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Abstract—Orthogonal space-time block codes (OSTBCs) have
attracted much attention owing to their simple code construction,
maximal diversity gain, and low maximume-likelihood (ML) detec-
tion complexity when channel state information (CSI) is available
at the receiver. This paper addresses the problem of ML OSTBC
detection with unknown CSI. Focusing on the binary and quater-
nary PSK constellations, we show that blind ML OSTBC detection
can be simplified to a Boolean quadratic program (BQP). From
an optimization viewpoint the BQP is still a computationally hard
problem, and we propose two alternatives for dealing with this in-
herent complexity. First, we consider the semidefinite relaxation
(SDR) approach, which leads to a suboptimal, but accurate, blind
ML detection algorithm with an affordable worst-case computa-
tional cost. We also consider the sphere decoding approach, which
leads to an exact blind ML detection algorithm that remains com-
putationally expensive in the worst case, but generally incurs a rea-
sonable average computational cost. For the two algorithms, we
study implementation methods that can significantly reduce the
computational complexity. Simulation results indicate that the two
blind ML detection algorithms are competitive, in that the bit error
performance of the two algorithms is almost the same and is no-
ticeably better than that of some other existing blind detectors.
Moreover, numerical studies show that the SDR algorithm pro-
vides better complexity performance than the sphere decoder in
the worst-case sense, and vice versa in the average sense.

Index Terms—Blind and semiblind detection, decoding, lat-
tice decoding, maximum likelihood (ML) detection, relaxation
methods, semidefinite programming, space-time block code
(STBC), sphere decoding.

1. INTRODUCTION

N  multiple-input-multiple-output (MIMO) communi-
cations, space-time coding has recently emerged as a
promising technique for utilizing multiple transmitter and
receiver antennas to improve diversity and achievable rate
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[1]-[5]. In particular, the space-time block codes (STBCs)
based on the theory of orthogonal designs [6]-[10] have
received considerable interest. The class of these so-called
orthogonal STBCs (OSTBCs) not only maximizes the diversity
gain of an MIMO system, but also results in a linear (and,
hence, computationally efficient) maximum-likelihood (ML)
detection structure when channel state information (CSI) is
perfectly known at the receiver. There are other STBC designs
[11], [12] that can maximize the diversity gain with higher data
rates, but those STBCs usually incur a more complex coherent
ML detection structure than the OSTBC scheme.

This paper addresses the problem of OTSBC detection with
unknown CSI. Blind ML OSTBC detection has been studied
in [13] and [14], where a suboptimal blind ML implementation
called the cyclic ML was proposed. The idea behind cyclic ML
is to decouple the original blind ML problem into simpler sub-
problems (one of which is the simple coherent ML detection
problem) by applying alternating minimization [15], [16]. The
cyclic ML detector is not only computationally simple to im-
plement, it can also be extended to other cases such as unknown
colored noise covariance and semiblind detection (i.e., detection
without CSI but with pilot symbols). Cyclic ML is a method that
requires careful initialization of the channel and/or symbols. In
particular, a poorly initialized cyclic ML detector is likely to
exhibit inferior symbol error performance (compared to the true
ML). The cyclic ML method is usually initialized by employing
some other suboptimal blind receiver, such as one of the sub-
space methods [17], [18] (also [13]). Subspace blind detectors
are computationally attractive due to their closed-form struc-
tures, and they may achieve near ML performance given suffi-
ciently large data samples. Unfortunately, the large data length
assumption requires that the channel fading coefficients remain
static for a long period of time, which can be violated in certain
wireless environments in which the channel coherence time is
small.

The goal of this paper is to consider methods that enable
optimal or near-optimal implementations of the blind ML
OSTBC detector, regardless of the data length. Based on the
common assumption of white Gaussian noise contamination,
we will show in Section III that the blind ML OSTBC de-
tector with binary or quaternary PSK constellations can be
simplified to a Boolean quadratic program (BQP)!. This blind

1Our BQP reformulation of the blind ML. OSTBC problem was originally pro-
posed in [19]. Around the time of the submission of that work, this reformulation
idea was independently reported in a short example in [20, pp. 170-171]. How-
ever, there was no detailed discussion in [20] of the implementation of methods
to solve the BQP.
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ML OSTBC result is attractive because blind ML detection
for a generic space-time block coding scheme (e.g., [15]) is
considerably more complex to solve than the BQP. However,
the BQP is nondeterministic polynomial-time hard (NP-hard)
[21], which means that any optimization algorithm capable of
determining the globally optimal BQP solution is unlikely to
have a polynomial-time complexity in the BQP problem size.
In this paper, we propose two alternatives for dealing with
this implementation problem, namely semidefinite relaxation
(SDR) and sphere decoding. SDR [22] is a suboptimal BQP
solver that guarantees polynomial-time worst-case complexity.
SDR has been theoretically shown to provide a number of ad-
vantages in terms of approximation accuracy [22]-[27]. In the
application of coherent ML multiuser detection for CDMA sys-
tems [25], [28]-[30], many simulation results have confirmed
that SDR provides quasi-ML performance (also [26], [31], [32]
for other applications). On the other hand, sphere decoding
[33], [34] is an optimal BQP solver. The NP-hard nature of the
BQP implies that the time complexity of sphere decoding, in
the worst case, can be expensive. However, extensive results,
mostly simulations in the application of coherent MIMO ML
detection [35]-[37], have shown that the average complexity
performance of sphere decoding is appealing at high SNRs.

