NMF.

We should however distinguish how approaches arising from the aforementioned contexts exploit local

dominance. In sparsity-based BSS-TFD or SCA, the general rationale is to detect locally-dominant data

points using some problem-specific structures resulting from local dominance; e.g., by the rank-one

structure of the local correlation matrix or the quadratic TF point [13]–[16], or by some measures

concerning certain low-variance or high-correlation structures [17], [18]. In such approaches, a clustering

algorithm is usually required to group the detected data points for constructing an estimate of the overall

mixing system. In HU, nBSS and NMF, a different way is sought.Specifically, the sources in those

contexts are non-negative. By utilizing the source non-negativity, together with the local dominance

assumption, an elegant concept calledconvex geometrywas used to devise approaches for estimating the

mixing system. While convex geometry has been recognized tobe powerful in applications such as HU,

it has not been considered for the BSS-QSS application—possibly because speech and audio sources do

not seem to fall into the nBSS problem class at first look.

The starting point of this work is to connect the seemingly different topics of BSS-QSS and convex

geometry-based nBSS / NMF, thereby providing a novel BSS-QSS framework. We should additionally

mention that NMF has recently been considered for blind audio separation [25], [26]. The NMF used

there is based on a statistical generative model, and is different from the locally dominant and convex

geometry model used in this work.

Contributions: We begin by showing that under the local dominance assumption and the non-negativity

of source powers, the BSS-QSS problem can be converted to a signal model that admits nice convex

geometry, and thus be solved in closed form. To be specific, simple manipulation of the SOS enables

using the so-calledsuccessive projection algorithm(SPA) [19], [27], [28] from nBSS. Exploiting the

underlying convex geometry, the system response to each source can be determined by SPA in closed form,
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in over-determined as well as under-determined cases. On the other hand, our preliminary experiments

revealed that SPA is sensitive to short-term source cross-correlations, which sometimes yield serious

performance degradation. We propose a simple algebraic pre-processing (pre-whitening and subspace

projection) step to overcome this problem in the over-determined case. The proposed pre-processing is

computationally very simple, and its effectiveness is backed by theoretical analysis. In practice the local

dominance assumption may only hold approximately1. When this is the case, we propose to usevolume

minimization(VolMin) [29], [30] instead of SPA to exploit the convex geometry in spatial-covariance

domain. VolMin was empirically known to be robust to inexactlocal dominance conditions, but here we

go a step further—we provide a theoretical identifiability analysis that shows that VolMin can perfectly

identify the mixing system under a condition that is more relaxed than the exact local dominance, and

is more readily fulfilled in BSS-QSS applications. Exploiting the specific structure of BSS-QSS, a fast

VolMin algorithm is proposed for the over-determined case,and is shown to guarantee convergence to a

Karush-Kuhn-Tucker (KKT) [31] point of the corresponding optimization criterion. Careful simulations

using real speech sources showcase the simplicity, efficiency, and accuracy of the proposed algorithms.

Extensions that enable separating mixtures of dense sources (i.e., music) and convolutive mixtures of

speech sources are also considered, following the joint sparsifying-transform approach [3, Chapter 3] and

the frequency-domain approach [4], [32], respectively.

Early versions of parts of this paper were presented in conference form at ICASSP [1], [2]. This journal

version includes detailed proofs of our previous results, plus the new fast VolMin-type algorithm, its KKT

point analysis, the new sufficient condition for identifiability and its proof, and extensive simulation results.

For the purpose of reproducible research, we provide the source code of the proposed algorithms

online; see http://www.ee.cuhk.edu.hk/∼wkma/publications/bsscg.rar.

II. CONVEX GEOMETRY PRELIMINARIES

This section briefly mentions several preliminary conceptson convex geometry, which we will exten-

sively use. Given a set of real-valued vectors{x1, . . . ,xn} ⊂ Rm, we have the following definitions.

Definition 1 The affine hullof {x1, . . . ,xn} is defined as

aff{x1, . . . ,xn} =

{

x

∣

∣

∣

∣

x =

n
∑

i=1

xiθi,

n
∑

i=1

θi = 1, θi ∈ R,∀i
}

.

1Local dominance was originally defined [20] as the ideal situation where only a single source is active, instead of one source

being dominant while others can be present at lower levels—as the name might suggest.
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Definition 2 The convex hullof {x1, . . . ,xn} is defined as

conv{x1, . . . ,xn} =

{

x

∣

∣

∣

∣

x =

n
∑

i=1

xiθi,

n
∑

i=1

θi = 1, θi ≥ 0,∀i
}

.

Definition 3 A convex hullconv{x1, . . . ,xn} is called asimplexif x1, . . . ,xn are affinely independent,

i.e., x2 − x1, . . . ,xn − x1 are linearly independent.

Definition 4 The convex coneof {x1, . . . ,xn} is defined as

cone{x1, . . . ,xn} =

{

x

∣

∣

∣

∣

x =

n
∑

i=1

xiθi, θi ≥ 0,∀i
}

.

Definition 5 LetX = [ x1, . . . ,xn ] ∈ Rm×n, and denotecone(X) = cone{x1, . . . ,xn} for convenience.

The dual coneof cone(X) is

cone(X)⋆ =
{

y ∈ R
m | yTx ≥ 0,x ∈ cone(X)

}

.

Convex cones and dual cones have several nice properties. The following lemmas will be needed in

our context:

Lemma 1 If A and B are convex cones, andA ⊆ B, thenB⋆ ⊆ A⋆, whereX ⋆ denotes the dual cone

of coneX .

Lemma 2 If A is invertible, thencone(A)⋆ = cone(A−T ).

Readers are referred to [33], [34] for details.

Fig. 1 shows an example to illustrate how affine hull, convex hull and convex cone may look like. If

conv{x1, . . . ,xn} is a simplex, then its set of vertices is{x1, . . . ,xn} itself as shown in the figure. All

the above concepts are also applicable to complex-valued{x1, . . . ,xn}, since a complex-valued vector

x can be equivalently represented by a real-valued vectorx̃ = [ Re{xT }, Im{xT } ]T .

III. S IGNAL MODEL AND LOCAL DOMINANCE

The signal model used in this paper is standard in the BSS-QSScontext, and is concisely described

as follows. We consider the linear instantaneous mixture model:

x(t) = As(t), t = 1, 2, . . . (1)

wherex(t) = [x1(t), . . . , xN (t)]T ∈ CN denotes the received signals,s(t) = [s1(t), . . . , sK(t)]T ∈ CK

denotesK sources (K is assumed to be known),A = [ a1, . . . ,aK ] ∈ CN×K is an unknown mixing
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x1

x2

x3

aff{x1,x2,x3}

conv{x1,x2,x3}

cone{x1,x2,x3}

Fig. 1: Illustration of affine hull, convex hull and convex cone for the three vectors case. In this

example,aff{x1,x2,x3} is the entire plane containing the shadowed triangle area;conv{x1,x2,x3} is

the shadowed triangle area; andcone{x1,x2,x3} is the whole space among the three rays corresponding

to x1,x2,x3. The setconv{x1,x2,x3} is also a simplex in this example, asx3 − x1 andx2 − x1 are

linearly independent.

system, andak ∈ CN denotes the system response to sourcek. Our objective here is to blindly identify

the mixing systemA, which can then be used for separating the sources. The sources are assumed

to bewide-sense quasi-stationary with quasi-static periodL—that means thatsk(t)’s are nonstationary

but their SOSs remain static under any length-L time window. By also assuming that the sources are

zero-mean and uncorrelated from one another, we have

E{s(t)sH(t)} = Diag(d[m]), for all t ∈ [(m− 1)L+ 1,mL],

whereH denotes Hermitian transpose (∗ is reserved for conjugation),d[m] = [d1[m], . . . , dK [m]]T , and

dk[m] = E{|sk(t)|2}, for any t ∈ [(m − 1)L + 1,mL], is the average power of sourcek for the m-th

time frame.

