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Lecture 2: Least Representations and Least Squares

e Part I: linear representations
— time-series modeling, Vandemonde matrix

— basis representation

— discrete-time linear time-invariant systems, Toeplitz matrix, circulant matrix

— OFDM, localization

e Part IlI: least squares (LS)
— projection theorem, orthogonal projection, pseudo-inverse

— LS by optimization

e Part Ill: extensions
— matrix factorization, PCA, matrix completion

— gradient descent, online algorithms
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Main Result
e Problem: given y € R™, A € R™*", solve

- B 2
min [ly — Ax|j; (LS)

— find an x whose residual r =y — Ax is the smallest in the Euclidean sense

e Solution: suppose that A has full column rank. The solution to (LS) is unique

and is given by
x5 = (ATA) ATy

— if A is semi-orthogonal, the solution is simplified to x5 = Aly

— unless specified, in this lecture we will assume A to have full column rank
without further mentioning
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Part |: Linear Representations
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Linear Representation

There are numerous applications in which we deal with a representation

y = Ax,

or
y = AxX + v,

where y is given; A is given or stipulated; x is to be determined; v is noise or error.
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Time Series

o let y;,, t=0,1,..., be areal-valued time series.

e examples: speech signal, music, stock market index, real-time seismic waveforms,
air quality index (AQI), sunspot counts, ...

International sunspot number R,: monthly mean and 13-month smoothed number
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Sunspot time series. Source: http://sunspotwatch.com
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Time Series

e one can analyze a time series using model-free techniques such as Fourier transform

— by model-free, we mean that we make little assumptions on the time series

e we can also apply a model

e model-based approaches exploit problem natures and can work very well—
assuming that you choose a right model for your data
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Harmonic Model for Time Series

e Harmonic model:

k
Yt = ZAZ-TE cos(2wfit + ¢;) + vy, t=0,1,...
1=1

for some positive integer k and for some A; > 0, r, > 0, f; € [—5,5

¢; €10,2m),i=1,...,k; v; is noise or modeling error.
— (A;, 74, fi, @;)'s are model parameters and unknown

— k is called the model order; also unknown but we can plug a guess number

e we can use the Hilbert transform' to convert y; to a complex time series

k k
1=1 1=1

where a; = A;e7%, z; = r;ed?™ /i

lcall hilbert on MATLAB
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Harmonic Model for Time Series

e suppose z;' s are known, and the observation time window is 1". Then,

mn 1 1 - 17 - - o

~ a1 ~

Y1 <1 z2 v Rk U1

~ _ 2 2 2 a2 ~

Y2 | = | #1 Z2 Zk A e I
~ —1 —1 —1 075 ~
_yT_1_ _Zl 29 Zk: | N~~~ _UT—l_

=y e =V

— we can estimate the amplitude-phase coefficients «;'s from {7} via LS, given
information of the frequencies f;'s and the damping coefficients r;'s
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Vandemonde Matrix

A matrix A € C™*" js said to be Vandemonde if it takes the form

1 1 1
<1 <2 Zn
_ 2 2 2
A= 2 25 z2 |,
—1 —1 m—1
| %1 Z9 “n
where z; € C, 1 =1,...,n, are called the roots of the Vandemonde matrix.

e Fact: a Vandemonde A has full rank if its roots are distinct; i.e., z; # z; for all
1,7 with 7 # 3
— Vandemonde matrices possess a stronger linear independence property: if we
pick any k columns of A, with k& < m, they are always linearly independent.
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Autoregessive Model for Time Series

e Autoregressive (AR) model:
Yt = Q1Yi—1 + a2Yi—2 + ... Fagyi—q + vy, t=0,1,...

for some coefficient a € R? and for some positive integer (or model order) q.

Yt

N\

Ut Z

_|_

A(z) = Zgzl a;z”"

— model y; as being related to its past values in a linear manner

— also called the all-pole model in signals and systems
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Autoregessive Model for Time Series

e Prediction: suppose a is known and we have the time series up to time ¢ — 1.

