
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 6357

The Fourier-Argand Representation: An Optimal
Basis of Steerable Patterns

Tianle Zhao , Student Member, IEEE, and Thierry Blu , Fellow, IEEE

Abstract— Computing the convolution between a 2D signal
and a corresponding filter with variable orientations is a basic
problem that arises in various tasks ranging from low level image
processing (e.g. ridge/edge detection) to high level computer
vision (e.g. pattern recognition). Through decades of research,
there still lacks an efficient method for solving this problem.
In this paper, we investigate this problem from the perspective
of approximation by considering the following problem: what
is the optimal basis for approximating all rotated versions
of a given bivariate function? Surprisingly, solely minimising
the L2-approximation-error leads to a rotation-covariant linear
expansion, which we name Fourier-Argand representation. This
representation presents two major advantages: 1) rotation-
covariance of the basis, which implies a “strong steerability” —
rotating by an angle α corresponds to multiplying each basis
function by a complex scalar e−ikα; 2) optimality of the Fourier-
Argand basis, which ensures a few number of basis functions
suffice to accurately approximate complicated patterns and
highly direction-selective filters. We show the relation between the
Fourier-Argand representation and the Radon transform, leading
to an efficient implementation of the decomposition for digital
filters. We also show how to retrieve accurate orientation of local
structures/patterns using a fast frequency estimation algorithm.

Index Terms— Fourier-Argand representation, rotation-
covariant function, Radon transform, ridge/edge detection,
pattern matching.

I. INTRODUCTION

PERFORMING steerable convolution — convolving two
two-dimensional (2D) signals while allowing one of the

signal to be rotated by an arbitrary angle — is a basic
requirement for solving many problems in the fields of image
processing and computer vision. For instance, one may use
derivatives of Gaussian as filters to detect image local struc-
tures, e.g., ridges and edges. In his seminal paper [1], Canny
used the first derivative of Gaussian to detect edges. Following
this idea, many edge/ridge/wedge detection algorithms have
been proposed [2]–[5]. By using other directional filters,
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computing steerable convolution also serves as a building
block for tasks such as image segmentation [6], blood vessel
detection [7], texture analysis [8], and rotation-invariant fea-
ture extraction [9]. More generally, the problem of pattern
matching under in-plane rotations can also be considered as a
steerable convolution problem [10].

Looking from the perspective of matched filtering, per-
forming a steerable convolution amounts to solving a steer-
able matched filtering problem [4]. Specifically, for a given
2D signal, e.g., an image I (x, y), and a pattern h(x, y) acting
as a filter, the problem is to calculate the convolution of I
and rotated versions of h, i.e., steerable convolution consists
in calculating

(I ∗ αh)(x, y), (1)

for all α, where ∗ denotes the 2D convolution, and α f denotes
the counter-clockwise rotation of f by the angle α, defined as
follows,

α f (x, y) = f (x cos α + y sin α,−x sin α + y cos α). (2)

It is well known that the matched filter is the optimal
linear filter, which maximises the signal-to-noise ratio (SNR)
under additive white Gaussian noise [11]. However, calculating
the convolution (1) for all α remains difficult, since α takes
values continuously on the interval [0, 2π), and hence involves
uncountably many rotated versions of h.

An intuitive approximate solution is to quantise the
angle α, and convolve I with h rotated by the quantised angles.
After that, one can interpolate between the quantisation levels.
However, this approach requires a large number — inversely
proportional to the desired angle accuracy — of filters, which
makes this naive solution extremely time consuming and not
particularly useful, especially when a relatively high angle
accuracy is required.

A. Rotation Invariant Filter Bases

A more elegant solution was proposed by Freeman and
Adelson in their pioneering paper [3], where they showed
that (1) can be computed efficiently for a class of filters,
namely the steerable filters. To be specific, they proved that
if a filter h has limited angular frequencies, then the space
consisting of all rotated versions of h is of finite dimension.
Therefore, any rotated version of h can be represented as a
linear combination of a fixed set of basis filters. For such
a steerable filter with N distinct angular frequencies, they
used N rotated versions of the original filter h as a basis.
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As a benefit of this representation, rotating the filter h amounts
to changing the coefficients of the linear combination, i.e.,

αh(x, y) =
N−1∑
n=0

cn(α) αnh(x, y). (3)

This representation efficiently solves the problem caused by
rotations as long as the filter h satisfies the steerability assump-
tion — having finite number of distinct angular frequencies.
In practice, however, the filter h is frequently not limited in
angular frequency. Therefore, the authors of [3] proposed to
use a bivariate polynomial P(x, y) of degree-K multiplied by
an isotropic window W

(√
x2 + y2

)
to approximate h, i.e.,

h(x, y) ≈ P(x, y)W

(√
x2 + y2

)
. (4)

It is not hard to see that this approximation space is rotation-
invariant. Indeed, a rotation of the polynomial P(x, y) is still a
polynomial of the same degree. Besides, the dimensionality of
this approximation space does not exceed 2K +1. To see this,
one can express the polynomial P(x, y) in polar coordinates,
and then use Euler’s formula. The steerability of the windowed
polynomial approximation (4) ensures that any rotation can
be efficiently handled by (3). There have been many follow-
ups of this idea. For instance, Jacob et al. used derivatives of
an isotropic Gaussian function and incorporated Canny-like
criterion in [4], where they devised a successful algorithm for
the detection of edges, ridges and wedges.

Despite the above advantages, the steerable filter [3] suf-
fers from the following shortcomings. Firstly, the windowed
polynomial approximation (4) is not accurate enough, when
h is rarely limited in angular frequency. The number of basis
filters required to achieve an accurate approximation quickly
becomes very large when h becomes less isotropic, which
makes the algorithm significantly less efficient. Moreover,
using a high-degree polynomial causes numerical stability
issues and heavily increases the computational cost. These
limitations restrict the steerable filter algorithm from represent-
ing highly direction-selective filters, e.g., extremely elongated
functions, or general patterns that have complicated structures.
Secondly, the linear coefficients cn(α) in (3) are usually
complicated functions of α — high-degree polynomials of
trigonometric functions. This makes the inverse problem —
retrieving the rotation back from the coefficients — difficult
and inaccurate, especially in the presence of noise.

B. The Proposed Approach

We address this steerable convolution problem from the
perspective of approximation. By minimising the average
L2-error when approximating rotated versions of a target
pattern/filter, we find the optimal basis consisting of rotation-
covariant functions. In addition to the optimality, this repre-
sentation exhibits other merits that will be discussed in details
in Sec. II-C.