Let us denote

R[m] = E{x(t)xH(t)}, t ∈ [(m− 1)L+ 1,mL]

to be the local covariance of the received signals in time frame m, which in practice can be estimated
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by local sampling

R̂[m] =
1

L

mL
∑

t=(m−1)L+1

x(t)xH(t).

Under the above signal model,R[m] can be expressed as

R[m] = ADiag(d[m])AH =

K
∑

k=1

dk[m]aka
H
k . (2)

We begin by adopting the (exact) local dominance assumption, illustrated in Fig. 2 with a practical

example comprising two real speech sources.

(A1) (local dominance[20]) For each sourcek, there exists a time frame, indexed bymk, such that

dk[mk] > 0 anddj [mk] = 0 for all j 6= k.

As mentioned in the Introduction, assumptions similar to(A1) have been considered previously in

the sparsity-based BSS-TFD / SCA literature [13]–[18]. Generally speaking, the strategy in these prior

works is to detect locally dominant TF areas, and then estimate the system responses from the detected

TF areas. The same strategy can also be applied to the BSS-QSSproblem here, and herein we describe

how this can be done. Under(A1), the local covariance model (2) at locally dominant frames can be

written as

R[mk] = dk[mk]aka
H
k , for k = 1, . . . ,K. (3)

Hence, if we know where the locally dominant frames are, thenwe can retrieveak ’s up to a scaling

factor by computing the principal eigenvector of the locally dominantR[m]. By also noting that (3) takes

a rank-one structure, a practically working algorithm is asfollows: i) detect locally dominant frames by

evaluating the ranks of allR[m]’s; ii) extract the principal eigenvector of each detectedR[m]; iii) apply

a K-means clustering algorithm to the obtained principal eigenvectors, and then use the centroids of the

K clusters to construct the mixing matrixA. The above procedure will be called theclustering-based

algorithm in the sequel.

The existing BSS-TFD and SCA algorithms [13]–[18] basically follow the same clustering-based

procedure described above, and their differences mainly lie in the detection criteria in Step i), which

depend on the type of transform used. We should also note thatthe non-negativity of the source powers

dk[m]’s have not been exploited in BSS-TFD or SCA. In the next sections, we will explain how the non-

negativity property enables us to convert (2) into a signal model with a nice convex geometry structure,

which will then be exploited to come up with different BSS-QSS algorithms.
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s1(t)

s2(t)

t

t

interval only contributed by source 2

interval only contributed by source 1

Fig. 2: Illustration of local dominance using two real speech sources. The shadowed areas are time

intervals (which may contain many time frames) where only one source is active, or dominant.

IV. L OCAL DOMINANCE-BASED BSS-QSS

In this section we develop an algebraically simple BSS-QSS method, accomplished by exploiting the

geometry induced by(A1) and nonnegativity of source powers.

A. A Virtual Mixture Model and Underlying Convex Geometry

Let us vectorize all the local covariances in (2) to obtain

y[m] = vec(R[m])

=

K
∑

k=1

dk[m]hk = Hd[m], m = 1, . . . ,M,
(4)

wherevec(·) denotes the vectorization operator (note thatvec−1(·) denotes the corresponding inverse

operation, which will be used later);

hk = vec(aka
H
k ) = a∗k ⊗ ak∈ C

N2

, (5a)

H = [h1, . . . ,hK ] = A∗ ⊙A∈ C
N2×K , (5b)

in which⊗ and⊙ denote the Kronecker and Khatri-Rao product, respectively. One can observe from the

above equations that ifh1, . . . ,hK are estimated, then we can easily retrieve the corresponding a1, . . . ,ak

(up to a scale factor) by

âk = qmax(vec
−1(hk)), k = 1, . . . ,K,
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whereqmax(X) denotes the principal eigenvector ofX. Hence,the BSS-QSS task can be posed as that

of estimatingH.

We make two assumptions for the model. The first is

rank(H) = K,

which holds under some fairly mild conditions in theory and is easy to satisfy in practice; e.g.,rank(H) =

K holds almost surely ifA is drawn from a continuous distribution andK ≤ N2 [9]. The second, which

is without loss of generality (w.l.o.g.), is that‖ak‖2 = 1 for k = 1, . . . ,K. 2

Now, we give a formulation that links up the model in (4) and convex geometry. By‖ak‖2 = 1, we

have

‖hk‖2 = ‖a∗k ⊗ ak‖2 = ‖ak‖22 = 1, (6)

and

Tr(R[m]) =

K
∑

k=1

dk[m]‖ak‖22 = 1Td[m], (7)

where1 is a vector whose elements are all equal to one. Hence, we can further manipulate the signal

model by constructing

z[m] =
y[m]

Tr(R[m])
= Hd̄[m], m = 1, . . . ,M, (8)

whered̄[m] = d[m]/Tr(R[m]) = d[m]/1Td[m] following (7). By the nonnegativity ofd[m], it follows

that

1T d̄[m] = 1, d̄[m] ≥ 0. (9)

The virtual mixture model in (8)-(9) comprises nonnegativesources that sum to one at all ‘times’,m.

The convex geometry that underlies (8)-(9) can be readily visualized by the fact that

z[m] ∈ conv{ h1, . . . ,hK }, ∀m, (10)

that is,z[m] lives in the convex hull spanned byh1, . . . ,hK . Also, h1, . . . ,hK are the vertices of the

convex hull, sinceH is of full column rank. Fig. 3 gives an illustration of the geometry of (10) for

K = 3. The take-home point is that estimatingh1, . . . ,hK boils down to estimating the vertices of a

convex hull; and, under(A1), hk is ‘touched down’ byz[m] at thosem where thek-th source is locally

dominant. Finding those vertices is an nBSS problem, as those encountered in HU [35] and NMF [28].

2In fact, any scaling of the 2-norm ofak can be absorbed in the power of thek-th source, i.e.,x(t) =
∑

K

k=1

ak

‖ak‖2
(‖ak‖2sk(t)), whereak/‖ak‖2 can be considered as the equivalent unit 2-norm system response of sourcek

and‖ak‖2sk(t) the new sourcek.
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B. Solution via Successive Projection Algorithm

Under(A1), the aforementioned convex geometry problem can be solved by findingm1, . . . ,mK , i.e.,

the indices of the locally dominant frames, sincez[mk] = hk for all k. Here, we achieve this task by

applying the so-calledsuccessive projection algorithm(SPA) [19], [27], [28]. The main idea of SPA is

that we can find a locally dominant frame by

m̂1 = arg max
m=1,...,M

‖z[m]‖2. (11)

The reason is that

‖z[m]‖2 =

∥

∥

∥

∥

∥

K
∑

k=1

d̄k[m]hk

∥

∥

∥

∥

∥

2

≤
K
∑

k=1

d̄k[m]‖hk‖2 = 1,

(12)

which is by the triangle inequality and nonnegativity ofd[m]. SinceH is of full column rank, equality

holds if and only ifd̄[m] is a unit vector—which is equivalent to saying that framem is locally dominant.

Moreover, by modifying (11), we can locate other locally dominant frames: suppose that we have found

k − 1 locally dominant frames, denoted bŷm1, . . . , m̂k−1 (wherek − 1 < N ). By letting Ĥ1:k−1 =

[ ĥ1, . . . , ĥk−1 ], whereĥi = z[m̂i], we can obtain the next locally dominant frame by

m̂k = arg max
m=1,...,M

∥

∥

∥
P⊥

Ĥ1:k−1

z[m]
∥

∥

∥

2
, (13)

whereP⊥
X

denotes the orthogonal complement projector ofX. In particular, the presence ofP⊥
Ĥ1:k−1

in

(13) nulls out the previously found system responsesh1, . . . ,hk−1 from the data, so that (13) can find a

new source’s locally dominant frame; see [19], [28] for moredetails. The resulting SPA-based BSS-QSS

algorithm is summarized in Algorithm 1.