— we may predict the present from the past via
Ut = a1Yi—1 + Q2Yi—2 + ... + agYi—q
— we may also try to predict the future by recursively running
Ut+d = 01Yt4d—1 + @2Ytyd—2 + ... + QqUt4a—q, d=1,2,...

where we denote ;_; = y;_; fori =1,....q.
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Toy Demo.: Predicting Hang Seng Index

5 3x 10
—Hang Seng Index
- o5]-| = = ~Linear Prediction |
2.2 |

Hang Seng Index
[\

4

2 -
1.95 N
1 9 | | | | |
0 10 20 30 40 50 60
day

blue: Hang Seng Index during a certain time period.
red: training phase; §: = >_7_, a;y:—;; a is obtained by LS; ¢ = 10.

green: prediction phase; §ird = D i1 Qilt+d—i-
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Autoregessive Model for Time Series

e let 7'+ 1 be the observation time window. We have

Y1
Y2

Yq
yr

LA,
=Yy

\ -

Yo
U1 Yo

Yyg—1 -+ WY1

Yr—1

Yo

yT—q

—A

vr

=V

— we can estimate the AR coefficients a;'s from {y;}._, via LS
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Moving Average Maodel for Time Series
e Moving Average (MA) model:
Y = b1Ut+bQUt_1—|—...—|-bp’Ut_p_|_1, t:O,l,

for some coefficient b € RP; p is the model order; v; is unknown but assumed to
be “white.”

e not as simple as the AR case; roughly speaking we can do this trick:

1 convert back in time as AR
Y(z) = B(2)V(z) = B(z) Y(z)=V(z) with many a;'s
=A(z)

here X (z) denotes the z-transform of x;.

e one can also do ARMA

o further reading: [Stoica-Moses’97]
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Polynomial Model for Time Series
e Polynomial model:

ye = ap + art + agt® + ... +apt’ + vy, t=0,1,...,

where a € RP 1,
— p=1: a line, p = 2: quadratic, ...

e Interpolation: use ag + a1t + ast? + ... + aptP to predict y; for anyt € R

e we have
sl e [
yt — 1 t ... tp al + UVt
Y1 1 T—-1 - (T-1p| L2 |or
A ~ v 4 ) ‘-rA- 4 :X \_ _/
=y = =V

— AT is Vandemonde with distinct roots: thus A has full rank
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Curve Fitting

Aim: given a set of input-output data pairs (x;,7;) € R xR, i =1,
function f(x) that fits the data well
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Curve Fitting

Like time series, we can apply a polynomial model f(z) = >""_ a;z* and use LS

4 I I
—"True" Curve
3r O Samples i
\ o - - - Fitted Curve

“True” curve: the true f(x); p = 5. Fitted curve: estimated f(x); a obtained by LS; p = 5.
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Basis Representation

e Aim: represent a given vector y using a basis {¢¢,...,¢,} CR™

n
y =) i = Px,
i=1
where x is the coefficient

— we will call ® € R®"*™ a basis matrix or a dictionary

e in particular, we wish x would be sparse, or approximately sparse in the sense
that ||x||3 is dominated by a few z;'s

e having a sparse X is good as it enables compact representation and compression

e & is specifically designed; many designs lead to orthogonal ®
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Basis Representation

e example: orthonormal Fourier basis

1
1 €j27r(i—1)/n

v

€j27r(n—1)(7j—1)/n

bi =

— ®" is a discrete Fourier transform (DFT) matrix; it can be verified that if we

let ¥ = & then ¢, = ﬁ[ 1 e732n(=1)/n = g=32r(n—1)(i=1)/n T

— & is an inverse DFT (IDFT) matrix

— we don't store @ physically; we use fast Fourier transform (FFT) and inverse
FFT (IFFT) to implement x = ®"y and y = ®x, resp.

— FFT or IFFT complexity: O(nlog(n))

e other basis examples: discrete cosine transform (DCT), Haar, wavelets, ...
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Basis Example: DFT Basis

n = &; circles: values of the basis elements; lines: interpolated values for better visualization; blue:
real part of the basis elements; red: imaginary part of the basis elements.
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Basis Example: Haar Wavelet
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n = 8; circles: values of the basis elements; lines: interpolated values for better visualization.
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Basis Representation Example for Images

Image representation using a 2D-DCT basis. Left: an image is first cropped into patches, each with
a size of 8 X 8. Right: each patch is represented by a linear combination of basis elements.
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Basis Representation Example for Images
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(a) 2D DCT dlctlonary. (b) 2D Haar wavelet dictionary.

lllustration of the 2D DCT and Haar wavelet dictionaries. Source: [Aharon-Elad-Bruckstein’06].
Note that the dictionaries shown are overcomplete.
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Discrete-Time Linear Time-Invariant Systems

e consider linear time-invariant system models in discrete-time signal processing:
p
ytZE hixt—i+vt7 t=0,1,...
i=0

where x; is the input signal; y; is the output signal; v; is noise; {h;} is the system
impulse response.