This paper is organized as follows. In Section II, we describe
the OSTBC scheme and formulate the problem of blind ML de-
tection. We derive the BQP reformulation of that problem in
Section III. Sections IV and V, respectively, describe our devel-
opments of SDR and sphere decoding algorithms for blind ML
OSTBC detection. In particular, in Section IV we will propose
a modified version of SDR that can provide substantial com-
putational savings over the original SDR algorithm. The idea
behind this modified SDR algorithm is to make use of a com-
putationally cheaper suboptimal blind detector to alleviate the
computational burden of the original SDR algorithm. Moreover,
some theoretical SDR approximation accuracy advantages in
the blind ML OSTBC detection application will be examined
in Section IV. As for the sphere decoding technique, our de-
velopment in Section V will focus on a sphere decoder imple-
mentation that is presently believed to be the computationally
fastest among various implementations [36], [37]. The SDR and
sphere decoding methods can be easily extended to the semi-
blind case, as we will illustrate in Section VI. Simulation results
in Section VII will show that the bit error performance of the
suboptimal blind SDR-ML detector is almost identical to that
of the optimal blind ML sphere decoding detector. Moreover,
the bit error performance of the two proposed detectors will be
shown (by simulations) to be significantly better than that of
some other blind detectors, such as the subspace detectors and
the cyclic ML detector. Since SDR and sphere decoding offer
similar bit error performance, it is interesting to compare the
complexity performance of the two methods. This aspect will
be numerically studied in Section VII.

II. BACKGROUND

This section reviews the orthogonal space-time coding
scheme and the respective blind ML detection problem.
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A. Orthogonal Space-Time Block Coding Scheme

We consider a standard space-time block code (STBC) trans-
mission scenario in which the MIMO channel is frequency flat.
Let M; and M, denote the numbers of transmitter and receiver
antennas, respectively. By letting 1" be the code block length,
the received code block of a single STBC can be modeled as

Y =HC(s)+V (1)

where s € {1} are transmitted bits; C(s) € CM+*7T is the
STBC function that maps information bits to a code matrix; K is
the number of bits per block; H € CM-xM: 33 MIMO channel;
Y € CM-XT ig the received code matrix; V € CMrXT ig the
additive white Gaussian noise (AWGN) matrix with zero mean
and variance N,.Orthogonal STBCs (OSTBCs) are a class of
codes constructed based on the theory of orthogonal designs
[7]-[10]. In the quaternary PSK (QPSK) constellation case, an
OSTBC function can be expressed as

K/2 K/2
C(s)=> Awsi+3j Y Brsiir ©)
k=1 k=1

where Ay, B, € RM:XT are the constituent matrices of the
code, s € {£1} is the kth element of s, and j = /1. In
the binary PSK (BPSK) constellation case, the matrices By, are
absent from (2). Both the QPSK and BPSK OSTBCs can be
alternatively represented by a single formula

K
C(S) = Zxksk (3)
k=1

where X, € CM:XT are given by {Xi}, =

{Ah...,AI{/27jB17...,jBI{/2} for the QPSK case,
and {X;}X | = {A1,..., Ak} for the BPSK case. The ma-

trices Xy, are specially designed such that for any s € {+1}%,
C(s)C(s) = [s[31 = KT ©)

where ||-||2 denotes the 2-norm. The semiorthogonal code prop-
erty in (4) has been shown to lead to the maximum spatial diver-
sity gain [7]. Another benefit of using the OSTBC scheme lies in
the computational efficiency in its coherent ML detection. When
channel state information (CSI) is available, the maximum-like-
lihood (ML) detection of s is given by

S = in [[Y — HC(s)|); 5
s—arg_min | (I3 )
where || - || denotes the Frobenius norm. Supposing that C( -)

is a generic space-time block code mapping function, solving (5)
can be computationally challenging for large K [35], [37]. For
the orthogonal space-time block coding scheme, it can shown
using (3) and (4) that the coherent ML solution in (5) is given
by 8 = sign(Re{tr{YXZH"}}), where sign : R — {£1}
is the threshold decision function. Clearly, the coherent ML
OSTBC detector is computationally simple to implement.

B. Formulation of Blind ML Detection

When the CSI is unknown at the receiver, the ML detector
structure depends on the model of the multi-antenna channel
H. Here we apply the two usual assumptions that lead to the
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so-called deterministic blind ML detector [13], [14], [38]. First,
we assume that the channel fading effects are slowly time
varying such that H remains static over P consecutive code
blocks. In this case, it is appropriate to add a block index p to
the OSTBC signal model in (1)

Y, =HC(s,) +V,, ©6)
where Y, is the pth received signal block, s, € {£1}% is
the pth bit symbol block, and V, contains the AWGN samples.
Second, H is assumed to be a deterministic unknown. For no-
tational convenience, we collect all bit symbol blocks to form a
single bit vector

sip=[sT,...,sh]" € {£1}KP. )

With the two channel assumptions, the ML detector for the re-
ceived signal frame [Y1,..., Y p] is the detection method that
maximizes the log likelihood function over both the channel and
the bit symbols

{I:I,él:p} —arg max

HecMrx My
si.pe{x1}KFP

Inp(Yy,...,

®)

..., Yp|H,s;.p) is the p.d.f. of the received
signal frame conditioned on the channel and the bit symbols.
Problem (8) can be shown to be equivalent to [15], [38]

where p(Y4,...,

min

P
HeoMrx My Z “Yp - HC(SP)”%‘ (9)

s;.pE{F1}KF p=1

{I:I,él;[)} = arg

Unlike the known CSI case where s,, is detected from its respec-
tive received code block Y, [shown in (5)], ML detection in the
unknown CSI case detects {s1,...,sp} jointly from the whole
signal frame [Y1,...,Yp].

Given a generic linear code function C {£1}% —
CM-xM: ' the problem of minimizing the blind ML objective
function value in (9) over both H and s;.p is challenging. A
popular suboptimal technique for dealing with this problem is
to first obtain an initial estimate of either H or s;.p, and then
to alternately minimize the blind ML objective function over
H and s;.p in a cyclic fashion [13]-[15]. The performance of
this cyclic blind ML method depends much on the initialization
of H and si.p. In particular, poor initializations are likely to
result in significantly degraded performance of cyclic ML.

In the following sections, we will investigate how blind ML
OSTBC detection can be implemented more effectively.

III. SIMPLIFICATION OF BLIND ML OSTBC DETECTION

Blind ML detection for the OSTBC scheme can be simplified
by exploiting the special structures of OSTBCs. To illustrate
this, define frame matrices

Y =[Yy,...