SPA has several very attractive features. The most appealing is its simplicity: combined with adaptive

orthogonal projection algorithms, SPA is within reach of real-time implementation. In our specific context

of BSS-QSS, the conditionrank(H) = K is easy to satisfy, even in the under-determined case where the

number of sources exceeds the that of the sensors (recall that H is of sizeN2 ×K). Last but not least,

Gillis and Vavasis have proved that SPA is robust to bounded noise [28]: if z[m] = Hd̄[m]+υ[m], where

‖υ[m]‖2 ≤ ǫ ≤ O
(

σmin(H)√
Kκ2(H)

)

, then SPA identifies the columns ofH up to errorO(ǫκ2(H)), where

κ(H) = σmax(H)/σmin(H) is the condition number ofH, andσmin(X) andσmax(X) denote the smallest

and the largest singular values ofX, respectively. This robustness result is very desirable inpractice.

Despite the advantages described above, our experiments have revealed that directly applying SPA in

some BSS-QSS applications such as speech separation might sometimes yield unexpectedly inaccurate
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estimation ofA in practice; this will be demonstrated in the simulation section. The main reason is that

subtleshort-termsource cross-correlations occasionally combine to generate a noise termυ[m] that is

beyond the tolerance level of SPA. Hence, to enhance the performance of SPA, we are motivated to deal

with the cross-correlation issue in advance.

Algorithm 1: SPA-based BSS-QSS
input : R[1], . . . ,R[M ];

1 z[m] = vec(R[m])/Tr(R[m]), m = 1, . . . ,M ;

2 ĥ1 = z[m̂1], where

m̂1 ∈ arg max
m=1,...,M

‖z[m]‖2;

3 obtain â1 = qmax

(

vec−1(ĥ1)
)

;

4 for k = 2, . . . ,K do

5 ĥk = z[m̂k], where

m̂k ∈ arg max
m=1,...,M

∥

∥

∥
P⊥

Ĥ1:k−1

z[m]
∥

∥

∥

2

;

6 obtain âk = qmax

(

vec−1(ĥk)
)

.

7 end

output: Â = [ â1, . . . , âK ].

C. Pre-Processing: Cross-Correlations Mitigation

As discussed previously, short-term source cross-correlations give rise to modeling errors and sub-

sequently can lead to performance deterioration. To develop a remedy, we first reconsider the local

covariance model with source cross-correlations incorporated. Assuming thatsk(t) may be correlated at

times, the model in (4) should be modified as

R[m] = AC[m]AH , (14)

whereC[m] = E{s(t)sH(t)} for (m− 1)L+1 ≤ t ≤ mL, andC[m] may contain non-zero off-diagonal

elements. Letdk[m] = [C[m]]k,k as before. Also letei,j[m] = [C[m]]i,j , j 6= i, which represent the

cross-correlation components. As an example, in Fig. 4 we show the cross-correlation componente1,2[m]

of two real speech sources with respect tom. We see that the cross-correlations are weak and intermittent,

but not zeros at all times. Taking the cross-correlations into account, the model ofy[m] in (4) is replaced

by

y[m] = Hd[m] +Ge[m], (15)
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conv{ h1,h2,h3 }

h1 = z[m1]

h2 = z[m2]

h3 = z[m3]

z[m]

H = aff{ h1,h2,h3 }

Fig. 3: Geometry of data pointsz[1], . . . , z[M ] and the underlying convex hull. The visualization in this

figure (and the forthcoming figures in the sequel) is by assuming thatK = 3 and that the viewers are

facing the affine hullH = aff{ h1,h2,h3 }.
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Fig. 4: The values of the source powers and the cross-correlation terms of two real speech sources over

m; L = 200.
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h1

h1

h2

z[m]

H

Fig. 5: Geometry of{z[m]}Mm=1 using three real speech sources and a randomly generated mixing system;

source duration= 6 seconds;(N,K) = (4, 3); L = 200.

 

 

h1

h2

h3
z̃[m]

H

Fig. 6: Geometry of{z̃[m]}Mm=1, wherez̃[m] is constructed following (8) except thaty[m] is replaced

by ỹ[m] and that{R[m]}Mm=1 are pre-whitened; the other settings are the same as those inFig. 5.

whereG ∈ CN2×(N2−K) ande[m] ∈ CK2−K are defined as follows

G = [ Ǧ, G̃ ], (16a)

Ǧ = [ Ǧ1, . . . , ǦK−1 ], G̃ = [ G̃2, . . . , G̃K ], (16b)

Ǧk = [ a∗k ⊗ ak+1, . . . ,a
∗
k ⊗ aK ]∈ C

N2×(K−k), (16c)

G̃k = [ a∗k ⊗ ak−1, . . . ,a
∗
k ⊗ a1 ]∈ C

N2×(k−1), (16d)
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e[m] = [ ěT [m], ẽT [m] ]T , (16e)

ě[m] = [ ěT1 [m], . . . , ěTK−1[m] ]T , (16f)

ẽ[m] = [ ẽT2 [m], . . . , ẽTK [m] ]T , (16g)

ěk[m] = [ ek,k+1[m], . . . , ek,K [m] ]T∈ C
(K−k), (16h)

ẽk[m] = [ e∗k−1,k[m], . . . , e∗1,k[m] ]T∈ C
(k−1). (16i)

We illustrate the impact ofGe[m] on the signal geometry in Fig. 5, using three real speech sources

and a randomly generated real-valuedA. We observe that owing to the existence ofGe[m], some of the

z[m]’s live outside the convex hullconv{ h1,h2,h3 }, which violates the underlying signal geometry

for applying SPA (cf. Fig. 3).

Here, we propose a simple and efficient cross-correlation suppression method for the over-determined

case (i.e.,N ≥ K). To begin, let us assume

(A2) A ∈ CK×K is unitary, i.e.,AHA = AAH = I.

In practice, we can apply pre-whitening on{R[m]}Mm=1 to transformA to a unitary matrix, provided

N ≥ K and that the sources are uncorrelated in the long term; see, e.g., [3], [36]. Under(A2), our

rationale of cross-correlations suppression is to projecty[m] onto a principal component subspace. Let

Ψ =
1

M

M
∑

m=1

y[m]yH [m], (17)

and consider its eigen-decompositionΨ = UΛUH , whereU is the (unitary) eigenvector matrix, and

Λ is the (diagonal) eigenvalue matrix in which the diagonal elements or eigenvalues are arranged in

descending order. We use the following projection process

ỹ[m] = U1:KUH
1:Ky[m], m = 1, . . . ,M, (18)

to mitigate the undesired termGe[m]. The intuition is that the main termHd[m] is often much stronger

than the cross-correlation termGe[m] in practice, and thereforeU1:K , which contains the firstK principal

components ofΨ, should be dominated byHd[m].

By simulations, we found that the projection process in (18)can lead to significant performance

improvements. Here, we establish a theoretical justification by modelingd[m] and e[m] as random

processes. Let us assume

(A3) Eachdk[m], k = 1, . . . ,K is a wide-sense stationary (WSS) random process, eachei,j [m], i =
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1, . . . ,K−1, j = k+1, . . . ,K is a zero-mean circularly symmetric WSS random process, andall dk[m]

andei,j[m] are statistically uncorrelated of one another.

We show that

Proposition 1 Suppose that(A2)-(A3) hold true, thatM → ∞ such thatΨ = E{y[m]yH [m]}, and that

min
k=1,...,K

var{dk[m]} > max
i 6=j

E{|ei,j [m]|2}. (19)

Then, the projection process in(18) completely eliminates the cross-correlation term and keeps the main

term intact; i.e.,

ỹ[m] = Hd[m].

Proposition 1 implies that if the sources exhibit significant frame-wise power variations and the cross-

correlations are weak, then the projection process in (18) will attenuate the short-term cross-correlations

very substantially for sufficiently largeM . The proof of Proposition 1 is relegated to Appendix A.

In Fig. 6, we show the geometry of the projected data after pre-whitening and the projection in (18),

using the same real speech sources and setup as those used in Fig. 5. As can be seen in the figure, the

data points now live well inconv{ h1,h2,h3 }, an indication of successful cross-correlations elimination.