— some mild assumptions: {h;} is finite in length; x; =0 fort = —1, -2, ...

e applications: communications, acoustics, image processing...
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Discrete-Time Linear Time-Invariant Systems

ho
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(B)
(a) multipath propagation in wireless com- (b) room acoustics.
munications. http://acousticsolutions.gr
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Discrete-Time Linear Time-Invariant Systems

e System identification: given an input signal block {z;},—;' and an output signal
block {y;}7_, find the system impulse response {h;}>_,.

— applications: channel estimation in communications, identification of acoustic
impulse responses,...

e we have
Yo Lo Vo
Y1 L1 Lo 5] (O]
. . .. 0 :
h1
Yp = Tp T T : + | vp
hp
Ll
=X
YT —-1_ Lr7—1 -+ TT-p TT—-1-p]| | UT—1
—— N T - ——
=y — =V
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Discrete-Time Linear Time-Invariant Systems

e Deconvolution: given an output signal block {y;}/;' and the system impulse
response {h;};_,, estimate the input signal block {xt}f:_ol

— applications: equalization in communications, de-reverberation in room acous-
tics, image deblurring, ...

e we have

L d,

Yo
Y1

Yp

Yyr—1

=Yy

ho L0
hi1  ho L1
hp hl ho Lp

L hp hl hO_J\_mT—l
— AcRTXT —x

— A is band diagonal and Toeplitz
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Toeplitz Matrix

A matrix A € R™*"™ is said to be Toeplitz if it takes the form

ho h_1 ... I
hl ho h_l :
A = : hl h() : ,
: h_l
Pt oo o hi ho

or a;; = hi_j for all Z,]

e for a general A € R"*", solving Ax =y requires O(n?)

e for a Teoplitz A, Ax =y may be solved in O(n?)

— done by exploiting structures; see [Golub-Van Loan’12] for details
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Circulant Matrix

A matrix A € R™"*" is said to be circulant if it takes the form

ho hp-1 ... ... h

hl ho hn—l c e ]’LQ

A — h.g hl ho ce . h.3
Pp1 oo ... hi hg

e for a circulant A, Ax =y may be solved in O(nlog(n))
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Circulant Matrix
o let {¢¢,..., ¢, } be the DFT basis, and observe that

Chg hp1 ... ... h | 1
hi  ho  hnoi ... ho ed2m(i=1)/n
Aqb _ i ho hq ho ... hs €j47r(73—1)/n
) \/ﬁ . :
hn.—l ce ce hq h.o ejZW(n—i)(i—l)/n
_ { _
pd2m(i—1)/n
n—1 ) A7 (71— n
— L hje32mk(i=1)/n et/ = d; ;.
Vi & J _
— pd2m(n—1)(i—1)/n
— note ed2mk(i=1)/n — g=32m(n=k)(i=1)/n for any k € {0,1,...,n — 1}
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Circulant Matrix
e let D = Diag(dy,...,d,). We have

Ap,=di¢p,, i=1,....n <= Al¢y,....0,]|=|d1,...,0, |D
<— AP =D

e~ A =D

e Fact (as a summary): a circulant matrix A € R™*"™ can be decomposed as
A = ®DdY.
where @ is the IDFT matrix; D = Diag(dy,...,dy); d; = Z;é hpe d2mk(i=1)/n

— as will be studied, the above decomposition is an eigendecomposition
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Circulant Matrix

e Question: how does a circulant A help us solve y = Ax?

— suppose d; # 0 for all 4
— we have A~ = D 1d# and

FFT
—~—

x=A"ly = <I>£D_1 (<I>Hy)2
n mxtiplies

\ 7

IFFT

— complexity: one FFT + n multiplies + one IFFT = O(nlog(n))

x the above complexity assumes that di,...,d, have been pre-computed;
computing dy, . ..,d, requires FFT and the complexity is O(nlog(n))
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Circulant Approximation of Linear Time-Invariant Systems

e back to deconvolution, we may approximate the system matrix as being circulant

Yo ho hp ce hl iy Vo
Y1 hi  ho e : L1 U1
hyp
Yp ~ hp hl ho Lp -+ Up
YT—1 hyp ... hi ho| |71 VT—1
N —4 A ~~ =/ ~~ -/ N —
=y :AERTXT =X =V

— appears to be a reasonable approximation if p < T
* a common trick in image processing problems such as deblurring (2D)

— In communications we can even make circulant systems happen
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OFDM in Communications

o let {:th}g’:_ol be the input signal block we want to send

THP=1 this way:

e physically transmit the input signal block {x;};_,

xt:jjt-l-T—pa t:Oalaap_L :Ct-l-p:a_:t?
TT—p
S
Tr_1
Ty o
x = .
X = :
iy TTp
TT-1 TT—1

t=0,1,...