,Yp], (10)

(1)
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The blind ML detection problem for the OSTBC scheme, given
by (9), can be reexpressed as

{(Asp}=arg  min |V —HC(s1.p)[3
HeCcMr XMy

sp.pe{+1}KP

(12)

If we are only interested in the blind ML detected bits §;. p, then
we can rewrite (12) as (see, e.g., [16], [20], [38])

min

min
{HGCAIY‘XAIt

sy pE{E1}KP

- Hc<s1=p>||%}.
13)

S$1.p = arg

Let us consider the alternate ML detection formulation in (13);
once S1.p is found, the ML channel estimate H can be obtained
in a straightforward manner [38]. The inner minimization term
in (13) is a least squares problem given C(s1.p), and it yields a
closed form [20], [38]

1Y — HC(s1.p) % = [V - T(s1.p)[3 (14)

min
HeCMrxM;

where
H(SI:P) = CH(SI:P) [C(SI:P)CH(SI:P)]ilc(Sl:P)

denotes the orthogonal projector of C¥ (s;.p). Owing to the
semi-orthogonal code property C(s)C*(s) = KT for any s €
{£1}E [cf., (4)], (15) can be reduced to

15)

(16)

H(Slzp) %CH(SLP)C(SLP)

Substituting (16) and (14) into (13), we show that the blind ML
detector can be reduced to

1
IVIIF - ﬁ”ycH(sl:P)H%’

tr{yCH(SLP)C(Sl:P)yH}

§1.p = arg min
sy, pE{EX1}KF

= arg max

si.pE{E1}KF

max
sy pEe{EX1}KF

D> {Y,C(s,)C(s,) Y[}

p=1lg=1

= arg

7)

The problem in (17) can be further simplified by exploiting the
linear code structure C(s) = Zszl X} sz [cf., (3)]. Define ma-
trices Gy pq € R*X with (k, £)th entry

[GJ/‘-,pq]k@ =Re {tr {YprXng}} (18)
for p,q = 1,..., P. Using the linear code structure, the blind
ML detector in (17) can be reexpressed as

P P
A T
S1.p = al“gsmgi)i}lw Z Z sp Gy .pSq
p=1q=1
= argsl:,,g{li)f}ﬁ sT »Gys;.p (19)
where
Gy Gy Gy 1p
Gy — Gy,21 GJ}722 (20)

Gy,p1 Gy.pp
The following property is noted.

Property 1: The matrix Gy is positive semidefinite (PSD).
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..., P,and F = [Fq,...,Fp]. It can be verified that
Gy = Re{FHF}, and that Re{F¥F} is PSD. |

The blind ML detection problem in (19) is a Boolean
quadratic program (BQP), whose optimal solution can be
very expensive to compute. The optimal BQP solution can
be obtained by evaluating the objective function for all points
in {£1}%P but this “brute-force” point search process re-
quires O(25%%) operations which is prohibitive for large
KP. In Section V we will consider a point search algorithm
that can have a significantly lower operational cost than the
“brute-force” method, namely sphere decoding [35]-[37]. A
drawback of sphere decoding is that its computational cost in
the worst case can be as expensive as that of the “brute-force”
point search. For this reason, it is also interesting to examine
suboptimal BQP solvers that provide computational efficiency
even in the worst case. A rather simple suboptimal BQP solver
is to consider the following simple optimization problem

Proof: Define F, = [vec{Y, X} ..., vec{Y, X1}

2n

max
Isi.plI3=KP

Sf: P G yS1:pP-
Problem (21) is a relaxation of the BQP in which the original
feasible set {£1}%7 is replaced by the bigger set {s;.p €
REP | ||s1.p||? = KP}. Problem (21) reduces to the problem
of finding the principal eigenvector of Gy, which is much easier
to solve than the BQP. To approximate the BQP solution, we can
round the solution of (21) to the nearest point in {£1}%7. In
this paper, this approximate BQP method is referred to as norm
relaxation. It is interesting to note that norm relaxation turns out
to be equivalent to the singular value decomposition (SVD) re-
laxation method [13], and the subspace blind channel estimator
in [18].2 In the subsequent section we will consider another
relaxation-based approximate BQP method, namely semidefi-
nite relaxation [22]-[25], [28], which can be shown to provide
more promising approximation accuracy than the norm relax-
ation method.

IV. SEMIDEFINITE RELAXATION

This section considers the application of the semidefinite re-
laxation (SDR) algorithm to the blind ML OSTBC detection
problem. In Section IV-A, a brief review of the SDR algorithm
will be given. In Section IV-B, we will study the theoretical ap-
proximation accuracy promised by SDR, and in Section IV-C,
we will propose a modified SDR algorithm that can offer sub-
stantial computational savings compared to its predecessor.

2The connections of SVD relaxation, norm relaxation, and the subspace
channel estimator in [18] are as follows. Let F = [Re{F}7TIm{F}7]7,
where F is defined in the Proof of Property 1. The SVD relaxation method
uses the dominant left singular vector of F' as the channel estimate, and the
dominant right singular vector of F' as the symbol estimate. It can be shown
that the dominant right singular vector of F is also the norm relaxation solution
[in (21)] up to a scalar, and that the dominant left singular vector of F is the
subspace channel estimate up to a scalar.
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A. Review of SDR and Its Implementation Issues

For notational simplicity, the blind ML detection problem in
(19) is rewritten as

Ly, = maxs! Gs

s.t.s? =1, (22)

in which some subscripts in the original problem are dropped.
Here, Ly denotes the maximal objective function value
achieved by the blind ML detector. From a nonlinear program-
ming viewpoint, (22) is hard to solve because the constraints
52 = 1 are nonconvex. In norm relaxation, those unit magni-
tude constraints are relaxed to obtain a simpler optimization
problem. SDR considers a different form of relaxation in which
the unit magnitude constraints are maintained. The semidefinite
relaxation problem for (22) is given by

Lspr = max tr{SG} (23a)
S.t.Sii = 1./ 1= 1KP (23b)
S>0 (23c¢)

where S > 0 means that S is positive semidefinite, and S;;
denotes the (4, 4)th element of S. Problem (23) is a relaxation
of (22) because any S = ssT,s € {£1}%F is a feasible
point of (23). Problem (23) is a convex semidefinite program,
the globally optimal solution of which can be efficiently com-
puted by readily available optimization algorithms [39]-[41].
The approximation of the BQP solution from SDR can be done
in several ways. Since SDR is based on the idea of ignoring the
rank-1 constraint S = ss”, an obvious BQP solution approxi-
mation is to apply rank-1 approximations to the SDR solution
[28]—[3Q]. For example, if S denotes the SDR sglution in (23)
and P{S} denotes the principal eigenvector of S, an approxi-
mate BQP solution can be obtained by

Sspr = sign(P{S}) (24)

where sign : R™ — {£1}" is an element-wise threshold deci-
sion function. Another possible BQP solution approximation,
which was found to be very effective in coherent ML detec-
tion applications [25], is the Goemans-Williamson randomized
method [22]. A summary highlighting the implementation of the
randomized algorithm as well as the SDR method has been pre-
sented in [25].