Mathematically, the derived representation itself is by no
means new. For examples, its polar form is known as the
circular harmonic expansion in the optical society [12], which

TABLE I

DISTINCTIVE PROPERTIES OF FOURIER-ARGAND FILTERS

was used to construct rotation-invariant descriptors for pattern
recognition [13]. However, only the magnitude of the filter
response was used, while the phase was discarded. Despite the
wide knowledge that the phase contains important information,
a systematic and robust incorporation of the phase information
into the descriptor was considered difficult [14]. The impor-
tance of the phase is further outlined by the fact that the
magnitude of the filter response is very sensitive to different
kinds of distortions, such as illumination changes, noise and
shifts [15]. Indeed, we show in this paper it is the phase
that determines the local orientation of the image (direction
of the ridge/edge, pattern orientation), and that maximising
over all rotation angles gives a very robust rotation invariant
that can be exploited for pattern recognition. The Fourier-
Argand representation is also related to other representations
that share the same angular part but differ in their radial parts,
e.g., the Zernike polynomials used to construct invariants [16]
and the basis functions for the polar Fourier transform devel-
oped in [14]. The difference is that our representation is
optimal for the given pattern.

We would like to clarify the differences between the pro-
posed Fourier-Argand representation in this paper and the
Fourier-Argand moments proposed in our previous paper [17].
Firstly, the two are based on different assumptions: the
Fourier-Argand moments are only applicable to laminar sig-
nals, i.e., 2D signals that only vary in one direction; but,
the Fourier-Argand representation is applicable to arbitrary
square integrable 2D signals. Secondly, for any given pattern,
the Fourier-Argand representation is the optimal linear repre-
sentation; but, the Fourier-Argand moments (if applicable) are
not optimised and do not form a decomposition of the pattern.

In the rest of the paper, we will give the explicit
representation of filters that we call Fourier-Argand
(Sec. II-A and II-B), and will investigate its properties
(Sec. II-C), the most distinctive of which are summarised in
Table I. Then we will show how it is possible to compute the
Fourier-Argand basis filters using the Radon transformation
(Sec. II-D). In Sec. II-E, we will calculate the Fourier-Argand
representation of an elongated Gaussian, and demonstrate the
significantly higher efficiency of this representation compared
to classic steerable filters. Thanks to the particularly simple
relation between rotation angle and coefficients of the
Fourier-Argand representation, we are able to propose
an efficient and accurate algorithm for finding the best
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local orientation of patterns in an image (Sec. III): we
will examplify the accuracy of this algorithm on a basic
pattern detection problem. We further perform different
experiments (blood vessel segmentation, ridge detection and
letter matching) over sequences of images that are severely
corrupted by artefacts (blood vessels) or noise (Sec. IV).

Although we do not claim to achieve the state-of-the-art
in these different examples, the fact that we use very simple
processing (threshold of the Fourier-Argand response map)
and readily achieve excellent results is an indication that the
Fourier-Argand representation could be used as a building
block of significantly more sophisticated algorithms, with good
prospect to build competitive edge detection, pattern matching
algorithms, in particular in the case of large noise.

II. FOURIER-ARGAND REPRESENTATION

Throughout the study presented in this paper, the following
intuition plays an important role: when 2D rotations are
involved, the complex representation x + iy is more suitable
than the Cartesian representation (x, y), in the sense that
the complex representation links the geometric operation —
rotation by an angle α — to a simple algebraic operation —
multiplication by a constant eiα . A function h(x, y) can
then be seen as a periodic function of the phase of the
complex number x + iy. From this perspective, we construct,
in the following sections, an optimal rotation-covariant rep-
resentation. We name this representation the Fourier-Argand
representation.1

A. Approximation of Rotated Patterns

To have a better understanding of the steerable convolution
problem, a natural question arises as follows: For any given
pattern (or filter) h and any positive integer N, what is the
optimal basis consisting of N functions for approximating all
rotated versions of h?

In order to address this problem, we first need to to quantify
the quality of an approximation. Let {ϕ1, ϕ2, . . . , ϕN } be
an arbitrary basis of N filters. Assume the approximation
error is measured by the L2-distance between h and its
approximation. Then, the best linear combination of those
N basis functions that yields the minimum approximation error
is the orthogonal projection P{h} of h onto the approximation
space span{ϕ1, ϕ2, . . . , ϕN}. To find the optimal basis for
approximating all rotated versions of h, we need to minimise
the average approximation error eN defined as follows,

e2
N

def= 1

2π

∫ 2π

0

∥∥ αh − P{ αh}∥∥2
dα. (5)

Without loss of generality, we can restrict the basis to be
orthonormal, in which case the projection operator can be
written as

P{ f } =
N∑

n=1

� f, ϕn�ϕn, (6)

1Jean-Robert Argand is credited for the geometric interpretation of complex
numbers x + iy at the beginning of the 19-th century [18].

where � f, g� def= ∫∫
f (x, y)g∗(x, y) dxdy, and ∗ denotes com-

plex conjugation..
Notice that we make no other assumption on the basis,

so that the formulation covers all possible linear representa-
tions. Surprisingly, solely minimising the average approxima-
tion error (5) automatically leads to a representation that has,
additionally, the desired properties: rotation-covariant basis
functions; and, simple relation between the linear coefficients
and the angle of rotation (See Sec. II-C). We call this rep-
resentation “Fourier-Argand”, because it uses the rotation-
covariant complex variable x + iy (Argand) and of the Fourier
variable eiα , where i is the imaginary unit such that i2 = −1.

B. Definition of the Fourier-Argand Representation

For a square integrable function h(x, y), its Fourier-
Argand representation is defined as the following power series
in x+iy

|x+iy| ,

h(x, y) =
∑
k∈Z

hk(|x + iy|)
(

x + iy

|x + iy|
)k

=
∑
k∈Z

Hk(x, y),

(7)

where Z denotes the set of all integers. The coefficients hk of
the power series are functions of the modulus r = |x + iy|,
and can be computed as follows,

hk(r) = 1

2π

∫ 2π

0
h(r cos θ, r sin θ)e−ikθ dθ

= rk

2π i

∮
C(r)

h(x, y)z−k−1 dz, (8)

where z = x + iy. Expressed in the polar coordinates, this
equation is nothing but the Fourier series decomposition of
h(r cos θ, r sin θ) over θ . The contour C(r) is the (counter-
clockwise) circle of radius r centred at the origin. We refer
to the functions Hk(x, y) as Fourier-Argand basis functions.
We also call the transform defined in (8), which maps a
function h(x, y) of two variables to a series of functions hk(r)
of one variable, the Fourier-Argand transform.