34
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e ignore {y;}*_) and consider {y,}

\

Yp
yp—i— 1

| YT+p—-1]

~"~

=Yy

OFDM in Communications

Up
Up+1

| UT+p—1

tT;;p_l only. It can be verified that
g hyp hil [ Zo |
hl hO : 571
s h,
hyp hi  ho
L hy hq ho_J\_ZfT—1_J
—A <

e transceiver scheme 1:

— transmitter side: put info. in X; e.g., X € {—1,1}! for binary signaling

=V

— receiver side: estimate X by solving y = Ax for circulant A; 1 FFT+ 1 IFFT

— such a transceiver scheme is called single-carrier modulation (SCM)
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OFDM in Communications

o recall
y=AXx+v=®Dd'x+v

e transceiver scheme 2:

— transmitter side: X = ®X where x is the info. signal block (say, x € {—1,1}%
for binary signaling); 1 IFFT

— receiver side: y = ®Dx + v, so estimate x via D 1®y: 1 FFT

— such a transceiver scheme is called orthogonal frequency division multiplexing
(OFDM)

e further reading: OFDM details such as cyclic prefix insertion and removal, noise
amplification effects, comparison of OFDM and SCM, MMSE receiver; they have
been widely described in the literature, so find literature by yourself

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 36



Localization

e Aim: locate the Cartesian coordinate of a sensor or device using distance info.

— applications: localization in a wireless sensor network, GPS

e let x € R? be the coordinate of the sensor

(@)
i Anchors
«@

Sensor

e the sensor communicates with anchors, which are sen-
sors or devices that know their locations %) jﬂ’;

o leta;, €R? i=1,...,m, be the anchors’ locations
] (G2 U ((5)
e the sensor measures the distances i é
di — Hx—az-Hg, = 1,...,m,

(( ))
)
which can be done by time-of-arrival measurements, i i
received signal strength measurements, ping-pong,...
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Localization

e observe that

di = |lx —ail3 = [Ix]|7 — 28 x + [lay]2,

and re-organize the equations as a matrix equation

I ||31H% - d% |

_HamH% — d%n_

9T
2a;

T
2a;,

—1]

—1

Note that the above matrix equation is nonlinear.

e |ldea:

where (x, 2) is a free variable on R?; or, no constraint z = ||x||3

solve the linear matrix equation

]z —df ]

"

=Y

\_HamH% o d%n_/

L

2al 1]
2al, —1]
~A

i=1,...

@
x|[3]
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Localization

e in practice, the sensor obtains noisy measurements d; = d; +v;, 1 = 1,...

where vy is noise

e we do the engineers’ way:
— replace d;'s by d;’s, and compute the LS solution u = (ATA) A y;

— use X = [ u1,u |1 as the location estimate

e further reading: [Sayed-Tarighat-Khajehnouri’05]

, T,
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Localization Demo.

2 T E T T T T T
[0 anchor locations
150 X true sensor location 1
« LS estimate (many trials)
1 L -
-
= o5t .
<
- .“oo
9 s
E (I . -
O ¥
(@] ° o
-0.5 - e ]
S O
>
1k -
15+ -
-2 1 1 1 1 1 | | 1
-2 -1.5 -1 -0.5 0 0.5 ITI 1.5 2

X coordinate, in km

Number of anchors: ™ = 4. Noise standard deviation: 0.1581km. Number of trials: 200.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term.

40



Part Il: Least Squares
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LS Solution

Theorem 2.1. A vector x5 is an optimal solution to the LS problem

min [ly — Ax|j3

if and only if it satisfies
ATAx s =Aly.

e the optimality condition in (x) is true for any A, not just full-column rank A

e suppose that A has full-column rank
— AT A is nonsingular (verify as a mini-exercise)

— the solution to (*) is uniquely given by x5 = (ATA) 1Aty
e (x) is called the normal equations

e the same result holds for the complex case, viz., AHAx s = Afy

(%)
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LS and the Projection Theorem

e Theorem 2.1 can be shown using the projection theorem

e let x5 be an LS solution, and observe that

II — i — 2 _ A
R(A)(Y) argzér%l&) |z —y||5 X|S

e by the projection theorem (Theorem 1.2 in Lecture 1), we have

HR(A) (y) = Ax1s <= ZT(AXLS — y) =0 for all z € R(A)
— x'AT(Axs—y) =0 forall x € R"