The process central to SDR is that of finding the solution
to (23). This step usually dominates the complexity of the
whole SDR algorithm. A common approach for solving the
SDR problem is the application of interior-point algorithms
[39]-[41]. These algorithms provide good control over the
numerical precision of the SDR solution obtained. An inte-
rior-point algorithm, such as that in [40], can find a near-optimal
SDR solution with an operational cost of

O(KP)**loge™ 1) (25)



742

where ¢ is a given parameter governing the required numerical
precision of the solution; see [39], [40] for more information
about this tolerance parameter. Equation (25) shows that there
is a tradeoff between SDR solution precision and computational
cost. Our experience with simulation results is that high solution
precision may not be necessary. The reason is as follows: Since
the procedures of mapping the SDR solution to an approximate
BQP solution, such as that in (24), usually carry out some forms
of rounding, they may be insensitive to small errors in the SDR
solution.

B. Worst-Case Approximation Accuracy

The SDR method offers certain guarantees on the quality of
the approximation it provides. To illustrate this, we compare the
maximal objective function values before and after relaxation is
applied; i.e.,

|Lspr — L] (26)
where Ly, and Lgspr are defined in (22) and (23), respectively.
It is usually found that a relaxation algorithm yields a better
approximation if the gap in (26) is tighter (e.g., the multiuser
ML detection application [25]). It has been shown [22] that

™
|Lspr — Lwmi] < (5 - 1) Lyvr = 0.57Ly (27)

for any G > 0. (Note that in our application we always have
G = 0;cf., Property 1.) The bound in (27) represents the worst-
case approximation accuracy of SDR. In practice, one may find
that the SDR approximation accuracy on average is much better
than the worst-case. This expectation will be found to be true in
our blind OSTBC ML detection application, as the simulation
results in Section VII will show.

On the other hand, the SDR method can be shown to provide a
better approximation accuracy than the norm relaxation method
mentioned in the last section. This is described in the following
theorem.

Theorem 1: Let
T'Gs

max s
lIsllz=KP

Lnr = (28)

denote the maximal objective function value of the norm relax-
ation method. For any G
|Lspr — LmL| < [Lxr — L] (29)
where Ly, and Lgpg are, respectively, the maximal objective
function values of the ML and SDR methods in (22) and (23).
Theorem 1 can be obtained by applying the results in [42], in
which a broader and more sophisticated aspect in optimization is

addressed. In Appendix I, we provide an alternative proof using
a different idea.

C. Modified SDR for Complexity Reduction

When compared to some simple closed-form based blind de-
tectors (such as norm relaxation or its equivalent counterparts),
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TABLE 1
MODIFIED SDR ALGORITHM

Modified SDR Implementation
Given G € REFP*KP apnd a suboptimal decision
8subopt € {E1}EF.
if Diag(ésubapt O] (Gésubopt)) -G i 0
output Sgypopt as the blind SDR-ML solution,
else
run the original SDR algorithm to compute the
blind SDR-ML solution.

the SDR method is computationally more expensive due to the
computational overhead for the interior-point optimization al-
gorithm to find the SDR solution. Here we propose a method
that sometimes enables us to obtain the SDR solution without
running the interior-point algorithm. The idea is to make use of
any other computationally cheaper suboptimal blind detector.
The following theorem provides the framework of the proposed
method.

Theorem 2: If there is a vector 3 € {+1}%7 that satisfies
the condition

Diag(§® (GS§)) — G = 0 (30)

where ©® is the Hadamard product (element-wise product) and
Diag(a) is a diagonal matrix with sth diagonal given by a;, then

=gsT

S (3D

is an optimal SDR solution in (23). Such an s is also an optimal
blind ML solution (or optimal BQP solution).

The Proof of Theorem 2 is detailed in Appendix II. We should
stress that the ideas behind proving Theorem 2 are closely re-
lated to those in [26], in which a different aspect of coherent
ML performance analysis is considered. From an implementa-
tion viewpoint, Theorem 2 offers an opportunity for complexity
reduction: Suppose that a suboptimal blind symbol decision, de-
noted by Ssubopt € { +1}5P can be obtained with low com-
putational cost. Sometimes Sgubopt Will coincide with the blind
SDR-ML decision. Using the optimality condition in (30), we
can inspect whether Sgypopt is capable of forming the SDR solu-
tion. By doing so, the SDR interior-point optimization process is
only necessary when Squhopt fails to satisfy the optimality con-
dition in (30). This idea leads to the modified SDR algorithm, as
shown in Table 1.

Itis clear from the above procedure that the original and mod-
ified SDR algorithms produce the same decision. However, the
average complexity of the modified SDR algorithm can be sub-
stantially lower than that of the original SDR algorithm if the
chosen suboptimal detector manages to achieve the optimality
condition in (30) with reasonable probability. This complexity
advantage will be numerically confirmed in Section VII. As
an aside, we should mention that the modified SDR idea can
be applied to other applications, such as coherent ML MIMO
detection [43].
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V. SPHERE DECODING

In this section, we show how sphere decoding can be used to
exactly implement the blind ML OSTBC detector with BPSK
or QPSK constellations. There are several variants for the
sphere decoder implementation [33]-[37], and here we will
consider a computationally fast sphere decoder implementation
described in [36], [37]. The suggested sphere decoder, which
we call the Boolean Schnorr—Euchner (SE) sphere decoder, is
customized such that its operations are more efficient for the
Boolean quadratic maximization problem of blind ML OSTBC
detection. To keep the paper self-contained, we will describe
some important ideas that constitute the Boolean SE sphere
decoder in Section V-A. Then, blind ML OSTBC detection
using sphere decoding will be presented in Section V-B. The
pseudocode of the Boolean SE sphere decoder is given in
Table IV.