Hence, we may safely run SPA by applying it on the projected data. In the sequel, we will refer to this

procedure (specifically, pre-whitening, projection in (18), and then SPA) as theprojected SPA(ProSPA).

ProSPA offers an efficient and simple-to-implement solution to BSS-QSS under(A1) and over-determined

mixing systems. But there are more challenging cases, namely, that (A1) might not hold well enough

in some situations; for example, whenK is relatively large and/or the recording is relatively short, it

might be difficult to find frames exactly dominated by one source. The first question is whether it is still

possible to exploit the virtual mixing model in (4) and the nonnegativity ofd[m] in such cases? Second,

the proposed short-term cross-correlations suppression method only works in the over-determined case.

Can we fend against short-term cross-correlations in the under-determined case? These questions will be

addressed in the next section.

V. VOLUME M INIMIZATION -BASED BSS-QSS

In this section, we relax the local dominance assumption(A1). To exploit the virtual mixture model (8)

and its underlying geometry under such circumstances, we propose to employ the volume minimization

(VolMin) criterion, which was originally used in HU. In HU, VolMin was empirically found to be robust

to violation of the pure pixel assumption, i.e., the local dominance assumption in our context. We will
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h1

h2

h3

b1

b2

b3

z[m]

H

Fig. 7: Geometry of VolMin. The minimum-volume enclosing simplex is readily seen to be

conv{h1, . . . ,hK} in this case.

show that this is indeed true in theory, by proving a new sufficient condition for perfect identifiability

of VolMin. Then, we explore the special signal structure of BSS-QSS to propose a new efficient VolMin

algorithm for the over-determined case.

A. Volume Minimization Criterion and New Identifiability

The intuition of VolMin is as follows. As revealed in (10), wehave z[m] ∈ conv{h1, . . . ,hK}.

When rank(H) = K, one can always find a simplex onaff{h1, . . . ,hK}, such that the data points

z[1], . . . , z[M ] are all enclosed by this simplex [30]. In the so-calledCraig’s belief [37], it is believed

that as long as there are enough data points and they are sufficiently spread inconv{h1, . . . ,hK}, a

data-enclosing simplex with the minimum volume should beconv{h1, . . . ,hK} itself. Hence, estimating

H amounts to finding a full-rank matrixB = [b1, . . . ,bK ] such thatconv{b1, . . . ,bK} corresponds

to the minimum-volume enclosing simplex ofz[1], . . . , z[M ] on aff{h1, . . . ,hK}. Fig. 7 illustrates this

intuition for K = 3.

WhenB is a square matrix,|det(B)| was adopted as a measure of the volume of its simplex [29].

Since in our caseB is usually tall, we employ the Gram matrix formdet(BHB) to measure the volume;

see, e.g., [33]. The VolMin criterion for BSS-QSS is formulated as follows:
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VolMin Criterion:

min
B∈CN

2
×K ,Θ∈RK×M

det(BHB) (20a)

s.t. z[m] = Bθm, m = 1, . . . ,M, (20b)

θm ≥ 0, 1Tθm = 1, ∀m, (20c)

whereθm ∈ RK represents them-th column ofΘ for m = 1, . . . ,M . In VolMin, a fundamentally

exciting challenge is whether one can prove its identifiability, thereby providing mathematically precise

and non-heuristic explanations of Craig’s belief. Identifiability of VolMin was previously established

under the pure pixel assumption [30], which is(A1) and is believed to be a loose sufficient condition.

Here, we provide a more relaxed sufficient condition3 under which Problem (20) uniquely identifiesH

(up to a permutation ambiguity). To proceed, let

D̄ = [ [d̄[1], . . . , d̄[M ] ]

and consider the following assumption:

(A4) The matricesH andD̄ satisfy rank(H) = rank(D̄) = K. Also, cone(D̄) satisfies

(i) C ⊆ cone(D̄), whereC is a second order cone

C = {x ∈ R
K |1Tx ≥

√
K − 1‖x‖2};

(ii) cone(D̄) 6⊆ cone(Q), for any unitary matrixQ ∈ RK×K that is not a permutation matrix.

We show that(A4) is a sufficient condition for identifiability of VolMin:

Theorem 1 Under (A4), the VolMin criterion uniquely identifies bothH and D̄ up to a permutation.

Specifically, any optimal solution to Problem(20) under (A4) takes the form

B = HΠ, Θ = ΠT D̄,

whereΠ is a permutation matrix.

3Condition (A4) and the proof of Theorem 1 were developed during X. Fu’s visitto the University of Minnesota, in the fall

of 2013. At the same time, W.-K. Ma collaborated with C.-H. Lin and C.-Y. Chi, from National Tsinghua University, Taiwan,

and they independently proved anothersufficient condition [38], based on a different approach. Wewould like to acknowledge

that these were parallel independent developments.
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The proof of Theorem 1 can be found in Appendix B. We provide intuition regarding(A4) and Theorem 1

using graphical examples forK = 3; see Fig. 8. In these examples, we visualize the cones on the

hyperplane1Tx = 1. Specifically,C corresponds to a ball,RK
+ is an equilateral triangle andcone(D̄)

is a polytope inside this equilateral triangle. The columnsof Q also span equilateral triangles such that

each facet is tangent to the ball corresponding toC; note that these equilateral triangles determined by

Q are actually rotated versions of the triangle determined byRK
+ . In Fig. 8 (a), we show a situation

where(A4) is satisfied asC is contained incone(D̄) and no rotation ofRK
+ can containcone(D̄). Fig. 8

(b) shows a situation where Conditions (i)-(ii) are violated. In Fig. 8 (c), Condition (i) is satisfied while

Condition (ii) is not, as one can see that there is aQ such thatcone(D̄) ⊆ cone(Q). In Fig. 8 (d), we

show a situation where(A1) holds. It is clear in this figure that(A1) is a special case of(A4) and thus

our proposed sufficient condition for identifiability of VolMin is tighter than the previous one in [30].

From a practical point of view, if each source overpowers therest in some frames, then(A4) is likely

to be fulfilled. Note that we also want each source to prevail in several frames, so thatcone(D̄) exhibits

roughly symmetric shape inRK
+ [cf. Fig. 8 (a)]. In some BSS-QSS problems such as speech separation,

such rough symmetric shape ofcone(D̄) is empirically true. Hence,(A4) is easier to satisfy than(A1)

for such BSS-QSS problems.

B. Over-determined-case Algorithm: Alternating Optimization

Under (A4), H can be estimated using any of the existing VolMin algorithms[29], [30], albeit their

computational cost can be a burden, due to the form of the VolMin criterion in (20). In the specific

context of over-determined BSS-QSS, however, VolMin can besignificantly simplified by exploiting the

special signal structure, as we explain next. Recall that inthe over-determined case, we can use the

pre-whitened and principal subspace-projected data{z̃[m] = ỹ[m]/Tr(R[m])}Mm=1 as input, for fending

against the short-term source cross-correlation problem.As a result, the operationalA is unitary, and the

correspondingH is semi-unitary; namely, under(A2),

HHH = (A∗ ⊙A)H(A∗ ⊙A)

=
(

(A∗)HA∗) ◦
(

AHA
)

= I,

where ◦ denotes the element-wise (Hadamard) product. Therefore, we can add a ‘property restoring’

constraint to the VolMin criterion to ensure thatB is likewise semi-unitary. Sincedet(BHB) = 1 for
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e1
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e2
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q1

q2

q3

(a) (b)
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Fig. 8: Some examples ofcone(D̄) by assuming thatK = 3 and that the viewers are facing the hyperplane

1Tx = 1 from the positive orthant. In subfigures(a)-(d), the inner circle corresponds toC, the shadowed

polytope corresponds tocone(D̄), the outer circle corresponds toC⋆ = {x ∈ RK |1Tx ≥ ‖x‖2}, and the

red dots correspond tōd[m]’s.

any semi-unitaryB, we can convert Problem (20) withBHB = I to the following equivalent form:

min
B,Θ

∥

∥

∥
Z̃−BΘ

∥

∥

∥

2

F

s.t. BHB = I,

θm ≥ 0, 1Tθm = 1, ∀m,

(21)

whereZ̃ = [z̃[1], . . . , z̃[M ]].

