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Lecture 2: Least Representations and Least Squares

• Part I: linear representations

– time-series modeling, Vandemonde matrix

– basis representation

– discrete-time linear time-invariant systems, Toeplitz matrix, circulant matrix

– OFDM, localization

• Part II: least squares (LS)

– projection theorem, orthogonal projection, pseudo-inverse

– LS by optimization

• Part III: extensions

– matrix factorization, PCA, matrix completion

– gradient descent, online algorithms
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Main Result

• Problem: given y ∈ Rm, A ∈ Rm×n, solve

min
x∈Rn

‖y −Ax‖22 (LS)

– find an x whose residual r = y −Ax is the smallest in the Euclidean sense

• Solution: suppose that A has full column rank. The solution to (LS) is unique
and is given by

xLS = (ATA)−1ATy

– if A is semi-orthogonal, the solution is simplified to xLS = ATy

– unless specified, in this lecture we will assume A to have full column rank
without further mentioning
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Part I: Linear Representations

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 3



Linear Representation

There are numerous applications in which we deal with a representation

y = Ax,

or
y = Ax + v,

where y is given; A is given or stipulated; x is to be determined; v is noise or error.
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Time Series

• let yt, t = 0, 1, . . ., be a real-valued time series.

• examples: speech signal, music, stock market index, real-time seismic waveforms,
air quality index (AQI), sunspot counts, ...

Sunspot time series. Source: http://sunspotwatch.com
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Time Series

• one can analyze a time series using model-free techniques such as Fourier transform

– by model-free, we mean that we make little assumptions on the time series

• we can also apply a model

• model-based approaches exploit problem natures and can work very well—
assuming that you choose a right model for your data
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Harmonic Model for Time Series

• Harmonic model:

yt =

k∑

i=1

Air
t
i cos(2πfit+ φi) + vt, t = 0, 1, . . .

for some positive integer k and for some Ai > 0, ri > 0, fi ∈
[
−1

2,
1
2

)
,

φi ∈ [0, 2π), i = 1, . . . , k; vt is noise or modeling error.

– (Ai, ri, fi, φi)’s are model parameters and unknown

– k is called the model order; also unknown but we can plug a guess number

• we can use the Hilbert transform1 to convert yt to a complex time series

ỹt =

k∑

i=1

Air
t
ie

j(2πfit+φi) + ṽt =

k∑

i=1

αiz
t
i + ṽt,

where αi = Aie
jφi, zi = rie

j2πfi.

1call hilbert on MATLAB
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Harmonic Model for Time Series

• suppose zi’s are known, and the observation time window is T . Then,




ỹ0

ỹ1

ỹ2
...

ỹT−1




︸ ︷︷ ︸
=y

=




1 1 · · · 1
z1 z2 · · · zk
z2

1 z2
2 · · · z2

k
... ...

zT−1
1 zT−1

2 · · · zT−1
k




︸ ︷︷ ︸
=A




α1

α2
...
αk




︸ ︷︷ ︸
=x

+




ṽ0

ṽ1

ṽ2
...

ṽT−1




︸ ︷︷ ︸
=v

– we can estimate the amplitude-phase coefficients αi’s from {ỹt} via LS, given
information of the frequencies fi’s and the damping coefficients ri’s
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Vandemonde Matrix

A matrix A ∈ Cm×n is said to be Vandemonde if it takes the form

A =




1 1 · · · 1
z1 z2 · · · zn
z2

1 z2
2 · · · z2

n
... ...

zm−1
1 zm−1

2 · · · zm−1
n



,

where zi ∈ C, i = 1, . . . , n, are called the roots of the Vandemonde matrix.

• Fact: a Vandemonde A has full rank if its roots are distinct; i.e., zi 6= zj for all
i, j with i 6= j

– Vandemonde matrices possess a stronger linear independence property: if we
pick any k columns of A, with k ≤ m, they are always linearly independent.
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Autoregessive Model for Time Series

• Autoregressive (AR) model:

yt = a1yt−1 + a2yt−2 + . . .+ aqyt−q + vt, t = 0, 1, . . .

for some coefficient a ∈ Rq and for some positive integer (or model order) q.

– model yt as being related to its past values in a linear manner

– also called the all-pole model in signals and systems
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Autoregessive Model for Time Series

• Prediction: suppose a is known and we have the time series up to time t− 1.

– we may predict the present from the past via

ŷt = a1yt−1 + a2yt−2 + . . .+ aqyt−q

– we may also try to predict the future by recursively running

ŷt+d = a1ŷt+d−1 + a2ŷt+d−2 + . . .+ aqŷt+d−q, d = 1, 2, . . .

where we denote ŷt−i = yt−i for i = 1, . . . , q.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 11



Toy Demo.: Predicting Hang Seng Index
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Hang Seng Index

Linear Prediction

blue: Hang Seng Index during a certain time period.

red: training phase; ŷt =
∑q

i=1 aiyt−i; a is obtained by LS; q = 10.

green: prediction phase; ŷt+d =
∑q

i=1 aiŷt+d−i.
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Autoregessive Model for Time Series

• let T + 1 be the observation time window. We have




y1

y2
...
yq
...
...
yT


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︸ ︷︷ ︸
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=


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... ...
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yT−1 . . . . . . yT−q




︸ ︷︷ ︸
=A



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...
aq




︸ ︷︷ ︸
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+




v1

v2
...
vq
...
...
vT




︸ ︷︷ ︸
=v

– we can estimate the AR coefficients ai’s from {yt}Tt=0 via LS
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Moving Average Model for Time Series

• Moving Average (MA) model:

yt = b1vt + b2vt−1 + . . .+ bpvt−p+1, t = 0, 1, . . .

for some coefficient b ∈ Rp; p is the model order; vt is unknown but assumed to
be “white.”