The representation (7) is valid for complex-valued
functions h. If h is real-valued, then the basis functions Hk

has the Hermitian symmetry H−k = H ∗
k , ∀k ∈ Z, where ∗

denotes complex conjugation.

C. Properties of the Fourier-Argand Representation

1) Rotation Covariance: One important property of the
Fourier-Argand representation is that the basis functions
Hk(x, y) are rotation-covariant, defined as:

αHk(x, y) = Hk(x, y) e−ikα, (9)

for all k ∈ Z and α ∈ [0, 2π) [19]. The rotation-covariance
shows that the Fourier-Argand functions Hk form a complete
basis of the space consisting of all rotated versions of h.
More importantly, these basis functions are eigenvectors of
the rotation operator, which can be considered a stronger
version of the steerability. On the one hand, it implies that the
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approximation space is rotation-invariant, i.e, for every non-
negative integer K ,

α( K∑
k=−K

Hk

)
(x, y) =

K∑
k=−K

Hk(x, y)e−ikα. (10)

Note that the simple relation between the angle of rotation α
and the linear coefficient not only makes it easy to rotate the
filter h, but also makes the inverse problem — retrieving α
from the coefficients — much easier to solve and robust to
noise. We will demonstrate later in Sec. III how to estimate
the local direction and how much accuracy and robustness to
noise the estimate yields. Besides, the rotation-covariance is
the essential reason for the optimality of the Fourier-Argand
representation as we will show in the next section.

2) Optimality: As discussed in the Introduction, many
representations have the steerability property. What makes
the Fourier-Argand representation of particular interest is the
fact that it is the optimal linear representation in terms of
the approximation quality, which is stated by the following
theorem.

Theorem 1: For any square integrable function h(x, y),
denote λk

def= �Hk, Hk� ≥ 0 for all integers k, where
Hk(x, y) are the Fourier-Argand functions defined in (7).
Then, for any positive integer N , the optimal orthonormal basis
{ϕ1, ϕ2, . . . , ϕN }, i.e., the orthonormal basis that minimises the
average L2 approximation error (5), is given by

ϕn(x, y) = 1√
λkn

Hkn (x, y), n = 1, 2, . . . , N, (11)

where the integers k1, k2, . . . , kN can be positive or negative,
and are chosen such that

λk ≤ λkn , ∀n = 1, 2, . . . , N, where k /∈ {k1, k2, . . . , kN }.
Moreover, the minimum approximation error achieved is given
by

e2
N = 
h
2 −

N∑
n=1

λkn = 
h
2 −
N∑

n=1

�Hkn , Hkn �. (12)

The proof of the theorem (a form of analytic principal com-
ponent analysis) can be found in Appendix A, in which the
rotation-covariance of the Fourier-Argand functions plays the
central role.

The theorem shows that among all possible linear repre-
sentations, the Fourier-Argand representation is the best for
approximating all rotated versions of an arbitrary pattern h,
which is in general not steerable. Notice that in addition to
the rotation-covariance of the Fourier-Argand representation,
its steerability ensures that the error of the approximation to
any rotated version of the target pattern h is not dependant on
the angle of rotation.

As a corollary, the rotation-covariant Fourier-Argand
approximation requires the smallest number of basis func-
tions for a fixed approximation error — indeed, significantly
fewer basis functions are needed than using the windowed
polynomial approximation (4) as suggested in [3]. This is far
more than an improvement on computational efficiency, since,
in practice, we cannot use polynomials of very high degree

due to their numerical instability. Therefore, as discussed in
the Introduction, the Fourier-Argand representation provides
a methodology for handling rotations, by extending the idea
of steerable linear expansion from simple filters to general
2D patterns, which used to be difficult to handle.

D. Computation of the Fourier-Argand Representation

We show here that there are efficient ways to con-
duct the Fourier-Argand decomposition both analytically and
numerically.

1) Analytic Computation: If we have the analytic formula
of the target function h, we can construct its Fourier-Argand
representation analytically, in some cases of interest.

Firstly, the most direct way is to compute the Fourier-
Argand transform through its definition (8). For instance,
we will show later in Sec. II-E how to compute the
Fourier-Argand transform of elongated 2D Gaussian functions,
i.e., Gaussian functions that spread differently in x- and
y-direction, using formula (8).

Secondly, if h can be written as a product of two func-
tions, i.e., h(x, y) = g(x, y) f (x, y), and we know the
Fourier-Argand representation of both g and f , then the
Fourier-Argand representation of h are easily obtained by
taking the product of the two series. Let the Fourier-Argand
transform of g and f be gk and fk , respectively, as defined
in (8). Then the Fourier-Argand transform of h is given by the
discrete convolution between gk and fk , i.e.,

hk(r) =
∑
l∈Z

gl(r) fk−l (r). (13)

This is particularly useful when one of the two factors,
say g, has a finite expansion, since the convolution in (13)
becomes a finite sum. For example, the x-derivative (or any
other partial derivative) of a Gaussian function (either elon-
gated or not) is a product of a bivariate polynomial and the
Gaussian function itself. The Fourier-Argand representation of
a polynomial has finite terms. Therefore, the Fourier-Argand
representation of functions of the form P(x, y)G(x, y), where
P denotes a bivariate polynomial and G is an arbitrary
bivariate Gaussian function, can be computed easily. As a
special case, the Fourier-Argand representation of the steerable
filters discussed in [3], [4] can all be computed analytically.

Thirdly, one can compute the Fourier-Argand representation
either in the space domain or in the frequency domain. This is
a consequence of the fact that for any given target function h,
the Fourier-Argand function Hk(x, y) and its 2D Fourier
transform mathematically share the same angular part, while
their radial parts are a Hankel pair. To be clear, recall that the
Fourier-Argand function of index k is

Hk(x, y) = hk(|x + iy|)
(

x + iy

|x + iy|
)k

.