Problem (21) is non-convex, but it can be tackled using alternating block-coordinate optimization,

which admits simple block updates as we explain next. In alternating optimization (AO) we alternate

between two conditional updates; namely, via solving Problem (21) with respect toB for Θ fixed, and

that with respect toΘ for B fixed, respectively. UpdatingB for a fixedΘ is simple; it admits an optimal

solution via singular value decomposition (SVD) [39]–[41]

Bopt = VsU
H
s , (22)

whereUs ∈ CK×K andVs ∈ CN2×K are the left and right singular vector matrices ofΘZ̃H . Updating
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Θ for a fixed B is even simpler: the problem is separable with respect toθm for m = 1, . . . ,M .

Furthermore, sinceB is semi-unitary,

arg min
θm∈SK

‖z̃[m]−Bθm‖22 (23a)

= arg min
θm∈SK

‖θm‖22 − 2Re
{

z̃H [m]Bθm

}

(23b)

= arg min
θm∈SK

∥

∥θm − Re
{

BH z̃[m]
}
∥

∥

2

2
(23c)

whereSK = {x ∈ RK |1Tx = 1,x ≥ 0} is the probability simplex. Hence, instead of solving (23a)

directly, we can solve (23c) to obtainθm. Note that (23c) aims at finding the projection ofRe
{

BH z̃[m]
}

on SK , which can be solved very easily by a simple ordering approach with complexityO(K logK);

see [42] for a detailed implementation.

The above AO algorithm for VolMin (VolMin-AO) is summarizedin Algorithm 2. It features the

following convergence property:

Proposition 2 Every limit point of the solution sequence created by Algorithm 2 is a KKT point of

Problem(21).

Proof: The proof is based on a convergence result for themaximum block improvement(MBI)

algorithm [43]. We skip the description of MBI owing to spacelimitation, but point out key results and

connections to our problem. MBI can be regarded as a variation of alternating optimization, where it

selects to update the block that yields maximum improvementof the objective in each step. While MBI

and alternating optimization are generally different, they are identical in the two-block case. It was shown

that every limit point of the solution sequence generated byan MBI algorithm is a KKT point if i) all

the constraint sets are compact, and ii) the partial problems are optimally solved in all iterations; see

[43]. Since the above two conditions are satisfied in our case, we obtain the desired result.

C. VolMin for Under-determined BSS-QSS

Note that our VolMin identifiability condition(A4) requires a full column-rankH, but has no such

restriction onA, which can be fat. As a result, VolMin can be naturally applied to the under-determined

case (with respect toA), albeit outliers caused by short-term cross-correlations of the sources (cf. Fig. 5)

can no longer be eliminated via our simple cross-correlations suppression method in Section IV-C. In

such a case, we propose to employ thesimplex identification via split augmented Lagrangian(SISAL)

algorithm by Bioucas-Dias [29]. SISAL is an outliers-robust variation of the VolMin criterion. It modifies
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Algorithm 2: Two-block AO for VolMin (VolMin-AO)

input : Z̃; K; (B,Θ) (initializations).

1 repeat

2 apply SVD Z̃HΘ = UsΣsV
H
s ;

3 B := VsU
H
s ;

4 apply the ordering-based algorithm [44] to solve

Θ := arg min
{θm∈SK}M

m=1

∥

∥

∥
Re
{

BHZ̃
}

−Θ

∥

∥

∥

2

F
; (24)

5 until some stopping criterion is satisfied;

output: Ĥ = B.

the VolMin criterion as
min

B∈RK×K ,Θ
log |det(B)| + λ · hinge(Θ)

s.t. 1Tθm = 1, ∀m

z[m] = Bθm, ∀m,

(25)

wherehinge(Θ) =
∑M

m=1

∑K
k=1max{−[Θ]k,m, 0} is an element-wise hinge function, andλ > 0 is a

regularization parameter. The idea of SISAL is to apply a soft penaltyhinge(Θ) in place of the hard

constraintΘ ≥ 0. In particular,hinge(Θ) penalizes negative values of elements inΘ, which correspond

to outliers outside the desired simplex. A few outliers are permitted (and discounted) in this way, thereby

endowing the method with some robustness against outliers.Notice that SISAL requires thatH be a real-

valued square matrix, i.e.,H ∈ RK×K. In our signal model, this can be accomplished by concatenating

the real and imaginary parts ofz[m], and using principal component analysis-based or other methods

[30] to reduce the dimension before applying SISAL.

VI. SIMULATIONS

We first test the proposed algorithms using instantaneous mixtures. Then, an extension to convolutive

mixtures will be considered.

A. Instantaneously Mixed Speech Sources

1) Simulation settings:Throughout this subsection, real speech sources are used. For each inde-

pendent trial, the sources are randomly picked from a data base containing23 different speech seg-

ments. The speech segments are sampled at16KHz. For each simulation trial, we use a real-valued
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mixing matrix A, which is also randomly generated following the i.i.d. zero-mean unit-variance Gaus-

sian distribution and each column ofA is normalized to be of unit 2-norm. The results are averaged

over 1000 trials. To get more frames, we employ local averaging windows with 50%-overlap; i.e.,

R[m] = 1
L

∑0.5(m−1)L+L

0.5(m−1)L+1 x(t)xT (t). Moreover, we consider noisy received signals

x(t) = As(t) + v(t), t = 1, 2, 3...

wherev(t) is Gaussian noise with zero mean and varianceσ2. Under such circumstances, the local

covariances should be modeled as

R[m] = AC[m]AT + σ2I. (26)

In our simulations, we removeσ2I from R[m] by the following procedure [12]: It can be easily shown

that for locally dominant frames (or, more generally, for frames satisfying‖d[m]‖0 < N , where‖x‖0
counts the nonzero elements inx), the least significant eigenvector ofR[m] lies in the noise subspace.

Hence, we can estimateσ2 by

σ̂2 = min
m=1,...,M

λmin(R[m]), (27)

whereλmin(X) denotes the magnitude-wise smallest eigenvalue ofX, and then set̃R[m] = R[m] −
σ̂2I as noise-removed local covariances. In the over-determined case, we also apply pre-whitening to

{R̃[m]}Mm=1.

We define the signal-to-noise ratio (SNR) as

SNR =
1
T

∑T−1
t=0 E‖As(t)‖22
E{‖v(t)‖22}

, (28)

whereT is the total number of available samples. The average mean square error (MSE) is adopted as

the performance measure, which is defined as

MSE = min
π∈Π,

c1,...,cK∈{±1}

1

K

K
∑

k=1

∥

∥

∥

∥

ak

‖ak‖2
− ck

âπk

‖âπk
‖2

∥

∥

∥

∥

2

2

, (29)

whereΠ is the set of all permutations of{1, 2, . . . ,K}; ak andâk are the ground truth of thekth column

of the mixing matrix and the corresponding estimate, respectively.

In all the simulations, VolMin-AO is initialized by ProSPA,and stopped by checking the absolute

change of the objective value. Specifically, letf (i) be the objective value of the optimization criterion

of Algorithm 2 at iterationi, we terminate the algorithm when|f (i) − f (i−1)| < 10−2. All algorithms

are implemented in Matlab codes and the simulations are carried out in a computer with an i7 CPU

@3.40GHz and 4 GB RAM.
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Fig. 9: The MSEs of the estimated mixing system of the algorithms under different SNRs;(N,K) =

(6, 5); L = 400; source duration= 6 sec.

TABLE I: The average runtimes of the algorithms corresponding to the simulation in Fig. 9.

Algorithm runtime (sec.) Algorithm runtime (sec.)