• not as simple as the AR case; roughly speaking we can do this trick:

Y (z) = B(z)V (z) =⇒ 1

B(z)︸ ︷︷ ︸
=A(z)

Y (z) = V (z) =⇒ convert back in time as AR
with many ai’s

here X(z) denotes the z-transform of xt.

• one can also do ARMA

• further reading: [Stoica-Moses’97]
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Polynomial Model for Time Series

• Polynomial model:

yt = a0 + a1t+ a2t
2 + . . .+ apt

p + vt, t = 0, 1, . . . ,

where a ∈ Rp+1.

– p = 1: a line, p = 2: quadratic, ...

• Interpolation: use a0 + a1t+ a2t
2 + . . .+ apt

p to predict yt for any t ∈ R

• we have



y0
...
yt
...

yT−1




︸ ︷︷ ︸
=y

=




1 0 · · · 0
... ...
1 t · · · tp
... ...
1 T − 1 · · · (T − 1)p




︸ ︷︷ ︸
=A




a0

a1
...
ap




︸ ︷︷ ︸
=x

+




v0
...
vt
...

vT−1




︸ ︷︷ ︸
=v

– AT is Vandemonde with distinct roots; thus A has full rank
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Curve Fitting

Aim: given a set of input-output data pairs (xi, yi) ∈ R × R, i = 1, . . . ,m, find a
function f(x) that fits the data well
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Curve Fitting

Like time series, we can apply a polynomial model f(x) =
∑p
i=0 aix

i and use LS
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"True" Curve
Samples
Fitted Curve

“True” curve: the true f(x); p = 5. Fitted curve: estimated f(x); a obtained by LS; p = 5.
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Basis Representation

• Aim: represent a given vector y using a basis {φ1, . . . ,φn} ⊆ Rn:

y =

n∑

i=1

xiφi = Φx,

where x is the coefficient

– we will call Φ ∈ Rn×n a basis matrix or a dictionary

• in particular, we wish x would be sparse, or approximately sparse in the sense
that ‖x‖22 is dominated by a few xi’s

• having a sparse x is good as it enables compact representation and compression

• Φ is specifically designed; many designs lead to orthogonal Φ
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Basis Representation

• example: orthonormal Fourier basis

φi =
1√
n




1
ej2π(i−1)/n

...
ej2π(n−1)(i−1)/n


 , i = 1, . . . , n.

– ΦH is a discrete Fourier transform (DFT) matrix; it can be verified that if we
let Ψ = ΦH then ψi = 1√

n
[ 1 e−j2π(i−1)/n . . . e−j2π(n−1)(i−1)/n ]T

– Φ is an inverse DFT (IDFT) matrix

– we don’t store Φ physically; we use fast Fourier transform (FFT) and inverse
FFT (IFFT) to implement x = ΦHy and y = Φx, resp.

– FFT or IFFT complexity: O(n log(n))

• other basis examples: discrete cosine transform (DCT), Haar, wavelets, ...
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Basis Example: DFT Basis

n = 8; circles: values of the basis elements; lines: interpolated values for better visualization; blue:

real part of the basis elements; red: imaginary part of the basis elements.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 20



Basis Example: Haar Wavelet

n = 8; circles: values of the basis elements; lines: interpolated values for better visualization.
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Basis Representation Example for Images

≈ 4.32 −0.77 0.46

−0.82 −1.03

××

+

+ + ×

× + ×

Image representation using a 2D-DCT basis. Left: an image is first cropped into patches, each with

a size of 8× 8. Right: each patch is represented by a linear combination of basis elements.
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Basis Representation Example for Images

(a) 2D DCT dictionary. (b) 2D Haar wavelet dictionary.

Illustration of the 2D DCT and Haar wavelet dictionaries. Source: [Aharon-Elad-Bruckstein’06].

Note that the dictionaries shown are overcomplete.
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Discrete-Time Linear Time-Invariant Systems

• consider linear time-invariant system models in discrete-time signal processing:

yt =

p∑

i=0

hixt−i + vt, t = 0, 1, . . .

where xt is the input signal; yt is the output signal; vt is noise; {ht} is the system
impulse response.

– some mild assumptions: {ht} is finite in length; xt = 0 for t = −1,−2, . . .

• applications: communications, acoustics, image processing...
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Discrete-Time Linear Time-Invariant Systems

h0

h1

h2

(a) multipath propagation in wireless com-
munications.

(b) room acoustics. Picture source:
http://acousticsolutions.gr
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Discrete-Time Linear Time-Invariant Systems

• System identification: given an input signal block {xt}T−1
t=0 and an output signal

block {yt}T−1
t=0 , find the system impulse response {ht}pt=0.

– applications: channel estimation in communications, identification of acoustic
impulse responses,...

• we have




y0

y1
...
yp
...
...

yT−1




︸ ︷︷ ︸
=y

=




x0

x1 x0
... . . .
xp . . . x1 x0
... ...
... ...

xT−1 . . . xT−p xT−1−p




︸ ︷︷ ︸
=A




h0

h1
...
hp




︸ ︷︷ ︸
=x

+




v0

v1
...
vp
...
...

vT−1




︸ ︷︷ ︸
=v
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Discrete-Time Linear Time-Invariant Systems

• Deconvolution: given an output signal block {yt}T−1
t=0 and the system impulse

response {ht}pt=0, estimate the input signal block {xt}T−1
t=0

– applications: equalization in communications, de-reverberation in room acous-
tics, image deblurring,...