One can verify that the 2D Fourier transform of Hk(x, y) is
given by

Ĥk(ωx , ωy)=2π(−i)kHk{hk} (|ωx +iωy|)
(

ωx +iωy

|ωx +iωy|
)k

,

(14)
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Fig. 1. Numerical computation of the Fourier-Argand representation using discrete Radon transform: 1. Discrete Radon transform of the pattern h yields a
sinogram Rϕ{h} (�). 2. DFT of the sinogram then multiply by eikϕ . 3. Inverse Radon transform recovers the Fourier-Argand basis functions Hk .

where Hk{·} denotes the Hankel transform of order k, which
maps a univariate function to another univariate function,
as defined below,

Hk{ f } (ρ) =
∫ ∞

0
f (r)Jk(ρr)r dr, (15)

where Jk is the k-th order Bessel function of the first kind.
As an example, for any a, b > 0, it is not easy to compute
the Fourier-Argand transform of exp(−a|x | − b|y|). However,
finding the Fourier-Argand transform of its 2D Fourier trans-
form 4ab

(ω2
x +a2)(ω2

y+b2)
is relatively simple.

Finally, a closer look at the Fourier-Argand representation
unveils a useful link with the Radon transform [20], which
is extensively studied in the field of computed tomography.
Classically, the Radon transform of a bivariate function h is
defined by,

Rϕ{h} (�) =
∫∫

h(x, y)δ(x cos φ + y sin φ − �) dxdy,

(16)

where � ∈ R and ϕ ∈ [0, 2π). The rotation-covariance of the
Fourier-Argand basis Hk implies that its Radon transform has
the following property:

Rϕ{Hk} = R0{Hk} eikϕ . (17)

As a consequence, the Radon transform of h becomes the
following Fourier series in ϕ,

Rϕ{h} =
∑

k∈Z
R0{Hk} eikϕ, (18)

which shows that R0{Hk} is given by the Fourier integral

R0{Hk} = 1

2π

∫ 2π

0
Rϕ{h} e−ikϕ dϕ. (19)

(17-19) shows how to compute the Fourier-Argand basis Hk

for every k:

1. Compute the Radon transform of h (� Rϕ{h} (�)).
2. Compute the Fourier series decomposition of Rϕ{h} (�)

with respect to ϕ (� R0{Hk}).

3. Multiply the coefficients found in step 2 by exp(ikϕ)
(� Rϕ{Hk}).

4. Perform the inverse Radon transform (filtered back-
projection).

See Supplementary Material for some useful Fourier-
Argand transforms.

2) Numerical Computation: In applications like pattern
matching, the analytic expression for the pattern is usually
unavailable, and a sampled version of the target function
is all we have. In these cases, we need to compute the
Fourier-Argand representation numerically.

The most straightforward numerical approach is to convert
the digital pattern into polar coordinates through resampling.
This method, however, is either slow or very inaccurate
because sampling the polar coordinates uniformly leads to
either very coarse resolution away from the centre (but reason-
able speed), or adequate resolution everywhere but inefficient
implementation (resolution at the centre is too fine).

Fortunately, the relation between the Fourier-Argand repre-
sentation and the Radon transform discussed in the previous
section leads to an efficient and relatively accurate algorithm
for the numerical computation. See Fig. 1 for details.

If the analytic approach is applicable, each basis function
is constructed explicitly from its expression. Otherwise, for a
numerical pattern of M pixels, to obtain K basis functions,
the computational cost is as follow: firstly, a discrete Radon
transform of the input pattern costs O(L M), where L is
the number of angles (around 90 in our experiments); next,
a 1D Fourier transform applied to the rows of the Radon map
costs O(

√
M L log L); and finally, inverse Radon transforms

applied to the K components Rϕ{Hk} cost O(K L M). Note
that the size of the pattern is usually much smaller than that
of the target image. As a consequence, the computational cost
to obtain the Fourier-Argand basis is significantly lower than
that of other steps of the proposed algorithm.

E. Example

We illustrate the Fourier-Argand transform by considering
an elongated Gaussian function. On the one hand, isotropic
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Fig. 2. Demonstration of the Fourier-Argand representation for an elongated Gaussian function h with ellipticity � = 2
3 . For better visualisation, each basis

function H2k is rescaled according to its norm 
H2k
, and only the real part is shown in the figure. These 5 basis functions, together with their complex
conjugates (denoted by c.c. in the figure), sum up to the Fourier-Argand approximation h(4) of h. The approximation yields an L2-error of 2.19 × 10−2

(i.e., 33.2 dB SNR) with the norm of the basis function H2k being 8.73 × 10−1, 3.10 × 10−1, 1.34 × 10−1, 6.14 × 10−2 and 2.87 × 10−2, for k = 0, 1, 2, 3
and 4. This fast decrease ensures that with very few basis, the Fourier-Argand approximation can already reach a high accuracy. The summation of the same
basis functions multiplied by complex exponentials e−i2kα form an approximation to the rotated Gaussian function αh, respectively.

Gaussian functions, together with their derivatives, are suc-
cessful filter models for both the detection and the extraction
of local structures in images (e.g., ridges and edges). On the
other hand, lacking necessary elongation, they have limited
directional selectivity, which degrades their performance in
various applications. In this section, We derive the Fourier-
Argand representation of the elongated Gaussian function,
and show that it is possible to approximate it with few
terms, even in large ellipticity cases. We also compare the
Fourier-Argand approximation with the widely used windowed
polynomial approximation suggested by [3], [4] in terms of
their efficiencies.

1) Computation of the Fourier-Argand Representation: Let
h denote the elongated Gaussian function shaped by two
parameters a and b, and defined as follows,

h(x, y) = 1

πab
exp

(
− x2

a2 − y2

b2

)
. (20)

Noticing that the symmetry h(x, y) = h(−x,−y) implies that
the Fourier-Argand transform hk(r) vanishes for odd integer k,
we rewrite the representation (7) as,

h(x, y) =
∑
k∈Z

h2k(|x + iy|)
(

x + iy

|x + iy|
)2k

︸ ︷︷ ︸
H2k(x,y)

. (21)

The non-vanishing radial functions h2k are directly obtained
from the Fourier integral (8), i.e.,

h2k(r) = 1

2π2ab

∫ π

−π
e− r2 cos2 θ

a2 − r2 sin2 θ
b2 e−i2kθ dθ

= (−1)k

πab
Ik

(
1

2
r2(a−2 − b−2)

)
e− 1

2 r2(a−2+b−2),

(22)

where Ik(·) denotes the order-k modified Bessel function of
the first kind.