SPA 0.0011 FFDIAG 0.0527

ProSPA 0.0013 FastICA 1.9391

VolMin-AO 0.0023 Clustering-based 0.0148

BGWEDGE 0.0437 - -

2) Simulation Results:We first test the proposed algorithms in the over-determinedcase. We also

include several BSS algorithms developed under different frameworks as benchmarks. Specifically, they

are FFDIAG [6], which is known to be a competitive algorithm under the JD-based BSS-QSS framework;

BGWEDGE [7], which is also a JD algorithm that adopts an advanced weighting strategy; FastICA [45],

which is a popular algorithm under the independent component analysis (ICA) framework; and the

clustering-based algorithm reviewed in Section III, whichis inspired by the way BSS-TFD and SCA

algorithms make use of local dominance, particularly, the algorithms in [14], [15], [18]. For fairness,

all algorithms operate on the same set of (pre-whitened) local covariances (except for FastICA, which

directly operates on the received signals).

Fig. 9 shows the MSEs of the estimatedA by the proposed algorithms, when(K,N) = (5, 6),

L = 400 and the source duration is6 seconds. We see that the most promising algorithms under these
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Fig. 10: The average SINRs of the algorithms under differentSNRs;(N,K) = (6, 5); L = 400; source

duration= 6 sec.

settings are ProSPA, VolMin-AO and the JD-based algorithms. Specifically, one can see that when the

SNR is smaller than around24dB, ProSPA and VolMin-AO provide much better MSE performance than

the benchmark algorithms. For SNR≥ 24dB, FFDIAG and BGWEDGE catch up and yield lower MSEs.

Also, notice that ProSPA and VolMin-AO yield essentially identical MSE performances, which means that

(A1) is generally satisfied under such settings. In addition, onecan observe significant MSE performance

improvement from the original SPA to ProSPA. This verifies that short-term source cross-correlations do

exist in practice, and that the proposed cross-correlations suppression method can handle the issue very

effectively.

Table I shows the corresponding average runtimes of the algorithms. It can be seen that SPA exhibits

quite competitive runtime performance—it is at least20 times faster than the benchmarked algorithms

in this simulation. ProSPA is essentially as fast as SPA since the projection procedure costs very little

time. VolMin-AO takes a little bit more time while is still19 times faster than the JD-based algorithms.

Fig. 10 shows the average signal-to-interference-plus-noise-ratio (SINR) of the unmixed signals by the

various BSS algorithms. The evaluation procedure follows that in [46], wherein minimum-mean-square-

error (MMSE) unmixing is employed. Readers are referred to [46] for the details. We see that the SINR

performance differences are not as significant as the MSE in Fig. 9, although the two follow a similar

trend. In particular, VolMin-AO and ProSPA generally give the highest SINRs when SNR is lower than

24dB, and the JD-based algorithms exhibit slightly better SINRs when SNR≥ 24dB.
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TABLE II: The MSEs and runtimes of the algorithms for varyingnumber of sources; source duration= 6

sec.;N = K + 1; L = 400; SNR= 10dB.

Algorithm Measurement
K

2 4 6 8 10

ProSPA
MSE(dB) -35.857 -28.212 -24.388 -18.486 -13.833

runtime (sec.) 0.0004 0.0008 0.0016 0.0028 0.0060

VolMin-AO
MSE(dB) -35.727 -28.289 -25.897 -25.091 -21.100

runtime (sec.) 0.0021 0.0029 0.0044 0.0073 0.0143

FFDIAG
MSE(dB) -27.736 -22.811 -21.574 -20.857 -20.461

runtime (sec.) 0.0133 0.0172 0.0230 0.0292 0.0428

TABLE III: The MSEs and runtimes of the algorithms for various frame lengths; source duration= 6

sec.;N = 6; K = 5; SNR= 10dB.

Algorithm Measurement
L (frame size)

200 600 1000 1400 1800

ProSPA
MSE(dB) -26.716 -26.957 -26.148 -22.463 -17.154

runtime (sec.) 0.0014 0.0010 0.0009 0.0008 0.0008

VolMin-AO
MSE(dB) -26.913 -27.203 -27.612 -25.955 -23.980

runtime (sec.) 0.0069 0.0022 0.0018 0.0016 0.0015

FFDIAG
MSE(dB) -21.421 -23.914 -24.669 -24.991 -25.447

runtime (sec.) 0.0381 0.0128 0.0078 0.0057 0.0046

TABLE IV: The MSEs and runtimes of the algorithms under various source durations;N = 6; K = 5;

L = 400; SNR= 10dB.

Algorithm Measurement
Source duration (sec.)

1 2 4 6 8

ProSPA
MSE(dB) -14.944 -22.687 -24.390 -25.867 -27.980

runtime (sec.) 0.0010 0.0009 0.0010 0.0012 0.0014

VolMin-AO
MSE(dB) -17.212 -24.258 -26.207 -26.820 -28.465

runtime (sec.) 0.0017 0.0017 0.0021 0.0029 0.0039

FFDIAG
MSE(dB) -19.525 -21.811 -22.601 -22.915 -23.174

runtime (sec.) 0.0033 0.0057 0.0108 0.0162 0.0211
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In Table II, we show the MSEs and runtimes of the algorithms when the number of sources,K,

changes. Here, we fix SNR= 10dB and take FFDIAG as benchmark since it exhibits better low-SNR

performance compared to other benchmarked algorithms. When K ≤ 6, the MSE performance of ProSPA

is comparable to those of VolMin-AO and FFDIAG. The MSEs of ProSPA become larger whenK = 8, 10,

as it is harder to get locally dominant frames when the numberof sources is large. The MSEs of VolMin-

AO are still competitive whenK = 8, 10. This verifies our claim in Theorem 1, i.e., that the VolMin

criterion can work well even when(A1) does not hold exactly. By taking the runtime performance into

account, ProSPA is the most attractive algorithm whenK ≤ 6, while VolMin-AO provides a good balance

between MSE and runtime whenK = 8, 10.

Similar results can be found in Table III-IV, where we investigate how the performance of the algorithms

scales with the frame length and source duration, respectively. Note that ProSPA works better forL ≤
1000 and source duration≥ 4 seconds, i.e., cases in which(A1) is more easily fulfilled. Also note in

both tables that VolMin-AO is more robust to changes of the parameters, as it does not assume(A1).

In Fig. 11, we show the MSEs of the algorithms in an under-determined case where(N,K) = (5, 6).

We apply SPA and the VolMin-based SISAL algorithm to estimate the mixing system; the regularization

parameterλ of SISAL is set to be5 × 10−2 in this simulation. As FFDIAG is no longer applicable in

this case, we benchmark the proposed algorithms using thePARAFAC by simultaneous diagonalization

(PARAFAC-SD) algorithm [9], [47]. Note that VolMin-SISAL yields the best estimation of the mixing

system, the MSEs of which are around5dB lower than those of PARAFAC-SD. Also notice that even

with the existence of source cross-correlations, the closed-form solution, i.e., SPA, still gives reasonable

estimation results, and thus can serve as initialization ofother algorithms.

B. Extension 1: Separating Music Sources

1) Joint sparsifying Transform:Music sources generally do not satisfy the local dominance assumption

(A1). The reason is that music, unlike speech, does not have many pauses in general. Nevertheless, our

proposed algorithms can still be applied to music sources byleveraging prior work on sparse component

analysis (SCA) [3, Chapter 10]. SCA first transforms the mixtures to a transform domain where the

source components are believed to be sparse, e.g., through the short-term Fourier transform (STFT) or a

compressive sensing-based joint sparsifying transform; then, any local dominance-based algorithm can be

applied. Taking STFT as an example, the mixturex(t) = As(t) and its transform-domain representation

have the following relationship:

x(t) = As(t) ↔ x(q, f) ≈ As(q, f),
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Fig. 11: The MSEs of the estimated mixing system of the algorithms under different SNRs;(N,K) =

(5, 6); L = 400; source duration= 6 sec.

where q = 1, 2, . . . denotes the index of the time window for applying the Fouriertransform,f =

0, . . . , F − 1 is the index of the frequency bins, andx(q, f) = [ x1(q, f), . . . , xN (q, f) ]T ands(q, f) =

[ s1(q, f), . . . , sK(q, f) ]T are the STFTs of the mixtures and the sources at time-frequency point (q, f),

respectively. Notice thats(q, f) is expected to be sparse even ifs(t) is not, since not all sources have

non-zero frequency components at all frequencies. Hence, local dominance is easier to be fulfilled in the

time-frequency domain.