A. Sphere Decoding Algorithm

Consider the following integer least squares (ILS) problem

i 2
min L(s) (32)

where A C 7 is a set of integers, s = [s1, ..., 5,7, and
L(s) = ||b - Rs|l3 (33)

is the ILS objective function with b € R™ and R € R™*™.
Without loss of generality for the blind detection application
here, the matrix R is assumed to have an upper triangular matrix
structure with diagonals R;; > 0 for all ¢ [33]. To illustrate the
sphere decoding principle, define a subset

S(d) ={s e A™|L(s) < d}. (34)
Now suppose that we are given a squared radius, denoted by
do, such that the optimal ILS solution lies in S(dp). In prac-
tice, such a dy can be determined by some heuristic means [34],
[44]; e.g., if a suboptimal ILS solution, denoted by Ssypopt €
A™, can be obtained with low computational cost, we can set
do = L(8subopt ). Hence, solving the ILS problem is equivalent
to solving the following sphere constrained ILS problem

in L(s).
o £(s)

(35)
Sphere decoding algorithms are point search methods particu-
larly designed to solve (35). An advantage of sphere decoding is
that if a large number of points in A™ are excluded from S(dp),
then sphere decoding will be much more efficient than a com-
plete point search for (32). However, in a worst-case situation,
such as when dy is poorly initialized, sphere decoding can be as
expensive as the complete point search.

The first idea that leads to the suggested sphere decoder is the
Viterbo-Boutros (VB) radius contraction concept [34], given as
shown in Table II.

Essentially, the VB approach attempts to accelerate the point
search process by iteratively contracting the search radius.
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TABLE 1II
VB RADIUS CONTRACTION

VB Radius Contraction Concept

Given b, R, and an initial squared radius dp.

Step 1.  Set the search squared radius d := dj.

Step 2. Apply enumeration to find a point s € A™ that
satisfies £(s) < d; i.e., finding a lattice point strictly
inside the search sphere.

Step 3. If's exists, modify d := L(s), save § := s, and repeat

Step 2; otherwise terminate the algorithm and output
S.

TABLE III
SE ENUMERATION FOR {+1} ALPHABETS

Schnorr-Euchner Enumeration for =1 Alphabets

Given b, R, and a squared search radius d.

Step 1.  Set the level index ¢ := m.

Step 2. Set s; by minimizing

s,-g}iill}ﬁ"([ Si S’(’;+1):m 1)

Step 3. If Ei(Si;m) <d
If ¢ > 1 set ¢ := i — 1; otherwise output s and
terminate.

else

Any point that ends with s¢;;1).,, Will lie out-
side the search sphere. Modify s(;11)., such that
S(i+1):m 1S @ previously unvisited segment. To do
SO wWe may increase .

Step 4. Repeat Step 2.

The second key idea is the enumeration strategy (in
Step 2 of the VB sphere decoding concept). We employ
the Schnorr-Euchner (SE) enumeration [36], [37]. The SE
enumeration is particularly simple to apply in the case of
A = {£1}, which is the focus of this paper. To illustrate this,
we use the upper triangular structure of R to decompose the
ILS objective function into

L(s) = > Lj(sjim) (36)
j=1
where 8;., = [$/,...,5n,]7 is a segment of s, and
2
Ci(sjm) = |bj — Rjjsj— > Rjksk (37)

k=j+1

Define a partial ILS objective function

Li(Sizm) = Z@'(Sj:m) =Li(sizm) + Liy1(S@ig1):m)- (38)
Jj=t
The concept of the SE enumeration is illustrated as shown in
Table III.

What makes the SE enumeration different from the other
enumerations is Step 2: When exploring a new level denoted by
the index 7, the preference of deciding the value of s; is based
on the minimum partial ILS objective function value given
S(i+1):m (In conventional sphere decoder implementations such
as the VB sphere decoder [34], the preference is always given
to s; := —1). Hence, the SE enumeration itself can be regarded



744

TABLE IV
PSEUDO CODE OF THE BOOLEAN SE SPHERE DECODING ALGORITHM

Given b, R, and an initial squared radius dp.
Step 1.  (Initialization) Set i := m, d := do, Lm+1 = 0, and
&m =0.
Step 2. Set s; :=sign(b; — &;) and Snext,i := —Si.
Step 3. if [b; — & — Risi|> + Liv1 > d
(outside sphere) go to Step 4,
else
(inside sphere) go to Step 6.
Step 4. if i« < m (level down)
t:=1+ 1 and go to Step 5,
else
terminate the algorithm and output §.
Step 5. (enumeration) if Speazt,; = 1
Set S; = Snewt,i, Sneat,i := 0, and go to Step 3;
else (i.e., given si, all possible s; have been visited)
go to Step 4.
Step 6. if ¢ > 1 (level up)
Li = |b; — & — Riisi|® + Liy1,
Eic1:=Y 1 Ri—1,15k,
¢ :=1— 1, and then go to Step 2;
else
go to Step 7.
Step 7. (A valid point has been found; apply VB search radius

contraction) Update d := L1 = |b1 — &1 — Riis1|? + Lo
and save § :=s. Then, set ¢ := ¢+ 1 and go to Step 5.

a suboptimal minimizer of the ILS objective function. From
(37) and (38), it can be shown that the equation in Step 2 of SE
enumeration is simply

T
([si S )
= sign <bi — i Rik3k> . (39

k=i+1

arg min £L;
s;e{x1}

Note that (39) is reminiscent of a decision-feedback detection
process; see [37] for more discussions on the connection be-
tween sphere decoding and decision feedback.

Combining the ideas of VB radius contraction and the £1
SE enumeration, we arrive at the sphere decoding algorithm in
Table I'V. We call the suggested algorithm the Boolean SE sphere
decoder.