The following partial sum of the series (21) is an optimal
approximation of the elongated Gaussian function h:

h(K )(x, y) :=
K∑

k=−K

H2k(x, y). (23)

We call this partial sum the order-K Fourier-Argand approxi-
mation. The number of terms can be determined by setting an
upper-bound on the approximation error. In a pattern matching
problem, this error quantifies how well the pattern should
be approximated; i.e., how discriminant its approximation is,
compared to the other patterns in the image. For an elongated
Gaussian, it can be shown that this number is directly related
to the ellipticity

� = b − a

a
.

See Supplementary Material for a detailed analysis.
We visualise, in Fig. 2, the order-4 Fourier-Argand approx-

imation h(4) of an elongated Gaussian function with ellipticity
� = 2

3 . The real part of the (normalised) basis functions are
shown for K = 4. The basis functions H2k sum up to the
optimal approximation h(4). The norm of the basis function
H2k decreases quickly from 8.73 × 10−1 to 6.14 × 10−2 as
k increases from 0 to 4, resulting in an L2 approximation error
of 2.19 × 10−2 (i.e., 33.2 dB SNR).

According to (10), h(4) can be rotated exactly by an arbitrary
angle α:

α
h(K )(x, y) =

K∑
k=−K

H2k(x, y) e−i2kα.
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Fig. 3. Comparison of approximation quality. The target function being approximated (left) is an elongated Gaussian function with ellipticity 0.9. The
order-15 Fourier-Argand approximation (middle) yields an approximation error of 2.40 × 10−2 (i.e., 32.4 dB SNR). The windowed polynomial approximation
(right), which uses monomials of degree as high as 30, yields a much larger approximation error, 5.07 × 10−1 (i.e., 5.90 dB SNR). Both approximations use
31 basis functions, which demonstrates that the Fourier-Argand approximation is significantly more efficient than the windowed polynomial approximation.
Note that the polynomials used here is already of a high degree, and in practice, it is difficult to handle polynomials of a higher degree.

Fig. 4. The Fourier-Argand representation is significantly more efficient than usual steerable bases. The approximation errors, for both the Fourier-Argand
approximation (solid line) and the windowed polynomial approximation (dashed line), are plotted against the number of basis functions involved. The target
function under approximation can be either an elongated Gaussian (a) with ellipticity 0.5 or an extremely elongated Gaussian (b) with ellipticity 0.9. In both
cases, the error decreases significantly faster for the Fourier-Argand approximation than that for the windowed polynomial approximation, as the number of
basis functions increases.

We demonstrate this process in the bottom row of Fig. 2. Note
that writing

α
h(K ) causes no ambiguity, since by construction

we have ( αh)(K ) = α(
h(K )

)
.

2) Optimality of the Fourier-Argand Approximation:
Compared to other steerable representations, the Fourier-
Argand representation exhibits significantly higher efficiency.
To demonstrate our claim, we compare the Fourier-
Argand approximation with the successful and widely used
windowed polynomial approximation, first proposed by
Freeman et al. in [3]. In their paper, the authors proposed
to use a bivariate polynomial multiplied by an isotropic
window function for approximating the target function h.
In the Gaussian case here, h is a real-valued function,
and has the symmetry h(x, y) = h(−x,−y). Therefore,
the windowed polynomial approximation can be written as
follows,

h PK (x, y) =
K∑

k=0

k∑
k=0

ak,k xk
y2k−k

W

(√
x2 + y2

)
, (24)

where the window function W is the isotropic Gaussian,

W (r) = e
− r2

max(a,b)2 ,

max(a, b) is, empirically, the choice of standard deviation that
yields the best approximation. Notice that due to the symmetry
of h, (24) only contains the even terms of the polynomial, and
the degree of the polynomial is 2K rather than K . With the
above notations, both the windowed polynomial approxima-
tion h PK , (24), and the Fourier-Argand approximation h(K ),
require the same number (N = 2K + 1) of real-valued basis
functions.

As shown in Fig. 4, with the same number of basis
functions, the Fourier-Argand approximation achieves
a significantly lower error than the windowed polynomial
approximation. As the number of basis functions increases,
the approximation error decreases significantly faster for the
Fourier-Argand approximation than that for the windowed
polynomial approximation, especially when the target function
under approximation is extremely elongated.
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Fig. 5. The minimum number of basis functions needed by an approximation
of L2-error not exceeding 10−2 (SNR = 40 dB) v.s. the ellipticity of the target
Gaussian function.

Correlatively, comparing with the windowed polynomial
approximation, the Fourier-Argand approximation requires
significantly fewer basis functions to reach the same approx-
imation error. In order to yield an L2-error below 10−2

(i.e., 40 dB SNR), the minimum number of basis functions
needed increases as the target Gaussian function becomes
more elongated. The windowed polynomial approximation
experiences a much faster increase compared to the Fourier-
Argand approximation. As a consequence, the windowed
polynomial approximation quickly needs to deal with very
high-degree polynomials, which is cost inefficient and numer-
ically unstable. Fig. 3 demonstrates the approximation qual-
ity when the Gaussian function is extremely elongated
(� = 0.9). We see that even if a degree-30 polynomial is
used, the windowed polynomial approximation h P15 is still
not satisfactory. Meanwhile, with the same number of basis
functions, the Fourier-Argand approximation h(15) is much
more accurate.

III. MAXIMISING LOCAL RESPONSE

As discussed in the Introduction, once we have a rotation-
covariant representation, we can effectively retrieve the local
orientation of the filter/pattern in the image. Formulated in
a general matched filtering framework, the problem involves
convolving the image I (x, y) with a filter h(x, y), while
allowing the filter to be rotated by an arbitrary angle α. The
local direction is then given by the angle that maximises the
filter response at each location. Mathematically, this steerable
matched filtering problem is formulated as follows,

R(x, y) = max
α

(I ∗ αh)(x, y), (25)

where R(x, y) is the final filter response, and the angle
α∗(x, y) that achieves the maximum is called the local ori-
entation (or direction) of the image I at (x, y) . This is a
quite general framework. For instance, we can take a simple
2D function as a filter to detect image local structures, such
as ridges, edges and wedges. The Canny-like filters and the
steerable filters all share this formulation [4]. We can also
consider a particular pattern as a filter, in which case (25) can

also be used for pattern recognition. In both cases, being able
to accurately recover the local direction is crucial.

As discussed in the Introduction, the naive approach to
solve (25) relies on a large number of filtering operations.
Due to the rotation-covariance of the Fourier-Argand represen-
tation (7) and (9), and the linearity of the convolution operator,
the problem (25) is reduced to,

α∗(x, y) = arg max
α

∑
k∈Z

(I ∗ Hk)(x, y)e−ikα, (26)

which is much easier to solve when the above sum only con-
tains a few number of terms (Fourier-Argand approximation).
In this section, we show in details how to estimate the local
orientation with the Fourier-Argand representation of the filter.
Throughout this section, we assume that the image I and the
target function h are real-valued.