— Al(Axss—y)=0
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Orthogonal Projections
e the projections of y onto R(A) and R(A)* are, resp.,
Iz (y) = Axis = AATA)'Aly

HR(A)l(Y) =Y - HR(A)(Y) = (I - A(ATA)_lAT)Y

e the orthogonal projector of A is defined as
Pa=AATA) AT
the orthogonal complement projector of A is defined as

Pr=I-AATA) AT,

e obviously, we want to write Tlg(a)(y) = Pay , Hza)(y) = Pxy

e note: a more general definition for orthogonal projectors will be studied later
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Orthogonal Projections

e properties of P (same properties apply to Py):

— P is idempotent; l.e., PAPA = Pa
— P, =PT

e additional properties that will be revealed in later lectures:

— the eigenvalues of P4 are either zero or one
— P can be written as P = U1U1T for some semi-orthogonal U,

*x we can also prove it here:
- there always exists a semi-orthogonal U; such that R(A) = R(U;)
gy (y) = rwy)(y) = Ui Ujy
- as Iz (ay(y) = Hg(u,)(y) holds for any y, or (PA —U;U{ )y = 0 for any
y, we must have P, = U, U7
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Pseudo-Inverse

e the pseudo-inverse of a full-column-rank A is defined as

AT = (ATA)TAT,

o AT satisfies ATA = I, but not necessarily AAT =1
e Aly is the LS solution

e note: a more general definition for the pseudo-inverse will be studied later
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LS by Convex Optimization

e we can also prove the LS optimality condition by optimization

e the gradient of a continuously differentiable function f : R™ — R is defined as

- o5
oxq
VIx) = aif

e Fact: consider an unconstrained optimization problem

min f(x)

where f : R™ — R is continuously differentiable

— suppose f is convex (we skip the def. here). A point x* is an optimal solution

if and only if Vf(x*) =0

— for non-convex f, any point X satisfying V f(X) = 0 is a stationary point
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LS by Convex Optimization

e Fact: consider a quadratic function
f(x)=3x"Rx+q'x+c

where R € R"*" is symmetric; i.e., 7;; = r;; for all 4, j.
- Vf(x) =Rx+q

— fis convex if R is positive semidefinite (PSD); for now it suffices to know that
if R takes the form R = AT A for some A, it is PSD

e the LS objective function is
f(x) = lly — Ax|l3 = x" AT Ax — 2(A"y) x + [|y|l5.

Using the above optimization facts, x5 is an LS optimal solution if and only if
ATAx s — Aly =0.
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LS by Convex Optimization

e using optimization results is handy in some (actually, many) cases

e example: consider a regularized LS problem

mIiRn ly — Ax||5 + A||x]|5, for some constant A > 0.
xcR™

— solution by optimization: Vf(x) =2ATAx—2ATy+2\x. Thus the optimal

solution is
xris = (ATA + M) tATy

— solution by the projection thm., in contrast: have to rewrite the problem as

[6] - LA

and use the projection theorem to get the same result.

2

min
xXERM

y
2
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Part 111-A: Matrix Factorization
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Matrix Factorization

There are also many applications in which we deal with a representation of multiple
given y;'s via

y@:Ab@—f—V@, izl,...,n,

where A € R™*k b, € R*, § = 1,...,n; v;'s are noise. In particular, both b;’'s and
A are to be determined.

e for example, in basis representation, we want to learn the dictionary from data
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Matrix Factorization

Problem: given Y € R™*™ and a positive integer k < min{m,n}, solve

min Y — AB||%
AERka,BEkan

2%
9%

2
T

T

A £ L

e
R
1 1 A

it

[
¢

(s
e

RRE
ST

2%
2

5%
S

Y

e also called low-rank matrix approximation: let Z = AB. It has rank(Z) < k.
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Principal Component Analysis

Aim: given a collection of data points y1,...,y, € R™, perform a low-dimensional
representation

yi:AbZ'—I—C—FVZ', 7::1,...,77,,
where A € R™*% is a basis matrix; b; € RF is the coefficient for yi; ¢ € R™ is the
base or mean in statistics terms; v; is noise or modeling error.

e Principal component analysis (PCA): A
1 n — T~
— choosec =~ " | y; P ~
— . o N
—_ /- — . ~N o_ o ..’. N
let y; = y; — ¢, and solve d R AN
N 0:0. ... 2 N
. = 2 N RN a N
min ||Y — AB||% C ! gt
A B AN —
) \ _ —
N—
— we may also want a semi-orthogonal A >
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Principal Component Analysis

e applications: dimensionality reduction, visualization of high-dimensional data,
compression, extraction of meaningful features from data,...