B. Application of Sphere Decoding to Blind ML Detection

To apply sphere decoding to blind ML detection, the fol-
lowing idea [45] can be used. The blind ML BQP problem in
(19) can be alternatively written as

sT(pI — G)s

min

(40)
se{+1}KP

for some real constant p, |p| < oo. Let us choose p to be greater
than the largest eigenvalue of G, such that pI — G is positive
definite. Then we can perform Cholesky factorization RTR, =
pI — G, where R € REPXEP ig the upper triangular Cholesky
factor of pI — G. Thus, (40) is equivalent to an ILS

IRs|3

min

se{+1}KP @

to which sphere decoding algorithms can be applied.
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VI. EXTENSION TO SEMIBLIND ML DETECTION

The blind ML detection techniques developed in the pre-
vious sections can be extended to semiblind detection. In the
semiblind detection scenario, we assume that the first L symbol
blocks in s;.p = [sT,...,s%]T are pilot symbol blocks while
the remaining symbol blocks contain data. Let

sz1”

T
Sq = S(L+1):P = [SL+17"'

(42)
(43)

S¢ = S1:L = [S’{?"w
spl”
denote the training symbol block and the data symbol block, re-
spectively. Following the development in the previous sections,
the semiblind (deterministic) ML detector is given by

&, — T.T St
$q = arg sde{ﬁf‘i(w—m[st s; ]Gy |:Sd:| (44)
where Gy is defined in (20). By partitioning
W, Z
Gy=|,7 y} (45)
Y [ Zy Ty

where Wy € RELXEL 7, ¢ RELXK(P—L) and Ty, €
RE(P-L)xK(P—L) Problem (44) can be reexpressed as

max = siTysg + 2s7 (Z;)T,st) +sTWys,.

46
sq€{F1}K(P-L (46)

To apply the SDR technique to semiblind ML detection,
Problem (46) has to be reformulated to a form reminiscent of
the homogenous BQP in (22). By introducing an extra variable
« € {£1}, (46) can be shown to be equivalent to the following

homogenous BQP [25], [28]
Sd

[si o]

It is easy to verify that if (s}, «*) denotes the optimal solution
of (47), then the semiblind ML solution is §; = a*s}. Hence,
we can use the SDR algorithm (either original or modified) to
approximate (47), followed by using the above relation to obtain
an approximate semiblind ML solution.

To use sphere decoding to implement semiblind ML detec-
tion, we note that (46) can be reformulated as

sq (P —Ty)sq — 257 (Z3s;) (48)

ry

Z;St
s{ Zy

max T
Sy Wy St

sge{+1}K(P=L)
ae{x1}

§q = arg min

sge{£1}P—L+1
where p > 0 is a constant chosen to be greater than the largest
eigenvalue of T'y. By defining Ry, € REK(P=L)xK(P=L) 1o be
the upper triangular Cholesky factor of pI—-T'y;i.e., pI—-T'y =
RgRy, (48) can be reformulated as

|Rysa — (RD) 1 (Z5s:) |2 49)

Sq = arg min
sq€{£1}K(P-L)
By applying a sphere decoding algorithm to the ILS in (49), the

semiblind ML solution S, is obtained.

VII. SIMULATION RESULTS

In the following subsections, we will use simulations to study
the bit error performance and complexity of the blind SDR-ML
detector and the blind ML sphere decoding detector. The per-
formance of the two proposed detectors will also be compared
with that of some other suboptimal blind detectors, such as the
cyclic ML method [13], [14] and the norm relaxed ML method
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in Section II. (We reiterate that the norm relaxed ML method is
essentially equivalent to the SVD method in [13], and the sub-
space method in [18]; see Section III). We are particularly inter-
ested in the case where the frame length P is small to moderate;
For sufficiently large P it has been shown by simulations [13],
[14], [18] that computationally simple blind detectors, such as
the cyclic ML method and the subspace method in [18] can yield
near ML performance. However, for the model in (6) to be valid,
the fading channel coefficients must remain static for P blocks.
When P is large, this requirement may be violated in scenarios
where the channel coherent time is small.

The algorithm settings for all simulation examples are
as follows. Following the work in [25], the SDR algo-
rithm consists of the interior-point algorithm in [40] and the
Goemans-Williamson randomization. The solution tolerance
parameter for the interior-point algorithm is set to e = 0.01,
and the number of Goemans-Williamson randomizations is
20. The same settings apply to the modified SDR algorithm.
We choose the computationally cheap norm-relaxed ML de-
tector to construct the modified SDR algorithm. The norm
relaxed ML detector is also used to initialize the search radius
of the sphere decoding algorithms.

A. Bit Error Performance: Blind Case

We consider the real-valued full-rate OSTBC with M; = 3
and T = K = 4 [7]. The BPSK constellation is used. The
number of receiver antennas is M, = 4. At each trial of the
simulations, the MIMO channel coefficients are randomly
generated following an i.i.d. circular Gaussian distribution (i.e.,
an i.i.d. Rayleigh channel). We assume that the symbol s
is known at the receiver, so that the sign ambiguity problem
can be resolved for all blind detectors tested here. The blind
detectors tested are the SDR-ML detector, the ML detector
by sphere decoding, the norm relaxed ML detector, the cyclic
ML detector [13] with the norm relaxed ML detector providing
the initialization, and the Swindlehurst-Leus subspace detector
[17]. As the SDR algorithm and the modified SDR algorithm
provide exactly the same symbol decision, we only plotted
the BER performance of the former. (The difference between
the two SDR algorithms lies in the complexity, which will be
shown in Section VII-C.) Fig. 1(a) plots the BER performance
of the blind detectors versus the SNR, when the block length
is fixed at P = 8. We see that the BERs of the SDR-ML and
sphere decoding ML detectors are very close. Moreover, the
BER performance of the SDR-ML and sphere decoding ML
detectors is significantly better than that of the other subop-
timal detectors. In Fig. 1(b) we plot the BERs of the various
detectors against the block length P, when the SNR is fixed at
2E{||H||r} /N, = 14dB. Again, the ML sphere decoding and
SDR-ML detectors yield BER performance considerably better
than that of the other suboptimal detectors.