• we have



y0

y1
...
yp
...
...

yT−1




︸ ︷︷ ︸
=y

=




h0

h1 h0
... . . .
hp . . . h1 h0

. . . . . .
. . . . . .

hp . . . h1 h0




︸ ︷︷ ︸
=A∈RT×T




x0

x1
...
xp
...
...

xT−1




︸ ︷︷ ︸
=x

+




v0

v1
...
vp
...
...

vT−1




︸ ︷︷ ︸
=v

– A is band diagonal and Toeplitz
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Toeplitz Matrix

A matrix A ∈ Rn×n is said to be Toeplitz if it takes the form

A =




h0 h−1 . . . . . . h−n+1

h1 h0 h−1
...

... h1 h0
. . . ...

... . . . . . . h−1

hn−1 . . . . . . h1 h0



,

or aij = hi−j for all i, j.

• for a general A ∈ Rn×n, solving Ax = y requires O(n3)

• for a Teoplitz A, Ax = y may be solved in O(n2)

– done by exploiting structures; see [Golub-Van Loan’12] for details
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Circulant Matrix

A matrix A ∈ Rn×n is said to be circulant if it takes the form

A =




h0 hn−1 . . . . . . h1

h1 h0 hn−1 . . . h2

h2 h1 h0 . . . h3
... ...
... ...

hn−1 . . . . . . h1 h0



.

• for a circulant A, Ax = y may be solved in O(n log(n))
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Circulant Matrix

• let {φ1, . . . ,φn} be the DFT basis, and observe that

Aφi =
1√
n




h0 hn−1 . . . . . . h1

h1 h0 hn−1 . . . h2

h2 h1 h0 . . . h3
... ...
... ...

hn−1 . . . . . . h1 h0







1
ej2π(i−1)/n

ej4π(i−1)/n

...

...
ej2π(n−1)(i−1)/n




=
1√
n

n−1∑

k=0

hke
−j2πk(i−1)/n

︸ ︷︷ ︸
=di




1
ej2π(i−1)/n

ej4π(i−1)/n

...

...
ej2π(n−1)(i−1)/n




= diφi.

– note ej2πk(i−1)/n = e−j2π(n−k)(i−1)/n for any k ∈ {0, 1, . . . , n− 1}
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Circulant Matrix

• let D = Diag(d1, . . . , dn). We have

Aφi = diφi, i = 1, . . . , n ⇐⇒ A[ φ1, . . . ,φn ] = [ φ1, . . . ,φn ]D

⇐⇒ AΦ = ΦD

⇐⇒ A = ΦDΦH

• Fact (as a summary): a circulant matrix A ∈ Rn×n can be decomposed as

A = ΦDΦH,

where Φ is the IDFT matrix; D = Diag(d1, . . . , dn); di =
∑n−1
k=0 hke

−j2πk(i−1)/n.

– as will be studied, the above decomposition is an eigendecomposition
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Circulant Matrix

• Question: how does a circulant A help us solve y = Ax?

– suppose di 6= 0 for all i

– we have A−1 = ΦD−1ΦH and

x = A−1y = Φ (D−1

FFT︷ ︸︸ ︷
(ΦHy))︸ ︷︷ ︸

n multiplies︸ ︷︷ ︸
IFFT

– complexity: one FFT + n multiplies + one IFFT = O(n log(n))

∗ the above complexity assumes that d1, . . . , dn have been pre-computed;
computing d1, . . . , dn requires FFT and the complexity is O(n log(n))
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Circulant Approximation of Linear Time-Invariant Systems

• back to deconvolution, we may approximate the system matrix as being circulant




y0

y1
...
yp
...
...

yT−1




︸ ︷︷ ︸
=y

≈



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h1 h0
. . . ...
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. . . . . .
. . . . . .
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


︸ ︷︷ ︸
=A∈RT×T




x0

x1
...
xp
...
...

xT−1




︸ ︷︷ ︸
=x

+




v0

v1
...
vp
...
...

vT−1




︸ ︷︷ ︸
=v

– appears to be a reasonable approximation if p� T

∗ a common trick in image processing problems such as deblurring (2D)

– in communications we can even make circulant systems happen
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OFDM in Communications
• let {x̄t}T−1

t=0 be the input signal block we want to send

• physically transmit the input signal block {xt}T+p−1
t=0 this way:

xt = x̄t+T−p, t = 0, 1, . . . , p− 1; xt+p = x̄t, t = 0, 1, . . . , T − 1
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OFDM in Communications

• ignore {yt}p−1
t=0 and consider {yt}T+p−1

t=p only. It can be verified that



yp
yp+1

...

...

...

...
yT+p−1




︸ ︷︷ ︸
=y

=




h0 hp . . . h1

h1 h0
. . . ...

... . . . hp
hp . . . h1 h0

. . . . . .
. . . . . .

hp . . . h1 h0




︸ ︷︷ ︸
=A




x̄0

x̄1
...
...
...
...

x̄T−1




︸ ︷︷ ︸
x̄

+




vp
vp+1

...

...

...