e an example:

— senate voting: http://livebooklabs.com/keeppies/c5ab868ce26b8125
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Aim:

Topic Modeling

documents, such as books, articles, news, blogs,...

discover thematic information, or topics, from a (often large) collection of

e bag-of-words representation: represent each document as a vector of word counts

... In fact, we will soon see that
the implementation of SDR can
be very easy, which allows
practitioners to quickly
test the viability of SDR in their
applications. Several highly
successful applications will  be
showcased as examples ......

a document

applicatiofgs
SDR x4l
applications§

| b
SDRJ ; S
lementgti

a

bag of words

0

— = O NN

1

count

term

efficiency
applications
SDR
communications

example

implementation

bag-of-words representation
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Topic Modeling

e let n be the number of documents

e let y; € R™ be the bag-of-words representation of the ¢th document, 2 =1,...,n

e letY=|y1,...yn | € R™*" called the term-document matrix

e hypotheses: [Turney-Pantel’10]

— if documents have similar columns vectors in Y, or similar usage of words, they
tend to have similar meanings

— the topic of a document will probabilistically influence the author’'s choice of
words when writing the document
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Topics
gene 0.04
dna 0.02
genetic 0.01
life 0.02
evolve 0.01
organism 0.01

-

brain 0.04
neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01

-

Source: [Blei’12].

Topic Modeling

Topic proportions and

Documents assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
How many genes does an organism|negd to - comparison to the 75,000 genes in the hu
survive! Last week at the genome meeting .
here,® two genome researchers with radically

different approaches presented complemen-
tary views of the basic genes needed for life:

One research team, using computer analy

ses to compare known genomes, concluded MOre genOmes are g IO §
that today’s @rganisms can be sustained with  sequenced. “It may be a way of organizing
just 250 genes, and that the carliest life forms any newly sequenced genome,” explains <+
required a mere 128 genes. The P — Arcady Mushegian, a computational mo /
other researcher mapped genes / ™ lecular biologist at the Natioggl Center
. . N\ r . 17~
in a simple parasite and esti \ for Biotechnology Information TNCBI)
L / Haemophilus \ .
mated that for this organism, [ genome \ in Bethesda, Maryland. Comparing ai
A ( 1703 genes
800 genesare plenty todo the | . .
job—but that anything short  \ S — :
of 100 wouldn’t be enough. rbocere -4 genes =122 genes
Although the numbers don't - \ oo AN
1 [ 288 [/ Minimal e \
match precisely, those predictions Hycoplasma [sh2 [ gene set (28 )

\‘%;";‘.ﬁ.“. ¥ NG e
* Genome Mapping and Sequenc- "

ing, Cold Spring Harbor, New York, Stripping down. Computer a sis yields an esti-
May 8 to 12 mate of the minimum modern and ancient genomes.

SCIENCE  VOL. 272 & 24 MAY 1996
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Topic Modeling

e Problem: apply matrix factorization to a term-document matrix Y

31 FA

S

7] 71 A
v L L]

2%

SR

!
oS

ol
el

5
RN NN

5%

— A is called a term-topic matrix, B is called a topic-document matrix

e [nterpretation:

— each column a; of A should represent a theme topic, e.g., local affairs, foreign
affairs, politics, sports... in a collection of newspapers

— as y; =~ Ab;, each document is postulated as a linear combination of topics

— matrix factorization aims at discovering topics from the documents
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0.4

0.2 0.3

Probability

0.1

e |1

Topic Modeling

“Genetics”
human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics

0.0

1 8 16 26 36 46 56 66 76 86 96
Topics

Topics found in a real set of documents. Source: [Blei’12]. The document set consists of 17,000

articles from the journal Science. The topics are discovered using a technique called /atent Dirichlet

mapping
project
sequences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

allocation, which is not the same as, but has strong connections to, matrix factorization.
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Topic Modeling
e topic modeling via matrix factorization has been used in, or is tightly connected
to
— information retrieval, natural language processing, machine learning
— document clustering, classification and retrieval

— latent semantic analysis, latent semantic indexing: finding similarities of doc-
uments, finding similarities of terms (are “cars,” “Lamborghini,” and “Ferrari”
related?)

e though not considered in this course, it seems better to also model A, B as
element-wise non-negative—this will lead to non-negative matrix factorization

e further reading: [Turney-Pantel’10]

— as an aside, it mentions a related application where computers can achieve a
score of 92.5% on multiple-choice synonym questions from TOEFL, whereas
the average human score is 64.5%
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Matrix Factorization

The matrix factorization problem

min Y — AB||%
AERka,BEkan

e has non-unique factors

— suppose (A*,B*) is an optimal solution to the problem, and let Q € R*** be
any nonsingular matrix. Then (A*Q~1, QB*) is also an optimal solution.