A. The Frequency Estimation Algorithm

According to the discussion in Sec. II, we construct the
Fourier-Argand approximation of the target filter h, which
yields a controllable small approximation error, i.e.,

h(K )(x, y) =
K∑

k=−K

Hk(x, y). (27)

Next, we convolve of the image I (x, y) with the basis func-
tions Hk(x, y) for 0 ≤ k ≤ K , i.e.,

Ik(x, y) = I (x, y) ∗ Hk(x, y). (28)

Then (26) becomes

α∗(x, y) = arg max
α

K∑
k=−K

Ik(x, y)e−ikα. (29)

This problem can be solved exactly by setting to zero the
derivative of the objective in (29) with respect to α. The
maximisation problem is then solved by finding the roots on
the unit circle of the following polynomial

P(z) =
K∑

−K

−ik Ik(x, y)zk . (30)

Notice that the symmetry P(z) = P∗(z−1) ensures that if z0
is a root of P then z−1

0 is also a root of P . Therefore, finding
the roots of P eventually amounts to finding the roots of a
polynomial of degree K (instead of 2K ).

Alternatively, we can also solve (29) approximately,
by maximising the real part of an L-point Discrete Fourier
Transform (DFT) of the sequence ( 1

2 I0, I1, I2, . . . , IK ). This
numerical algorithm provides an angle accuracy of π

L . For
instance, if we choose L = 360, then the angle accu-
racy is 0.5◦, which is usually sufficient in practice. If in
some extreme cases where higher angle accuracy is required,
the approximate solution provided by the DFT method can
always serve as a good initialisation for a numerical method,
e.g., Newton’s method, finding the roots of (30) within an
arbitrary error.

The above approximate algorithm is very fast. We tested
the MATLAB implementation on a laptop with a dual
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Fig. 6. Overall pipeline. The Fourier-Argand approximation (thick blue box) can be constructed either analytically or numerically as detailed in Fig. 1. Dashed
boxes denote optional processings. The dashed arrow means the pattern can simply be an image patch containing the pattern of interest. Key processings of
the proposed algorithm are enclosed in the dotted red box.

core 2.6 GHz Intel i5 CPU and 8 GB memory. For
an 512 ×512 grey-scale image, and a Fourier-Argand approx-
imation of 41 basis functions, the filtering process takes less
than 2 seconds, while maximising the response requires less
than 3 seconds, resulting in a total time consumption of
less than 5 seconds. As a comparison, to reach the same angle
accuracy (i.e., 0.5◦) without the Fourier-Argand representation,
one needs to filter the image with 360 rotated versions of the
filter, which is several times more time consuming.

The overall pipeline of the proposed framework for steerable
pattern/filter matching is summarised in Fig. 6.

B. Demonstration

The algorithms discussed in previous sections provide an
efficient method for steerable matching. We now demonstrate
the algorithms by an example, where we try to find dif-
ferent rotations of a pattern in an image. The goal of this
demonstration is not to design a delicate pattern recognition
algorithm. Instead, we show here that with the help of the
proposed Fourier-Argand representation, simple processing
(e.g., filtering, FFT) suffices to produce a reasonably good and
fast (within seconds) detection result. Indeed, the algorithm
also gives extra information — accurate orientation of the
patterns.

Rotation invariance has played an important role for the
success of many pattern recognition algorithms. To achieve
rotation-invariance, one common practice is to discretise the
angle of rotation and build various statistics, e.g., histograms,
according to the discrete orientations [21]. Instead of discretis-
ing the angle of rotation, other invariants exploit moments that
are rotation-covariant [13], [14], [16]. The magnitude of these
moments is invariant to rotation, while the phase varies as the
orientation of the pattern changes. However, due to the lack
of a systematic way to incorporate the phase information into
the descriptors [14], the phase is usually discarded. However,
exploiting the phase information is of crucial importance for an
accurate recognition, since the local orientation of the pattern
is purely encoded in the phase of the moments.

Consider the problem of detecting Hong Kong 2-dollar coins
in a real-scene image captured by a standard mobile phone

camera (Fig. 7). We are only interested in finding the 2-dollar
coins with their obverse side up, and want to distinguish them
from both the same 2-dollar coins, but with their reverse side
up, and coins of other types.

We first take the magnitude of the Laplacian of the input
image — a simple high-pass filtering, to mitigate the obvious
illumination changes between the coins. As for the template,
we simply take the image patch that contains one of the
2-dollar coins. The pattern is taken from the high-pass filtered
image, and marked by the red circle in Fig. 7(top right). As dis-
cussed in Sec. II-D.2 and illustrated by Fig. 1, we compute
the Fourier-Argand approximation (K = 20, i.e., 41 basis
filters) of the pattern using the discrete Radon transform. With
this accurate approximation, the following matched filtering
problem is efficiently (within seconds) solved by the algorithm
introduced in Sec. III-A, where we get both the response
R(x, y) and the local orientation α∗(x, y):

R(x, y) = max
α

(
|∇2 I | ∗ α

h(K )
)

(x, y), (31)

where h(K ) is the Fourier-Argand approximation of the pattern,
and |∇2 I | denotes the magnitude of the Laplacian of the
input image I . The maximum is reached by α∗(x, y) at each
location (x, y). To further mitigate the illumination changes,
it is standard to use the normalised cross-correlation between
the pattern and the signal [23]. We compute the normalised
cross-correlation between the Fourier-Argand approximation
and the high-pass filtered image patch inside each disk D(x,y),
which is centred at (x, y) and share the same radius as the
pattern, i.e.,

C(x, y) = R(x, y) − μi (x, y)μh

σi (x, y)σh
, (32)

where μi and σi denote the mean and standard deviation
of the high-pass filtered image |∇2 I | inside the disk D(x,y),
respectively, and μh and σh denote the mean and standard
deviation of h(K ), respectively.