...
vT+p−1




︸ ︷︷ ︸
=v

• transceiver scheme 1:

– transmitter side: put info. in x̄; e.g., x̄ ∈ {−1, 1}T for binary signaling

– receiver side: estimate x̄ by solving y = Ax̄ for circulant A; 1 FFT+ 1 IFFT

– such a transceiver scheme is called single-carrier modulation (SCM)
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OFDM in Communications

• recall
y = Ax̄ + v = ΦDΦHx̄ + v

• transceiver scheme 2:

– transmitter side: x̄ = Φx̃ where x̃ is the info. signal block (say, x̃ ∈ {−1, 1}T
for binary signaling); 1 IFFT

– receiver side: y = ΦDx̃ + v, so estimate x̃ via D−1ΦHy; 1 FFT

– such a transceiver scheme is called orthogonal frequency division multiplexing
(OFDM)

• further reading: OFDM details such as cyclic prefix insertion and removal, noise
amplification effects, comparison of OFDM and SCM, MMSE receiver; they have
been widely described in the literature, so find literature by yourself
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Localization

• Aim: locate the Cartesian coordinate of a sensor or device using distance info.

– applications: localization in a wireless sensor network, GPS

• let x ∈ R2 be the coordinate of the sensor

• the sensor communicates with anchors, which are sen-
sors or devices that know their locations

• let ai ∈ R2, i = 1, . . . ,m, be the anchors’ locations

• the sensor measures the distances

di = ‖x− ai‖2, i = 1, . . . ,m,

which can be done by time-of-arrival measurements,
received signal strength measurements, ping-pong,...
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Localization

• observe that

d2
i = ‖x− ai‖22 = ‖x‖22 − 2aTi x + ‖ai‖22, i = 1, . . . ,m,

and re-organize the equations as a matrix equation


‖a1‖22 − d2

1
...

‖am‖22 − d2
m


 =




2aT1 −1
... ...

2aTm −1



[

x
‖x‖22

]
.

Note that the above matrix equation is nonlinear.

• Idea: solve the linear matrix equation


‖a1‖22 − d2

1
...

‖am‖22 − d2
m




︸ ︷︷ ︸
=y

=




2aT1 −1
... ...

2aTm −1




︸ ︷︷ ︸
=A

[
x
z

]

where (x, z) is a free variable on R3; or, no constraint z = ‖x‖22
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Localization

• in practice, the sensor obtains noisy measurements d̂i = di + vi, i = 1, . . . ,m,
where vt is noise

• we do the engineers’ way:

– replace di’s by d̂i’s, and compute the LS solution u = (ATA)−1ATy;

– use x̂ = [ u1, u2 ]T as the location estimate

• further reading: [Sayed-Tarighat-Khajehnouri’05]
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Localization Demo.
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Number of anchors: m = 4. Noise standard deviation: 0.1581km. Number of trials: 200.
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Part II: Least Squares
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LS Solution

Theorem 2.1. A vector xLS is an optimal solution to the LS problem

min
x∈Rn

‖y −Ax‖22

if and only if it satisfies
ATAxLS = ATy. (∗)

• the optimality condition in (∗) is true for any A, not just full-column rank A

• suppose that A has full-column rank

– ATA is nonsingular (verify as a mini-exercise)

– the solution to (∗) is uniquely given by xLS = (ATA)−1ATy

• (∗) is called the normal equations

• the same result holds for the complex case, viz., AHAxLS = AHy
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LS and the Projection Theorem

• Theorem 2.1 can be shown using the projection theorem

• let xLS be an LS solution, and observe that

ΠR(A)(y) = arg min
z∈R(A)

‖z− y‖22 = AxLS

• by the projection theorem (Theorem 1.2 in Lecture 1), we have

ΠR(A)(y) = AxLS ⇐⇒ zT (AxLS − y) = 0 for all z ∈ R(A)

⇐⇒ xTAT (AxLS − y) = 0 for all x ∈ Rn

⇐⇒ AT (AxLS − y) = 0
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Orthogonal Projections

• the projections of y onto R(A) and R(A)⊥ are, resp.,

ΠR(A)(y) = AxLS = A(ATA)−1ATy

ΠR(A)⊥(y) = y −ΠR(A)(y) = (I−A(ATA)−1AT )y

• the orthogonal projector of A is defined as

PA = A(ATA)−1AT

the orthogonal complement projector of A is defined as

P⊥A = I−A(ATA)−1AT .

• obviously, we want to write ΠR(A)(y) = PAy , ΠR(A)⊥(y) = P⊥Ay

• note: a more general definition for orthogonal projectors will be studied later
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Orthogonal Projections

• properties of PA (same properties apply to P⊥A):

– PA is idempotent; i.e., PAPA = PA

– PA = PT
A

• additional properties that will be revealed in later lectures:

– the eigenvalues of PA are either zero or one

– PA can be written as PA = U1U
T
1 for some semi-orthogonal U1

∗ we can also prove it here:
· there always exists a semi-orthogonal U1 such that R(A) = R(U1)
· ΠR(A)(y) = ΠR(U1)(y) = U1U

T
1 y

· as ΠR(A)(y) = ΠR(U1)(y) holds for any y, or (PA−U1U
T
1 )y = 0 for any

y, we must have PA = U1U
T
1
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Pseudo-Inverse

• the pseudo-inverse of a full-column-rank A is defined as

A† = (ATA)−1AT .