— the non-uniqueness of (A, B) makes the above matrix factorization formulation
a bad formulation for problems such as topic modeling

e is non-convex, but can be solved by singular value decomposition (beautifully)

e can also be handled by LS
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Matrix Factorization
e Alternating LS (ALS): given a starting point (A(®) B(®)) do

AUTD —arg min  ||[Y — ABW|%
AeRka

BO+tY —arg min ||Y — AUFDB|2
BeRan

fort =0,1,2,..., and stop when a stopping rule is satisfied.

e let's make a mild assumption that A9 B(® have full rank at every 7. Then,

A(i+1) _ Y(B(Z))T(B(Z)(B<Z))T)_l, B(z’—|—1) _ ((A(’i—i-l))TA(’i-l-l))—l(A(’H-l))TY

e ALS is guaranteed to converge an optimal solution to ming g [|[Y — ABJ|% under
some mild assumptions [Udell-Horn-Zadeh-Boyd’16]

— note: this result is specific and does not directly carry forward to other related
problems such as low-rank matrix completion

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 62



Low-Rank Matrix Completion

o let Y € R™*™ be a matrix with missing entries, i.e., the values y;;'s are known
only for (¢,7) € 2 where €2 is an index set that indicates the available entries

e Aim: recover the missing entries of Y

e application: recommender system, data science

e example: movie recommendation (further reading: [Koren-Bell-Volinsky’09])

— Y records how user ¢ likes movie j

— Y has lots of missing entries; a user
doesn’'t watch all movies Y =

— Y may be assumed to have low rank;

N Y = DN

movies
3 1 7?2 ?2 5 5]
74 2 7 7 7
3 1 7 2 2 92 YO
7 7 3 ?2 1 5

research shows that only a few factors affect users’ preferences.
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Low-Rank Matrix Completion

e Problem: given {y;;}i j)eq, 2 and a positive integer k, solve

' - 12
AERm}(rkl?l]IBlekan Z ’yzj [AB]’LJ ‘
’ (i,5) €

e ALS can be applied; more tedious to write out the LS solutions than the previous
matrix factorization problem but not any harder in principle

e supposingly a very difficult problem, but
e methods like ALS were found to work by means of empirical studies

e recent theoretical research suggests that matrix completion may not be that hard
under some assumptions, e.g., ALS can give good results [Sun-Luo’16]
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Low-Rank Matrix Completion

e an ALS alternative to matrix completion (easier to program):

— consider an equivalent reformulation of the matrix completion problem

min Y —AB-R|7 st.r; =0, (i,5) € Q
AERka,BEkan,RERmxn

— do alternating optimization

AUTY —arg min [|[Y — AB®W —RW|2
AngXk’

BeRkxn

RUTY —arg min |[Y — ACTUBEHD _R|2
ReRan

the first two are LS as before; the third has a closed form

(i+1) _ U, , , (Za]) SRY;
" Y — AGTOUBUTD], -0 (4,5) ¢ Q
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Toy Demonstration of Low-Rank Matrix Completion

Left: An incomplete image with 40% missing pixels. Right: the matrix completion result of the
algorithm shown on last page. £ = 120.
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Part |II-B: Other Extensions
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Beyond LS

o let a; € R™ denote the ith row of A. The LS problem can be represented as

m

: _T
g&ilﬂ%x—w)
1=

where £(z) = |z|* denotes the loss function for measuring the badness of fit

e Question: why don't we use other loss functions?

— we can indeed use other loss functions, such as
* 1-norm loss: {(z) = |z|

S

2| — 5, 2| >1

Powith p <1

x Huber loss: /(z) = {

x power-p loss: £(z) = |z
— the above loss functions are more robust against outliers, but

— they require optimization and don't result in a clean closed-form solution as LS
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lllustration of Loss Functions

4 I I I I I I I
——square loss
35" - = 1-norm loss _
—-=-Huber loss
-------- power-1/4 loss
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Curve Fitting Example