The aforedescribed simulation was repeated with the number
of receiver antennas reduced to M, = 1. The Swindlehurst-
Leus subspace detector [17] is excluded in this test because it is
applicable only to MIMO channels satisfying a full column rank
condition. The results are plotted in Fig. 2. The figure shows
that the cyclic ML and norm relaxed ML detectors fail to work
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properly, while the ML sphere decoding and SDR-ML detectors
manage to exhibit consistent BER performance.

The above sets of simulations indicate that the approximate
blind ML detector provided by SDR yields negligible bit error
performance degradation compared to the exact blind ML de-
tector provided by sphere decoding.

B. Bit Error Performance: Semiblind Case

In this example, we apply the pilot-symbol-based semiblind
ML detection techniques described in Section VI to the 3 x 4
BPSK OSTBC used in the previous example. The number of
receiver antennas is M, = 6, the total number of code blocks
is P = 8, and the number of pilot symbol blocks is L = 1.
The setting L = 1 represents a situation where the number of
pilot symbols is small (4 only). We tested the performance of
the SDR-ML detector, the ML sphere decoding detector, and the
cyclic ML detector, and the conventional pilot-assisted detection
method [13], [14]. The results, given in Fig. 3, show again that
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Fig.2. BER performance versus the SNRs in a single receiver case. The block
length is P = 8.
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Fig. 3. BER performance in the semiblind case.

the SDR and sphere decoding ML detectors achieve better BER
performance than the other methods.

C. Complexity Comparison

Since SDR and sphere decoding offer very similar bit error
performance, it is interesting to compare the complexity per-
formance of the two approaches. We use the same simulation
settings as in Section VII-A to evaluate the computational costs
of the SDR algorithm, the modified SDR algorithm (developed
in Section IV-C), the standard VB sphere decoder [34], and
the Boolean SE sphere decoder (developed in Section V). For
comparison this numerical complexity study also includes the
norm relaxed ML and cyclic ML detectors, since the previous
examples indicated that those two detectors provide reasonable
BER performance for OSTBCs. We recall that the norm re-
laxed ML detector is used to initialize the sphere decoding al-
gorithms and provide the preliminary decision for the modified
SDR algorithm.
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Fig. 4. Average and worst-case complexity performance of the SDR and
sphere decoding algorithms.

Fig. 4(a) shows the average (expected) complexity perfor-
mance of the various algorithms. The complexity is measured by
counting the total number of floating point operations (FLOPs)
required by a detector process, and 100 000 independent simula-
tion trials were used to evaluate the average complexity. We see
that the Boolean SE sphere decoder generally provides better
average complexity performance than the standard VB sphere
decoder, and the SDR algorithms. The average complexity re-
sults in Fig. 4(a) also show that sphere decoding is more effi-
cient as the SNR increases. On the other hand, at high SNRs the
modified SDR algorithm provides improved average complexity
performance over the (original) SDR. Like sphere decoding, the
modified SDR algorithm has its average complexity decreasing
with SNR. In fact, for SNRs greater than 20 dB, the average
complexity of the modified SDR algorithm becomes compa-
rable to that of the competitive Boolean SE sphere decoder.
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In Fig. 4(b), we study the worst-case complexity perfor-
mance of the various algorithms. The worst-case complexity is
measured by picking the largest FLOPs in 100 000 independent
trials. The figures shows that at low SNRs, the two sphere
decoders exhibit poor worst-case complexity performance. We
also note by comparing Fig. 4(b) and (a) that the difference
between the worst-case and average performance of sphere
decoding can be very large especially at low SNRs. As for the
original SDR algorithm, the average complexity and worst-case
complexity are almost the same. This indicates that the com-
plexity of the original SDR algorithm is almost constant for
every problem instance, fixing the problem size. The worst-case
complexity of the modified SDR algorithm is slightly above
that of the original SDR algorithm. This is because in the worst
case, the complexity of the modified SDR algorithm includes
that of norm relaxed ML detection and the process of checking
the optimality of norm relaxed ML decision, as well as that of
the original SDR algorithm.

In order to further illustrate the complexity behaviors of SDR
and sphere decoding, we consider evaluating the following
computational outage probability

Pno. of FLOPs of a detector > Climit] (50)
given a complexity bound Clini¢. Fig. 5(a) and (b) shows the
computational outage probabilities of the original and modified
SDR algorithms. The block length is fixed at P = 8. The fig-
ures illustrate that when the SNR increases, there is a smaller
probability that the modified SDR complexity reaches the orig-
inal SDR complexity. The reason for this interesting behavior is
as follows: The modified SDR algorithm does not run the more
expensive SDR interior-point optimization process when it can
assure the optimality of the norm relaxation decision. When the
SNR increases, there is a higher probability that the norm re-
laxed ML detector provides the correct decision. As a result, the
execution of the original SDR process becomes less frequent as
the SNR increases. This also explains why the modified SDR al-
gorithm exhibits good average complexity performance at high
SNRs in Fig. 4(a).

Fig. 6(a) plots the computational outage probabilities of the
Boolean SE sphere decoder when the SNRs are at 5 dB and
11 dB. The block length is fixed at P = 8. We observe that the
computational outage probability becomes heavily tailed when
the SNR decreases. In particular, for SNR, = 5 dB there is a
small probability that the complexity of the sphere decoder is
higher than the worst-case complexity of the SDR algorithm.
Fig. 6(b) shows the computational outage probabilities for var-
ious block lengths. The SNR is fixed at 11 dB, which corre-
sponds to a BER of the order of 1073, The figure indicates
that the sphere decoding complexity distribution also becomes
heavily tailed when the problem size increases. The figure also
shows that for P = 20, it is possible that the Boolean SE sphere
decoder yields a complexity much greater than the worst-case
complexity of SDR.

From the complexity results, we have the following
conclusions.
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Fig. 5. Computational outage probabilities of the original and modified SDR
algorithms. The block length is fixed at P = 8.

1) Sphere decoding methods, particularly the Boolean SE
sphere decoder, generally provide good average com-
plexity performance, especially in the high SNR regime.
Unfortunately, the distribution of the sphere decoding
complexity is heavily tailed when the SNR is low or when
the problem size is large. In other words, the worst-case
sphere decoding complexity is poor in those situations.