• A† satisfies A†A = I, but not necessarily AA† = I

• A†y is the LS solution

• note: a more general definition for the pseudo-inverse will be studied later
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LS by Convex Optimization

• we can also prove the LS optimality condition by optimization

• the gradient of a continuously differentiable function f : Rn → R is defined as

∇f(x) =



∂f
∂x1...
∂f
∂xn




• Fact: consider an unconstrained optimization problem

min
x∈Rn

f(x)

where f : Rn → R is continuously differentiable

– suppose f is convex (we skip the def. here). A point x? is an optimal solution
if and only if ∇f(x?) = 0

– for non-convex f , any point x̂ satisfying ∇f(x̂) = 0 is a stationary point
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LS by Convex Optimization

• Fact: consider a quadratic function

f(x) = 1
2xTRx + qTx + c,

where R ∈ Rn×n is symmetric; i.e., rij = rji for all i, j.

– ∇f(x) = Rx + q

– f is convex if R is positive semidefinite (PSD); for now it suffices to know that
if R takes the form R = ATA for some A, it is PSD

• the LS objective function is

f(x) = ‖y −Ax‖22 = xTATAx− 2(ATy)Tx + ‖y‖22.

Using the above optimization facts, xLS is an LS optimal solution if and only if
ATAxLS −ATy = 0.
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LS by Convex Optimization

• using optimization results is handy in some (actually, many) cases

• example: consider a regularized LS problem

min
x∈Rn

‖y −Ax‖22 + λ‖x‖22, for some constant λ > 0.

– solution by optimization: ∇f(x) = 2ATAx−2ATy +2λx. Thus the optimal
solution is

xRLS = (ATA + λI)−1ATy

– solution by the projection thm., in contrast: have to rewrite the problem as

min
x∈Rn

∥∥∥∥
[
y
0

]
−
[

A√
λI

]
x

∥∥∥∥
2

2

,

and use the projection theorem to get the same result.
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Part III-A: Matrix Factorization
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Matrix Factorization

There are also many applications in which we deal with a representation of multiple
given yi’s via

yi = Abi + vi, i = 1, . . . , n,

where A ∈ Rm×k, bi ∈ Rk, i = 1, . . . , n; vi’s are noise. In particular, both bi’s and
A are to be determined.

• for example, in basis representation, we want to learn the dictionary from data
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Matrix Factorization

Problem: given Y ∈ Rm×n and a positive integer k < min{m,n}, solve

min
A∈Rm×k,B∈Rk×n

‖Y −AB‖2F

…

• also called low-rank matrix approximation: let Z = AB. It has rank(Z) ≤ k.
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Principal Component Analysis
Aim: given a collection of data points y1, . . . ,yn ∈ Rm, perform a low-dimensional
representation

yi = Abi + c + vi, i = 1, . . . , n,

where A ∈ Rm×k is a basis matrix; bi ∈ Rk is the coefficient for yi; c ∈ Rm is the
base or mean in statistics terms; vi is noise or modeling error.

• Principal component analysis (PCA):

– choose c = 1
n

∑n
i=1 yi

– let ȳi = yi − c, and solve

min
A,B

‖Ȳ −AB‖2F

– we may also want a semi-orthogonal A
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Principal Component Analysis

• applications: dimensionality reduction, visualization of high-dimensional data,
compression, extraction of meaningful features from data,...

• an example:

– senate voting: http://livebooklabs.com/keeppies/c5a5868ce26b8125
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Topic Modeling

Aim: discover thematic information, or topics, from a (often large) collection of
documents, such as books, articles, news, blogs,...

• bag-of-words representation: represent each document as a vector of word counts

… In fact, we will soon see that 

the implementation of SDR can 

be very easy, which allows signal 

processing practitioners to quickly 

test the viability of SDR in their 

applications. Several highly 

successful applications will  be 

showcased as examples ……

!"#$%&'()*

+!,-$.-/$0#1"0(20(1()*!*3$)

implementation

SDR

signal processing

applications

example

efficiency

communications

applications

implementation
SDR

SDR

applications

example

+!,"$."/$0#1

signal processing

count term

y =




0
2
2
0
1
1
...
1



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Topic Modeling

• let n be the number of documents

• let yi ∈ Rm be the bag-of-words representation of the ith document, i = 1, . . . , n

• let Y = [ y1, . . .yn ] ∈ Rm×n, called the term-document matrix

• hypotheses: [Turney-Pantel’10]

– if documents have similar columns vectors in Y, or similar usage of words, they
tend to have similar meanings

– the topic of a document will probabilistically influence the author’s choice of
words when writing the document
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Topic Modeling

78  communications of the acm   |  april 2012 |  vol.  55 |  no.  4

review articles

time. (See, for example, Figure 3 for 
topics found by analyzing the Yale Law 
Journal.) Topic modeling algorithms 
do not require any prior annotations or 
labeling of the documents—the topics 
emerge from the analysis of the origi-
nal texts. Topic modeling enables us 
to organize and summarize electronic 
archives at a scale that would be impos-
sible by human annotation.

Latent Dirichlet Allocation
We first describe the basic ideas behind 
latent Dirichlet allocation (LDA), which 
is the simplest topic model.8 The intu-
ition behind LDA is that documents 
exhibit multiple topics. For example, 
consider the article in Figure 1. This 
article, entitled “Seeking Life’s Bare 
(Genetic) Necessities,” is about using 
data analysis to determine the number 
of genes an organism needs to survive 
(in an evolutionary sense).