4 T T T T T T T T T
.l — True Curve |
\ O Samples
A O - = 1-norm loss |-
. -- LS
1F
Ok
>-1F
o
3+
4+
5+ -
_6 | | | | | | | | |
4 08 06 04 -02 0 02 04 06 08 1
i
“True” curve: the true f(x), p = 5. The points at £ = —0.3 and = 0.4 are outliers, and they

do not follow the true curve. The 1-norm loss problem is solved by a convex optimization tool.
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Gradient Descent

e in LS we need to solve
(ATA)XLS — ATY?

and that requires O(n?)
— we also need to compute AT A and Aly; their complexities are O(mn?) and
O(mn), resp.

e O(n?) is expensive for very large n

e Question: can we have cheaper LS solutions, perhaps with some compromise of
the solution accuracies?
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Gradient Descent

e consider a general unconstrained optimization problem

min  f(x)

where f is continuously differentiable
e Gradient Descent: given a starting point x(?), do
xB) = xF=D _ v ixFY) kg =1,2,.
where p > 0 is a step size

e take an optimization course to get more details! It is known that

— for convex f and under some appropriate choice of 1, gradient descent converges
to an optimal solution

— for non-convex f and under some appropriate choice of u, gradient descent
converges to a stationary point
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Gradient Descent

e gradient descent for LS:

xF) = xb=D _ 9 (ATAx*D — ATy), k=0,1,...

e complexity for dense A
— computing ATA and Aly: O(mn?) and O(mn), resp. (same as before)
+ ATA and A”y are cached for subsequent use in gradient descent

— complexity of each iteration: O(n?)

e complexity for sparse A
— computing Aly: O(nnz(A))
— complexity of each iteration: O(n + nnz(A))

+ AT A is not necessarily sparse, so we do Ax(*~1 and then AT(Ax(*—1)
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Gradient Descent

e gradient descent is easy to understand, but there are better algorithms...

e further reading: the conjugate gradient method; see, e.g.,
https://stanford.edu/class/ee364b/lectures/conj_grad_slides.pdf
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Online LS

e recall the LS formulation

m
: T2
min Zl a7 x —y

e the LS we learnt is a batch process; i.e., solve one x given the whole (A,y)

e there are many applications where new (a;, y;) appears as time goes, and we want
the process to be adaptive or in real time; i.e., x is updated with ¢

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 75



Incremental Gradient Descent

e consider an optimization problem

where every f; is continuously differentiable
e Incremental Gradient Descent:
X =X¢-1— UV fi(xe—1), t=1,2,...
— also called stochastic gradient descent, least mean squares (LMS) (in 70's), ...

e incremental gradient descent for LS:

Xt = X1+ 20(ys — étTXt—l)ét
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Recursive LS

e Recursive LS (RLS) formulation:

¢
X; = arg min g M alx — y,l?
xER™ —

where 0 < A < 1 is a prescribed constant and is called the forgetting factor

— weigh the importance of |al x—y;|? w.r.t. time t; the present is most important;
distant pasts are insignificant; how much we remember the pasts depends on A

e at first look, the RLS solution is x; = R q:, Where
¢
Z Naa;, g = Z N ty;a;
i=1

e a recursive formula for x; can be derived by using the Woodbury matrix identity
and by using the problem structures carefully
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Woodbury Matrix ldentity

For A, B, C, D of appropriate dimensions, we have
(A-BD 'C)'=A"'+A'B(D-CA'B)"'CA
assuming that the inverses above exist.

e for the RLS problem, it is sufficient to know the special case

1
1+bTA1b

(A+bbl) "1 =A"1— A 'bb A
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Recursive LS

e it can be verified that R; = AR;_1 + atat , A = AQi—1 + yray

e by the Woodbury matrix identity,

Rt_l = (AR¢—1 + étéf)_l = %Rt_—ll - 1 = (1Rt 1at)(1Rt 1at)T

1=T
1+ ya; R, ay

1

e letP,=R;'and g, = —(3R;a;). We have

1 1
— sP;_1a
St 1+§5ltTPt_1s?lt(A -181)

P, = %Pt—l - gt(%Pt—lat)T

xt =Piqt = Pr1qi—1 — Agt(%Pt—lat)TQt—l + %ytPt—lat - ytgt(%Pt—lét)Tat
= Xt—1— (5%FXt—1)gt + Y&t
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Recursive LS

e summary of the RLS recursion:

1
1 —+ %éfPt_lét

Py = %Pt—l - gt(%Pt—lé—t)T

(%Pt—lat)

gt

X = X1+ (yr — éfxtq)gt

e remarks:

— comparison with incremental gradient descent: it replaces g; with 2ua;

— the above RLS recursion may be numerically unstable as empirical results
suggested; modified RLS schemes were developed to mend this issue
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