2) SDR provides good worst-case complexity for all SNRs,
but its average complexity performance is generally
higher than that of the Boolean SE sphere decoder. The
modified SDR algorithm offers an extra advantage at high
SNRs, namely that the average complexity performance
of the modified SDR can be comparable to that of sphere
decoding.
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VIII. CONCLUSION AND DISCUSSION

In this paper, we have realized the blind ML detector for
the BPSK or QPSK OSTBC scheme, using two alternatives
called SDR and sphere decoding. SDR and sphere decoding
are conceptually different techniques, but both are capable
of effectively handling the blind ML problem with reason-
able computational efficiency. For each alternative, we have
developed implementation methods that can substantially
reduce the computational cost. It has been demonstrated via
simulation that the blind SDR-ML algorithm and the blind ML
sphere decoding algorithm provide almost identical bit error
performance. Simulation results have also indicated that the
two blind ML implementations exhibit significantly better bit
error performance than several existing blind detectors. Using
numerical complexity evaluations, we have illustrated that
the two algorithms are competitive in terms of computational
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efficiency, as well. Sphere decoding tends to provide a lower
average complexity, but its worst-case complexity can be high,
especially at low SNRs and for large problem sizes. SDR offers
better worst-case complexity, in that its complexity depends on
the problem size in a polynomial-time manner. Furthermore,
we have proposed a modified SDR algorithm that can gain
substantial average complexity reduction at high SNRs.

The OSTBC scheme has been well known to be attractive for
its low coherent ML detection complexity compared to other
MIMO and STBC schemes. It is interesting to mention that this
work further reveals that OSTBCs are attractive from a blind
ML detection standpoint, as well. Although blind ML detection
for OSTBC:s turns to be more complex requiring methods such
as SDR and sphere decoding (which are tools used to handle the
problem of coherent ML detection for general linear dispersion
STBC schemes), blind ML detection for generic STBC schemes
poses a problem that is considerably more complex to solve than
that for OSTBCs.

In this development, we have placed our emphasis on the de-
terministic blind ML framework. That is, the MIMO channel
is assumed to be a deterministic unknown. It is interesting to
mention another framework, namely the stochastic blind ML in
which the unknown channel is assumed to be random following
certain distribution. The two frameworks are generally different,
but they become closely related in the OSTBC scenario: Under
the assumption of i.i.d. Rayleigh distributed channels, the sto-
chastic blind ML OSTBC detector can be shown to be equivalent
to the deterministic blind ML OSTBC detector [19] (also [38]).

This paper may be extended to several directions. First, in
MIMO communications there has been much interest in soft
maximum-a posteriori (MAP) detection. The present paper may
be applied to the soft MAP scenario by using the max-log ap-
proximation idea in [32]. Second, analyzing the sphere decoding
complexity would be useful in fully understanding the potential
of sphere decoding in the blind ML OSTBC detection context.
In the case of coherent MIMO ML detection, this aspect has
been considered in [44] and [46]. The results in [44] and [46]
do not appear to be directly applicable to the blind ML OSTBC
detection problem here, and it would be interesting to see how
the existing complexity analysis results can be applied to blind
ML OSTBC detection.

APPENDIX 1
PROOF OF THEOREM 1

We first note a basic property that Lspr > Ly, and Ly >
Lyr, which is a direct consequence of relaxation. Applying
these inequalities to (29), (29) is shown to be equivalent to

Lspr < LxR- (51)
Hence, it suffices to prove that (51) is true. Let S denote the

solution of the SDR problem in (23). By Mercer’s theorem, S
can be represented by

KP
S=3 maq" (52)
=1
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where {1i,q;} € [0,00) x R¥" is the ith eigenvalue and (unit
norm) eigenvector pair of S. It follows that

KP
Lspr = tr{SG} = ZuiqiTqu'- (53)

i=1

For each of the quadratic form in (53)
q;fFqu < max qfGq. (54)

llall3=1

Moreover, the SDR solution S has S’ii = 1 for all 7, which
implies that

KP )
Z“i =tr{S} = KP.

(55)
i=1
Substituting (54) and (55) into (53), we obtain
Lspr < KP max q'Gq (56)

llall3=1
which shows that (51) is true.

APPENDIX II
PROOF OF THEOREM 2

The Lagriangian of the SDR problem in (23) is given by

L(S, A\, Z) = tr{SG} — A" (diag(S) — 1 p) + tr{SZ} (57)

’

the diagonal of S, 15 p is a K P-dimensional all one vector,
X € RXP represents the Lagriangian multipliers for the equality
constraints S;; = 1 for all 7, and Z > 0 is the Lagriangian
multiplier for the constraint S > 0. Using the KKT condition
[47], [48], it can be shown that if there exists (S, A, Z) such that

where diag(S) = [S11, S22, ..., Sxkpxp|T € RET contains

VsL = G + Z — Diag(A) = 0 (58a)
VL = —diag(S) + 1xp = 0 (58b)
ZS =0 (58¢)
S>0 (58d)

Z >0 (58¢)

then S is an optimal SDR solution. Now suppose that there is a
vector § € {£1}XP which satisfies

Diag(3 ® (G§)) — G = 0. (59)

Let

S =ss”. (60)
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Such an S satisfies (58b) and (58d). Substituting (60) and (58a)
into (58c), the following relation is shown

A = —[Diag(s)] 'Gs

= 50 (G3). 1)
Putting (61) into (58a), we obtain
Z = Diag(s © (G3)) — G. (62)

It follows from (59) that Z > 0, which is the KKT condition in
(58). As all the KKT conditions are satisfied, (60) is an optimal
SDR solution.

To verify that an optimal SDR solution S = s§87,5 €
{£1}%P is also an optimal ML solution, we consider the
following inequality
max s’ Gs
se{£1}KPF

> 37Gs = Lspr

Ly =

(63)

where Lyr, and Lgpg are, respectively, the maximal objective
function values of the ML and SDR problems in (22) and (23).
Since SDR is a relaxation of the ML problem

Ly, < Lspr = 87 GS. (64)

It is then clear from (63) and (64) that 87 Gs = Ly, and,
therefore, S is an optimal ML solution.
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