By hand, we have highlighted differ-
ent words that are used in the article. 
Words about data analysis, such as 
“computer” and “prediction,” are high-
lighted in blue; words about evolutionary 
biology, such as “life” and “organism,” 
are highlighted in pink; words about 
genetics, such as “sequenced” and 

“genes,” are highlighted in yellow. If we 
took the time to highlight every word in 
the article, you would see that this arti-
cle blends genetics, data analysis, and 
evolutionary biology in different pro-
portions. (We exclude words, such as 
“and” “but” or “if,” which contain little 
topical content.) Furthermore, know-
ing that this article blends those topics 
would help you situate it in a collection 
of scientific articles.

LDA is a statistical model of docu-
ment collections that tries to capture 
this intuition. It is most easily described 
by its generative process, the imaginary 
random process by which the model 
assumes the documents arose. (The 
interpretation of LDA as a probabilistic 
model is fleshed out later.)

We formally define a topic to be a 
distribution over a fixed vocabulary. For 
example, the genetics topic has words 
about genetics with high probability 
and the evolutionary biology topic has 
words about evolutionary biology with 
high probability. We assume that these 
topics are specified before any data 
has been generated.a Now for each 

a	 Technically, the model assumes that the top-
ics are generated first, before the documents.

document in the collection, we gener-
ate the words in a two-stage process.

˲˲ Randomly choose a distribution 
over topics.

˲˲ For each word in the document
a.	 �Randomly choose a topic from 

the distribution over topics in 
step #1.

b.	 �Randomly choose a word from the 
corresponding distribution over 
the vocabulary.

This statistical model reflects the 
intuition that documents exhibit mul-
tiple topics. Each document exhib-
its the topics in different proportion 
(step  #1); each word in each docu-
ment is drawn from one of the topics 
(step #2b), where the selected topic is 
chosen from the per-document distri-
bution over topics (step #2a).b

In the example article, the distri-
bution over topics would place prob-
ability on genetics, data analysis, and 

b	 We should explain the mysterious name, “latent 
Dirichlet allocation.” The distribution that is 
used to draw the per-document topic distribu-
tions in step #1 (the cartoon histogram in Figure 
1) is called a Dirichlet distribution. In the genera-
tive process for LDA, the result of the Dirichlet 
is used to allocate the words of the document to 
different topics. Why latent? Keep reading.

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,  
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the 
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. 
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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Topic Modeling

• Problem: apply matrix factorization to a term-document matrix Y

…

– A is called a term-topic matrix, B is called a topic-document matrix

• Interpretation:

– each column ai of A should represent a theme topic, e.g., local affairs, foreign
affairs, politics, sports... in a collection of newspapers

– as yi ≈ Abi, each document is postulated as a linear combination of topics

– matrix factorization aims at discovering topics from the documents
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Topic Modeling

review articles
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evolutionary biology, and each word 
is drawn from one of those three top-
ics. Notice that the next article in 
the collection might be about data 
analysis and neuroscience; its distri-
bution over topics would place prob-
ability on those two topics. This is 
the distinguishing characteristic of 
latent Dirichlet allocation—all the 
documents in the collection share 
the same set of topics, but each docu-
ment exhibits those topics in differ-
ent proportion.

As we described in the introduc-
tion, the goal of topic modeling is 
to automatically discover the topics 
from a collection of documents. The 
documents themselves are observed, 
while the topic structure—the topics, 
per-document topic distributions, 
and the per-document per-word topic 
assignments—is hidden structure. The 
central computational problem for 
topic modeling is to use the observed 
documents to infer the hidden topic 
structure. This can be thought of as 
“reversing” the generative process—
what is the hidden structure that likely 
generated the observed collection?

Figure 2 illustrates example infer-
ence using the same example docu-
ment from Figure 1. Here, we took 
17,000 articles from Science magazine 
and used a topic modeling algorithm to 
infer the hidden topic structure. (The 

algorithm assumed that there were 100 
topics.) We then computed the inferred 
topic distribution for the example 
article (Figure 2, left), the distribution 
over topics that best describes its par-
ticular collection of words. Notice that 
this topic distribution, though it can 
use any of the topics, has only “acti-
vated” a handful of them. Further, we 
can examine the most probable terms 
from each of the most probable topics 
(Figure 2, right). On examination, we 
see that these terms are recognizable 
as terms about genetics, survival, and 
data analysis, the topics that are com-
bined in the example article.

We emphasize that the algorithms 
have no information about these sub-
jects and the articles are not labeled 
with topics or keywords. The inter-
pretable topic distributions arise by 
computing the hidden structure that 
likely generated the observed col-
lection of documents.c For example, 
Figure 3 illustrates topics discovered 
from Yale Law Journal. (Here the num-
ber of topics was set to be 20.) Topics 

c	 Indeed calling these models “topic models” 
is retrospective—the topics that emerge from 
the inference algorithm are interpretable for 
almost any collection that is analyzed. The fact 
that these look like topics has to do with the 
statistical structure of observed language and 
how it interacts with the specific probabilistic 
assumptions of LDA.

about subjects like genetics and data 
analysis are replaced by topics about 
discrimination and contract law.

The utility of topic models stems 
from the property that the inferred hid-
den structure resembles the thematic 
structure of the collection. This inter-
pretable hidden structure annotates 
each document in the collection—a 
task that is painstaking to perform 
by hand—and these annotations can 
be used to aid tasks like information 
retrieval, classification, and corpus 
exploration.d In this way, topic model-
ing provides an algorithmic solution to 
managing, organizing, and annotating 
large archives of texts.