As shown in Fig. 7, the normalised cross-correlation
(bottom left) has very sharp and distinguishable peaks, which
collocate with the 2-dollar coin patterns. As a consequence,
the occurrences of the pattern are reliably detected at the local
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Fig. 7. Demonstration of real-scene pattern recognition. The 2-dollar coins are sought in a real-scene image. The image undergoes a high-pass filtering
before the Fourier-Argand algorithm is applied. Maximised over all possible rotations, the normalised cross-correlation between the pattern and the high-pass
filtered image exhibits sharp and large peaks. A simple threshold on the correlation map identifies the 2-dollar coins with very high location accuracy. The
angle at which the maximum is reached gives an accurate estimate of the orientation for each coin, as shown by rotating the detected coins back using the
estimated angles (bottom right picture). The overall computation time is less than 7 seconds.

maxima of the normalised cross-correlation (32). In the figure,
each detected pattern is marked by a red circle. For a better
visualisation, we create a binary mask by applying a threshold
to the intensity of the target pattern, and overlay the mask
at locations where the pattern is detected (the mask is also
rotated to the estimated orientation). In spite of their changing
appearance, all of the 2-dollar coins are successfully detected
with very high location and angle accuracy. Also note that
the algorithm correctly avoids those 2-dollar coins with their
reverse side up. To further demonstrate the angle accuracy,
we rotate each 2-dollar coin in the original image to its vertical
position according to the estimated orientation. We can see that
all of the obverse-sided 2-dollar coins are aligned very well
with each other.

IV. EXPERIMENTS

The demonstration in the previous section shows that
in normal conditions (moderate noise and normal lighting),
the proposed method produces sharp responses — accurate
in location and orientation. To further validate the proposed
method, we conducted experiments on real images and syn-
thetic images with very large noise.

We stress here that the goal of these experiments is not
to show that the proposed algorithm is able to outperform
the state-of-the-art algorithms on each of the tasks. Instead,
the experiments show that with very simple added processing,
the Fourier-Argand representation can be used to reach a
reasonably good performance that is comparable with (if not
better than) algorithms specifically designed for the tasks.

Therefore, it is reasonable to expect that with more careful
design for a specific task, the proposed methodology would
help increase the performance.

A. Retinal Blood Vessel Segmentation

Segmentation of the vasculature in retinal fundus images
is very important for diagnosis and monitor of progressive
disease [22]. In the green channel of the retinal images, blood
vessels typically appear as curly dark lines. In spite of the low
contrast and relatively high noise of the image, the difficulty
in detecting and segmenting blood vessels owes much to the
fact that the vessels spread in arbitrary directions.

Researchers in the medical imaging society usually solve
this problem by using a filter bank that contains lines of
several (typically 12) uniformly distributed orientations, and
often adopt complicated pre- and post-processing [24], or rely
on supervised learning [22].

We show by this experiment that using simple ridge filters
and the proposed Fourier-Argand method, a simple thresh-
olding on the response map readily gives comparable results
with the algorithms relying on significantly more sophisticated
processing and training [22].

We used a very simple scheme: 1) take the inverted green
channel of the retinal image, for its good contrast between
blood vessels and other tissues; 2) apply the Fourier-Argand
filter (elongated Gaussian, a = 1 and b = 10); 3) subtract
the local mean, i.e., the green channel filtered by a Gaussian
with σ = 10/

√
2); 4) threshold the response (the threshold

was set to be inversely proportional to the green channel).
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Fig. 8. Flowchart of blood vessel detection in retinal images using Fourier-Argand filter (elongated Gaussian a = 1, b = 10). On the STARE dataset,
the AUC for such a simple scheme (quantifying the compromise between false and true detected pixels) reaches 0.9681, similar to the AUC that results from
the much more sophisticated processing [22] (Line Detectors + SVM). Replacing Fourier-Argand filter by steerable filters results in a poorer AUC (0.9509).
Ḡ denotes the local mean of the green channel obtained by a Gaussian filtering.

TABLE II

PERFORMANCE ON STARE DATASET

The boundary of the field of view (FOV) was extended by
filling the exterior with the local mean near the boundary.
This is a standard processing to eliminate boundary effect.
See Fig. 8 for a flowchart of this scheme.

To compare with other algorithms, the same scheme was
used except that we replaced the response of Fourier-Argand
filter by the steerable filter [4] (order 4, σ = √

(5)) and
the Fourier-Argand moment ridge detector (σ = 10/

√
(2),

σc = 1) [17]. The parameters were chosen to be empirically
the best.

We tested the algorithms on the STARE dataset
(20 images) [24]. The area under the receiver operating char-
acteristic curve (AUC) was calculated (See Table II), which
is a key measurement of the quality of the response map.
We see that using a very simple processing, the proposed
Fourier-Argand filter readily produced comparable results with
the more sophisticated algorithm [22], which is a combination
of several line detectors and supervised training (SVM). The
AUC dropped to 0.9509 and 0.9449, when we replaced the
Fourier-Argand filter by steerable filter [4] and Fourier-Argand
moment [17], respectively.

B. Ridge Detection From Super Noisy Images

Ridges are commonly encountered when a high-pass filter
is applied to a signal with singularities. For instance, in a
high-pass band of a wavelet decomposition, ridges correspond
to the edges of the original image. The ability to distinguish
ridge pixels from non-ridge pixels gives the possibility to apply
different operations on pixels in smooth regions of the image
and in regions with discontinuities. This is very important for a
better representation of the image, and is crucial for problems
such as image de-noising [25], de-convolution [26], [27], etc.
However, detecting ridges in the high-pass band is difficult
due to the very poor SNR. The key to suppressing the noise
for a successful ridge detection is to exploit the consistency of

the signal along the ridge, which requires accurate estimation
of the local ridge directions and the use of highly direction-
selective filters.

We have shown in Sec. II that a small number of Fourier-
Argand basis functions are sufficient to form a very accurate
approximation of extremely elongated Gaussian functions.
Large ellipticity makes the Gaussian filter highly direction-
selective, which is a property difficult to achieve by the
steerable filter with windowed polynomial approximation [4].

To demonstrate the efficiency of the Fourier-Argand filters,
we conducted an experiment on synthetic data. We generated
10 random curves with self-intersections and varying curva-
ture. The images were corrupted by additive white Gaussian
noise of different levels, corresponding to a PSNR ranging
from −5 dB to 5 dB. At each noise level, 30 realisations of
the random noise were generated. The overall measures were
averaged over all noise realisations and all images.

Elongated Gaussian filters of ellipticity 0.9 (b = 10a) were
used to detect the ridge pixels. It is easy to see that a2

is proportional to the effective size of the filter. Therefore,
we set a to be proportional to the standard deviation of the
noise. At −5 dB, a is set to 3. Besides, we used the degree-
10 Fourier-Argand approximation in the experiment.