2) Simulation Settings and Results:In Table V, we show the results of applying ProSPA and VolMin-

AO to separate music sources. The results are averaged over 100 trials. At each trial, the sources are

randomly picked from 11 music sources, with 6-seconds-longduration and sampled at16KHz. The

transform-domain algorithms TIFROM [17] and TIFCOR [18], which also make use of local dominance,

are included as benchmarks. We use STFT to transform the time-domain signals to 1024 frequency bins,

and the overlapping ratio of the STFT windows is 0.75. We calculate the time-frequency local covariances

R[m, f ] = (1/L)

L
∑

q=(m−1)L+1

x(q, f)xH(q, f)

with L = 100. The length of the windows of TIFROM and TIFCOR is set to12, following the setting in

the original papers. Under STFT, we see that the results of applying the convex geometry-based algorithms

on separating music signals are very promising —both ProSPAand VolMin-AO yield considerably lower

MSEs than the benchmark algorithms. On the other hand, we seethat if we directly apply ProSPA and

VolMin-AO in the time domain, where local dominance may not hold, then the MSE performance is not
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TABLE V: The MSEs of the algorithms for varying number of music sources; source duration= 6 sec.;

N = K + 1.

Algorithms measurements
K

2 4 6 8 10

ProSPA
time domain -42.288 -15.6519 -10.1167 -7.7004 -6.0088

TF domain -51.2911 -43.9196 -40.2823 -38.2009 -35.6873

VolMin-AO
time domain -42.2875 -15.6502 -10.0986 -7.5798 -5.9947

TF domain -51.2925 -43.9258 -40.2887 -38.2009 -35.6184

TIFROM
time domain - - - - -

TF domain -37.9022 -17.7125 -14.6208 -12.9919 -11.8825

TIFCOR
time domain - - - - -

TF domain -27.1915 -22.8411 -20.9203 -16.2376 -15.7494

satisfactory.

C. Extension 2: Convolutively Mixed Speech Sources

We also test the performance of the proposed approaches under the more realistic convolutive mixture

model. For instance, speech mixtures recorded in an indoor environment are often convolutive, due to

multipath reflections.

1) Convolutive Mixture Signal Model:The received signals are modeled as a convolution of the source

signals and an FIR filter (a frequency-selective mixing system),

x(t) =

τmax
∑

τ=0

A(τ)s(t − τ), t = 1, 2, . . . ,

whereA(τ) is the mixing system’s impulse response at theτ th time lag, andτmax is the impulse response

length. Convolutive mixtures can be decoupled into many instantaneous mixtures by the frequency-domain

approach [4], [32]. Specifically, by applying STFT on consecutive time windows, we have

x(t) =

τmax
∑

τ=0

A(τ)s(t− τ) ↔ x(q, f) ≈ A(f)s(q, f),

wherex(q, f), s(q, f), q andf are defined by the same way as in the last subsection, andA(f) is the

frequency component of the mixing filterA(τ) at frequencyf . Thus, the BSS-QSS algorithms can be

applied on each frequency to recoverA(f) and s(q, f), thereby recoverings(t) via the inverse short-

time Fourier transform. The challenge here is to tie together the different permutations of the source

components at different frequency bins; see [4], [32] for standard methods for dealing with this issue.
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TABLE VI: The SIRs and runtimes of applying the algorithms onconvolutive mixtures under various

T60’s; N = 6; K = 5; source duration= 10 Sec.; number of freq.= 1024.

Algorithm Measurement
T60 (ms)

100 120 160 180 200

ProSPA
SIR(dB) 19.488 11.386 5.749 4.790 3.900

runtime (sec.)1.4044 1.4033 1.4053 1.4030 1.4060

VolMin-AO
SIR(dB) 19.796 11.654 6.062 4.967 4.074

runtime (sec.)3.1450 3.4922 3.7669 3.8280 3.9051

PARAFAC-SD
SIR(dB) 20.532 12.253 4.886 3.313 2.086

runtime (sec.)4.4106 6.3356 7.9013 8.2994 8.7697

2) Settings and Result:We test the algorithms under the software platform providedin [4]. We follow

every step of the implementation of the frequency-domain approach therein except that we replace the

per-frequency instantaneous mixing system estimation algorithms by our proposed algorithms. The speech

sources used in this subsection are randomly picked 10-second-long real speech sources as in [4]. The

convolutive mixtures are obtained by a sensor array in a simulated room under different reverberation

time T60’s; such an environment is simulated by the image method [48]. In general, largerT60 means

more severe multi-path and a more challenging convolutive speech separation problem. A typical channel

response from a source to a receiver is shown in Fig. 12. The simulated room is of the size5m× 5m×
2.3m; the sources are located at(2, 1, 1.6), (2, 1.5, 1.6), (2, 2, 1.6), (2, 2.5, 1.6) and (2, 3, 1.6), and the

sensors are in positions(3, 1, 1.6), (3, 1.4, 1.6), (3, 1.8, 1.6), (3, 2.2, 1.6), (3, 2.6, 1.6) and(3, 3, 1.6). The

performance of the various algorithms is measured by the output signal-to-interference-ratio (SIR) [4],

[32].

In Table VI, we show the SIRs of the algorithms under different T60’s. The convolutive mixture is

decoupled into1024 frequency bins by short-time Fourier transform (STFT) and the proposed algorithms

are applied on each frequency. We also use PARAFAC-SD as adopted in [4] for benchmarking as it

demonstrates superior performance to other BSS algorithmsin the application of convolutively mixed

speech separation. The average input SIR at each sensor is−5.012dB and the output average SIRs

are obtained from50 trials. Note that the proposed algorithms work well in this simulation under all

T60’s. Specifically, VolMin-AO and ProSPA yield similar SIRs under all T60’s under test. In particular,

VolMin-AO is slightly better than ProSPA in terms of SIRs, while the latter is around three times faster

than the former. PARAFAC-SD is also very competitive, exhibiting the best SIR performance when
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Fig. 12: The channel between positions(2, 1, 1.6) and (3, 1, 1.6) with the first impulse normalized to

one;T60 = 120ms.

T60 ≤ 120ms. However, when the environment gets more critical, i.e., whenT60 increases, the proposed

algorithms show better SIRs. As for the execution times, ProSPA and VolMin-AO both exhibit more

favorable performances than PAFAFAC-SD in this simulation.

VII. C ONCLUSION

In this paper, we proposed a framework of BSS-QSS by exploiting convex geometry in spatial-

covariance domain. In the case where the local dominance condition holds, we proposed to employ

SPA to estimate the mixing system in closed form. We developed a simple pre-processing procedure

to deal with the short-term source cross-correlation problem in the over-determined case, and provided

theoretical analysis of its efficacy. We also formulated theBSS-QSS problem as a VolMin problem, and

proved that identifiability of VolMin is guaranteed under a condition that is more relaxed than local

dominance. We further proposed a fast VolMin algorithm thatexploits the special structure of BSS-QSS

in the over-determined case. The proposed algorithms were extensively tested on both instantaneous

and convolutive mixtures of real speech/music signals. Simulation results indicate that our framework

is very promising for BSS-QSS —the new algorithms feature comparable or better performances than

some state-of-the-art algorithms for both instantaneous and convolutive mixtures. The simulation results

also underscore salient features, such as the speed of ProSPA and VolMin-AO, and the high accuracy of

VolMin-SISAL in the under-determined case.
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APPENDIX A

PROOF OFPROPOSITION1

By the definition ofH and G in (5) and (16), respectively, it can be verified that there exists a

permutation matrixΠ ∈ RK2×K2

such that

[ H,G ] = (A∗ ⊗A)Π. (30)

By (A2), it can be easily seen that

(A∗ ⊗A)H(A∗ ⊗A) = ((A∗)HA∗)⊗ (AHA) = I,

which leads toR(H) ⊥ R(G) following (30) (note thatR(A) denotes the range space ofA). Hence,

to show that the projection in (18) eliminatesGe[m], it suffices to show thatR(U1:K) = R(H).