LDA and probabilistic models. LDA 
and other topic models are part of the 
larger field of probabilistic modeling. 
In generative probabilistic modeling, 
we treat our data as arising from a 
generative process that includes hid-
den variables. This generative process 
defines a joint probability distribution 
over both the observed and hidden 
random variables. We perform data 
analysis by using that joint distribu-
tion to compute the conditional distri-
bution of the hidden variables given the 

d	 See, for example, the browser of Wikipedia 
built with a topic model at http://www.sccs.
swarthmore.edu/users/08/ajb/tmve/wiki100k/
browse/topic-list.html.

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred  
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found  
in this article.
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articles from the journal Science. The topics are discovered using a technique called latent Dirichlet

allocation, which is not the same as, but has strong connections to, matrix factorization.
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Topic Modeling

• topic modeling via matrix factorization has been used in, or is tightly connected
to

– information retrieval, natural language processing, machine learning

– document clustering, classification and retrieval

– latent semantic analysis, latent semantic indexing: finding similarities of doc-
uments, finding similarities of terms (are “cars,” “Lamborghini,” and “Ferrari”
related?)

• though not considered in this course, it seems better to also model A, B as
element-wise non-negative—this will lead to non-negative matrix factorization

• further reading: [Turney-Pantel’10]

– as an aside, it mentions a related application where computers can achieve a
score of 92.5% on multiple-choice synonym questions from TOEFL, whereas
the average human score is 64.5%
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Matrix Factorization

The matrix factorization problem

min
A∈Rm×k,B∈Rk×n

‖Y −AB‖2F

• has non-unique factors

– suppose (A?,B?) is an optimal solution to the problem, and let Q ∈ Rk×k be
any nonsingular matrix. Then (A?Q−1,QB?) is also an optimal solution.

– the non-uniqueness of (A,B) makes the above matrix factorization formulation
a bad formulation for problems such as topic modeling

• is non-convex, but can be solved by singular value decomposition (beautifully)

• can also be handled by LS
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Matrix Factorization

• Alternating LS (ALS): given a starting point (A(0),B(0)), do

A(i+1) = arg min
A∈Rm×k

‖Y −AB(i)‖2F

B(i+1) = arg min
B∈Rk×n

‖Y −A(i+1)B‖2F

for i = 0, 1, 2, . . ., and stop when a stopping rule is satisfied.

• let’s make a mild assumption that A(i),B(i) have full rank at every i. Then,

A(i+1) = Y(B(i))T (B(i)(B(i))T )−1, B(i+1) = ((A(i+1))TA(i+1))−1(A(i+1))TY

• ALS is guaranteed to converge an optimal solution to minA,B ‖Y−AB‖2F under
some mild assumptions [Udell-Horn-Zadeh-Boyd’16]

– note: this result is specific and does not directly carry forward to other related
problems such as low-rank matrix completion
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Low-Rank Matrix Completion

• let Y ∈ Rm×n be a matrix with missing entries, i.e., the values yij’s are known
only for (i, j) ∈ Ω where Ω is an index set that indicates the available entries

• Aim: recover the missing entries of Y

• application: recommender system, data science

• example: movie recommendation (further reading: [Koren-Bell-Volinsky’09])

– Y records how user i likes movie j

– Y has lots of missing entries; a user
doesn’t watch all movies

movies

Y =




2 3 1 ? ? 5 5
1 ? 4 2 ? ? ?
? 3 1 ? 2 2 2
? ? ? 3 ? 1 5


 users

– Y may be assumed to have low rank;
research shows that only a few factors affect users’ preferences.
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Low-Rank Matrix Completion

• Problem: given {yij}(i,j)∈Ω, Ω and a positive integer k, solve

min
A∈Rm×k,B∈Rk×n

∑

(i,j)∈Ω

|yij − [AB]ij|2

• ALS can be applied; more tedious to write out the LS solutions than the previous
matrix factorization problem but not any harder in principle

• supposingly a very difficult problem, but

• methods like ALS were found to work by means of empirical studies

• recent theoretical research suggests that matrix completion may not be that hard
under some assumptions, e.g., ALS can give good results [Sun-Luo’16]
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Low-Rank Matrix Completion
• an ALS alternative to matrix completion (easier to program):

– consider an equivalent reformulation of the matrix completion problem

min
A∈Rm×k,B∈Rk×n,R∈Rm×n

‖Y −AB−R‖2F s.t. rij = 0, (i, j) ∈ Ω

– do alternating optimization

A(i+1) = arg min
A∈Rm×k

‖Y −AB(i) −R(i)‖2F

B(i+1) = arg min
B∈Rk×n

‖Y −A(i+1)B−R(i)‖2F

R(i+1) = arg min
R∈Rm×n

‖Y −A(i+1)B(i+1) −R‖2F

the first two are LS as before; the third has a closed form

r
(i+1)
ij =

{
0, (i, j) ∈ Ω
[Y −A(i+1)B(i+1)]i,j, (i, j) /∈ Ω
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Toy Demonstration of Low-Rank Matrix Completion

Left: An incomplete image with 40% missing pixels. Right: the matrix completion result of the

algorithm shown on last page. k = 120.
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Part III-B: Other Extensions
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Beyond LS

• let āi ∈ Rn denote the ith row of A. The LS problem can be represented as

min
x∈Rn

m∑

i=1

`(āTi x− yi)

where `(z) = |z|2 denotes the loss function for measuring the badness of fit

• Question: why don’t we use other loss functions?

– we can indeed use other loss functions, such as

∗ 1-norm loss: `(z) = |z|

∗ Huber loss: `(z) =

{
1
2|z|2, |z| ≤ 1
|z| − 1

2, |z| > 1

∗ power-p loss: `(z) = |z|p, with p < 1

– the above loss functions are more robust against outliers, but

– they require optimization and don’t result in a clean closed-form solution as LS
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Illustration of Loss Functions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

square loss

1-norm loss

Huber loss

power-1/4 loss
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Curve Fitting Example

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-6

-5

-4

-3

-2

-1

0

1

2

3

4

y

True Curve

Samples

1-norm loss

LS

“True” curve: the true f(x), p = 5. The points at x = −0.3 and x = 0.4 are outliers, and they

do not follow the true curve. The 1-norm loss problem is solved by a convex optimization tool.
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Gradient Descent

• in LS we need to solve
(ATA)xLS = ATy,

and that requires O(n3)

– we also need to compute ATA and ATy; their complexities are O(mn2) and
O(mn), resp.

• O(n3) is expensive for very large n

• Question: can we have cheaper LS solutions, perhaps with some compromise of
the solution accuracies?
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Gradient Descent

• consider a general unconstrained optimization problem

min
x∈Rn

f(x)

where f is continuously differentiable

• Gradient Descent: given a starting point x(0), do

x(k) = x(k−1) − µ∇f(x(k−1)), k = 1, 2, . . .

where µ > 0 is a step size

• take an optimization course to get more details! It is known that

– for convex f and under some appropriate choice of µ, gradient descent converges
to an optimal solution

– for non-convex f and under some appropriate choice of µ, gradient descent
converges to a stationary point
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Gradient Descent

• gradient descent for LS:

x(k) = x(k−1) − 2µ(ATAx(k−1) −ATy), k = 0, 1, . . .

• complexity for dense A

– computing ATA and ATy: O(mn2) and O(mn), resp. (same as before)

∗ ATA and ATy are cached for subsequent use in gradient descent

– complexity of each iteration: O(n2)

• complexity for sparse A

– computing ATy: O(nnz(A))

– complexity of each iteration: O(n+ nnz(A))

∗ ATA is not necessarily sparse, so we do Ax(k−1) and then AT (Ax(k−1))
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Gradient Descent

• gradient descent is easy to understand, but there are better algorithms...

• further reading: the conjugate gradient method; see, e.g.,
https://stanford.edu/class/ee364b/lectures/conj_grad_slides.pdf

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 74

https://stanford.edu/class/ee364b/lectures/conj_grad_slides.pdf


Online LS

• recall the LS formulation

min
x∈Rn

m∑

t=1

|āTt x− yt|2

• the LS we learnt is a batch process; i.e., solve one x given the whole (A,y)

• there are many applications where new (āt, yt) appears as time goes, and we want
the process to be adaptive or in real time; i.e., x is updated with t
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Incremental Gradient Descent

• consider an optimization problem

min
x∈Rn

m∑

t=1

ft(x)

where every ft is continuously differentiable

• Incremental Gradient Descent:

xt = xt−1 − µ∇ft(xt−1), t = 1, 2, . . .

– also called stochastic gradient descent, least mean squares (LMS) (in 70’s), ...

• incremental gradient descent for LS:

xt = xt−1 + 2µ(yt − āTt xt−1)āt
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Recursive LS

• Recursive LS (RLS) formulation:

xt = arg min
x∈Rn

t∑

i=1

λt−i|āTi x− yi|2

where 0 < λ ≤ 1 is a prescribed constant and is called the forgetting factor

– weigh the importance of |āTi x−yi|2 w.r.t. time t; the present is most important;
distant pasts are insignificant; how much we remember the pasts depends on λ

• at first look, the RLS solution is xt = R−1
t qt, where

Rt =

t∑

i=1

λt−iāiā
T
i , qt =

t∑

i=1

λt−iyiāi

• a recursive formula for xt can be derived by using the Woodbury matrix identity
and by using the problem structures carefully
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Woodbury Matrix Identity

For A,B,C,D of appropriate dimensions, we have

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1,

assuming that the inverses above exist.

• for the RLS problem, it is sufficient to know the special case

(A + bbT )−1 = A−1 − 1

1 + bTA−1b
A−1bbTA−1
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Recursive LS

• it can be verified that Rt = λRt−1 + ātā
T
t , qt = λqt−1 + ytāt

• by the Woodbury matrix identity,

R−1
t = (λRt−1 + ātā

T
t )−1 = 1

λR−1
t−1 −

1

1 + 1
λāTt R−1

t−1āt
(1
λR−1

t−1āt)(
1
λR−1

t−1āt)
T

• let Pt = R−1
t and gt =

1

1 + 1
λāTt R−1

t−1āt
(1
λR−1

t−1āt). We have

gt =
1

1 + 1
λāTt Pt−1āt

(1
λPt−1āt)

Pt = 1
λPt−1 − gt(

1
λPt−1āt)

T

xt = Ptqt = Pt−1qt−1 − λgt(
1
λPt−1āt)

Tqt−1 + 1
λytPt−1āt − ytgt(1

λPt−1āt)
T āt

= xt−1 − (āTt xt−1)gt + ytgt
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Recursive LS

• summary of the RLS recursion:

gt =
1

1 + 1
λāTt Pt−1āt

(1
λPt−1āt)

Pt = 1
λPt−1 − gt(

1
λPt−1āt)

T

xt = xt−1 + (yt − āTt xt−1)gt

• remarks:

– comparison with incremental gradient descent: it replaces gt with 2µāt

– the above RLS recursion may be numerically unstable as empirical results
suggested; modified RLS schemes were developed to mend this issue
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