GivenM → ∞, Ψ can be expressed as

Ψ = E
{

(Hd[m] +Ge[m]) (Hd[m] +Ge[m])H
}

= [H,G]





E{d[m]dT [m]} E{d[m]eH [m]}
E{e[m]dT [m]} E{e[m]eH [m]}









HH

GH



 .

By the assumptions thatE{e[m]} = 0, and thate[m] and d[m] are mutually independent, we have

E{d[m]eH [m]} = E{e[m]dT [m]} = 0. Taking the above noted fact, and denotingUdΛdU
H
d

as an

eigen-decomposition ofE{d[m]d[m]T }, we re-expressΨ as

Ψ = [HUd,G]





Λd 0

0 E{e[m]eH [m]}









(HUd)
H

GH



 . (31)

Now, to show thatR(H) = R(U1:K), we prove two results, namely, that (i) Eq. (31) is an eigen-

decomposition ofΨ, and that (ii) the eigenvectorsHUd are aligned toU1:K , i.e., the firstK principal

eigenvectors ofΨ, .

To prove the first result, observe that[HUd,G] is unitary. Hence, (31) takes an eigen-decomposition

form if E{e[m]e[m]H} is diagonal. In fact, we have

E{e[m]eH [m]} =





E{ě[m]ěH [m]} E{ě[m]ẽH [m]}
E{ẽ[m]ěH [m]} E{ẽ[m]ẽH [m]}



 ,

where, by the assumption that eachei,j[m] is zero-mean circular symmetric and uncorrelated with one
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other, one can verify that

E{ě[m]ẽH [m]} = E{ẽ[m]ěH [m]} = 0,

E{ě[m]ěH [m]} = Diag([ǧT
1 , . . . , ǧ

T
K−1]

T ),

E{ẽ[m]ẽH [m]} = Diag([g̃T
2 , . . . , g̃

T
K ]T ),

with ǧk = [ E{|ek,k+1[m]|2}, . . . ,E{|ek,K [m]|2} ]T andg̃k = [ E{|ek−1,k[m]|2}, . . . ,E{|e1,k[m]|2} ]T .

In words,E{e[m]eH [m]} is a diagonal matrix whose diagonal elements containE{|ei,j [m]|2} for all

i 6= j. It also follows that (31) is indeed an eigen-decompositionof Ψ.

To prove the second result, observe from (31) thatHUd are aligned to the firstK principal eigenvalues

of Ψ if

λd,min > max
i,j

E{|ei,j [m]|2}, (32)

whereλd,min = mink=1,...,K [Λd]kk is the smallest eignevalue ofE{d[m]dT [m]}. Note that

E
{

d[m]dT [m]
}

= cov{d[m]dT [m]}+ E{d[m]}E{d[m]}T ,

cov{d[m]dT [m]} = Diag( var{d1[m]}, . . . , var{dK [m]} ),

which is by the assumption thatdk[m] and dj [m] are independent of each other fork 6= j. From the

above two equations, one can easily show that

λd,min = min
‖z‖2=1

zTE
{

d[m]dT [m]
}

z ≥ min
k=1,...,K

var{dk[m]}.

The above equation suggests that ifmink var{dk[m]} > maxi,j E{|ei,j [m]|2}, then (32) holds. It follows

thatHUd are aligned to the firstK principal eigenvalues ofΨ, and the proof of Proposition 1 is complete.

APPENDIX B

PROOF OFTHEOREM 1

Let (B,Θ) be a feasible solution of Problem (20). Our proof is divided into the following steps.

Step 1: By the model in (10) and the constraint in (20b), we can write

HD̄ = BΘ. (33)

Also, we haverank(Θ) = K. The proof is as follows: Sincerank(H) = rank(D̄) = K, we get

rank(BΘ) = rank(HD̄) = K. As a basic matrix result,rank(BΘ) = K holds only whenrank(B) =

rank(Θ) = K.
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Step 2: Sincerank(Θ) = K, (33) can be equivalently written as

B = HΞ

where

Ξ = D̄Θ† ∈ R
K×K ,

with Θ† = ΘT (ΘΘT )−1 denoting the pseudo-inverse ofΘ. The matrixΞ has the following properties:

(i) Ξ is invertible.

(ii) 1TΞ = 1T .

(iii) 1TΞ−11 = K.

(iv) cone(D̄) ⊆ cone(Ξ).

The proof of the above properties are as follows. Property (i) follows from the fact thatrank(D̄) =

rank(Θ) = K. To prove Property (ii), first note that1T D̄ = 1T and1TΘ = 1T . Subsequently, we have

1TΞ = 1T D̄Θ† = 1TΘ† = 1TΘΘ† = 1T .

Property (iii) is a direct consequence of Properties (i) and(ii). To prove Property (iv), we make use of the

fact thatD̄ = ΞΘ (note that the above fact requires (33), from which one can find thatR(D̄T ) = R(ΘT ),

and consequently,ΞΘ = (D̄Θ†)Θ = D̄.) Let x ∈ cone(D̄), which by definition takes the formx = D̄c

for somec ≥ 0. UsingD̄ = ΞΘ, x can be expressed asx = Ξc̃ wherec̃ = Θc ≥ 0 (note thatΘ ≥ 0).

This implies thatx also lies incone(Ξ).

Step 3: Consider the objective value of Problem (20). We show that

det(BHB) ≥ det(HHH), (34)

and equality holds only ifΞ is column-orthogonal. To prove it, we plugB = HΞ into the objective

function

det(BHB) = det(ΞTHHHΞ) = |det(Ξ)|2det(HHH), (35)

where the second equality is bydet(AB) = det(A)det(B) for squareA,B. Recall Condition (i) in

(A4), i.e., C ⊆ cone(D̄), C = {x ∈ RK |1Tx ≥
√
K − 1‖x‖2}. The above condition implies

C ⊆ cone(Ξ), (36)

which is by Property (iv). By applying Property (i) and Lemmas 1-2 to (36), we get

cone(Ξ−T ) ⊆ C⋆, (37)
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whereC⋆ is the dual cone ofC, which can be shown to be

C⋆ = {x ∈ R
K |‖x‖2 ≤ 1Tx};

see, e.g., [23]. We have the following chain

|det(Ξ)|−1 = |det(Ξ−T )| (38a)

≤
K
∏

k=1

‖[Ξ−T ]:,i‖2 (38b)

≤
K
∏

k=1

1T [Ξ−T ]:,i (38c)

≤
(

∑K
k=1 1

T [Ξ−T ]:,i
K

)K

(38d)

=

(

1TΞ−T1

K

)K

= 1, (38e)

where (38b) is Hadamard’s inequality; (38c) is by (37); (38d) by the arithmetic-geometric mean inequality;

and (38e) is by Property (iii). It follows from (35) and (38) that det(BHB) ≥ det(HHH). Also, by

Hadamard’s inequality, equality in (38b) holds only ifΞ−T is column-orthogonal. The latter is equivalent

to saying thatΞ is column-orthogonal.

Step 4: We ask ourselves when(B,Θ) achieves the lower bound in (34). We proved previously that

equality in (38) holds only for column-orthogonalΞ. Under the restriction by Condition (ii) of(A4), and

considering Property (iv), the only possible choices of column-orthogonalΞ are

Ξ = ΠΦ,

whereΠ ∈ RK×K is any permutation matrix andΦ ∈ RK×K is any diagonal matrix with non-zero

diagonals. By Property (ii), we must haveΦ = I. Subsequently, we are left withΞ = Π, or equivalently,

(B,Θ) = (HΠ,ΠT D̄). Such a solution is easily shown to satisfy equality in (34),and hence, optimal

to Problem (20). We therefore conclude that any(B,Θ) = (HΠ,ΠT D̄) is an optimal solution to

Problem (20), and no other optimal solutions exist.
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