We compare the proposed algorithm with the steerable filter
algorithm [4], as well as the Fourier-Argand moment ridge
detector [17]. We choose the order-4 steerable ridge detector,
which uses the most direction-selective filter provided by
the authors. We set the standard deviation of the isotropic
Gaussian window used by the steerable filter to σ = √

ab/2
pixels. For the Fourier-Argand filter, we set the window size σ
to b/

√
(2) and the ridge width σc to a/

√
(2). These settings

make sure that the algorithms work at the same scale, i.e. with
the same spatial resolution, and is empirically the best choice.

Fig. 9 shows part of the ridge detection results,
where the input noisy images are of very poor quality
(PSNR −5 dB, and we can hardly see any detail with our
bare eyes). All of the response maps of the three algorithms
revealed the underlining signal to some extent. But we can see
that the Fourier-Argand filter produced much more faithful —
high contrast and better connectivity — response maps. The
detection results were obtained by applying a non-maximum
suppression to the response maps along the line perpendicular
to the estimated local ridge direction, and followed by a hard
thresholding. The threshold was chosen so that 0.5% of the
pixels were kept. In Fig. 9, we marked the true-positives by

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 31,2020 at 01:18:58 UTC from IEEE Xplore.  Restrictions apply. 



6368 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 9. Ridge detection from super noisy images. The clear input images were first corrupted by large white Gaussian noise, resulting in a PSNR of −5 dB.
The response of the Fourier-Argand filter exhibits more contrast and is more continuous, and the corresponding detection result contains less false-positively
(in red) and more true-positively (in green).

green points and the false-positives by red ones. We observed
that the proposed Fourier-Argand filter usually produces more
accurate estimation of the local direction, which benefits the
non-maximum suppression. Overall, the Fourier-Argand filter
achieved significantly better performance.

We also conducted quantitative assessment of the three
algorithms (See Table III). Firstly, we considered a detected
ridge pixel as “correct” (i.e. true-positive) if its Euclidean
distance to the ridge curve is smaller than or equal to 1 pixel.
Otherwise, the detected pixel was considered as false-positive.
Notice that we are using a quite strict criterion, since some
detected pixels close to the ridge (but not exactly within
the 1-pixel range) are considered as false-positives. We then
computed the precision (the number of true-positives over
the number of detected pixels) and the recall (the number of
true-positives over the number of ground truth ridge pixels).
Besides, we computed the mean and median value of the
distance between the detected pixels to the ridge curve, and
the mean and median values of the angle error over all ground-
truth ridge pixels.

Table III summarises the above measures for all of the
three algorithms at 5 different noise levels. We can see that
the Fourier-Argand filter constantly outperformed the other
two algorithms, especially when the noise is very large.
The steerable filter exhibited large location errors. This is
consistent with the visual inspection in Fig. 9, the large number
of false-positives dramatically decreased the location accuracy.

C. Pattern Matching Under Very Large Noise

Assisted by the high quality Fourier-Argand approximation
and the frequency estimation algorithm, a steerable matched
filtering is able to robustly detect patterns in the presence of
large noise.

To demonstrate our claim, consider the problem of finding
the letter ‘a’ in a synthetic 756×756 image containing multiple
rotated versions of the five vowels, i.e., ‘a’, ‘e’, ‘i’, ‘o’ and ‘u’
(see Fig. 10, top left, all of the letters ‘a’ are shown in red).

TABLE III

QUANTITATIVE ASSESSMENT OF THE ALGORITHMS

The image was then corrupted by a large additive Gaussian
noise (PSNR = 0 dB, Fig. 10, top right). The pattern to be
sought is an image patch containing a clear letter ‘a’. Through
the same procedures that we used in Sec. III-B, the proposed
algorithm robustly located all occurrences of the letter ‘a’ and
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Fig. 10. Demonstration of pattern recognition under large noise. The letter ‘a’ is sought in an image containing multiple rotated versions of the five vowels
(all letters ‘a’ are shown in red). The image is first corrupted by a large white Gaussian noise (PSNR = 0 dB). Searching in the noisy image with the high
quality Fourier-Argand approximation, the proposed algorithm accurately identifies all rotated versions of the letter ‘a’. The large noise only causes slight
error in the location and angle of the detect pattern. The algorithms requires less than 10 seconds to process this 756 × 756 image.

accurately retrieves their orientations. To visualise the result,
the detected letters (shown in red) were overlaid on top of the
noisy image in their estimated orientations (Fig. 10, bottom
centre). To demonstrate both the location and angle accuracy
of the algorithm, we also overlaid the detected letter ‘a’ on top
of the noiseless image (Fig. 10, bottom right): a zoom over
one of the detected patterns shows how accurate the estimated
angle is, since most of the (ground-truth) noiseless pattern
(white) is covered by the detected one (red).

The algorithm is very robust to noise. As we kept increasing
the intensity of the noise, the algorithm still correctly detected
about 82% (averaged over 100 noise realisations) of the letters
when the PSNR drops to −5 dB, in which case we can hardly
see any letter with our bare eyes.

Implemented using MATLAB on the commercial laptop
discussed in Sec. III-A, the proposed algorithm took less
than 10 seconds to search for the target pattern approximated
by 41 basis functions in the 756 × 756 grey-scale image.

V. CONCLUSION

In this paper, we have obtained the optimal steerable
basis for representing all rotated versions of a given func-
tion h(x, y). We name this optimal representation “Fourier-
Argand” representation. With this representation, rotating a
2D function amounts to multiplying the basis functions by
pure complex exponentials. This simple rotation-covariance
enables efficient computation of the convolution between a
2D signal and all rotated versions of h. With all its useful
properties, the Fourier-Argand representation brings in the
possibility to accurately approximate highly direction-selective

filters as well as complicated patterns. We further devised
an algorithm to estimate the local orientation of the pattern
in an image.2 The estimation is very accurate even if the
image suffers from large noise. As an example, we calculated,
analytically, the Fourier-Argand representation of an elongated
Gaussian function, and demonstrated its use for detection of
ridge. Besides, we showed the relation between the Fourier-
Argand representation and the Radon transform that leads to
an efficient algorithm for computing the Fourier-Argand rep-
resentation of a general digital pattern. We demonstrated the
use of this algorithm by applying it to the pattern recognition
problem, where the pattern is allowed to have an arbitrary
orientation.

Another possible application of the Fourier-Argand rep-
resentation is the design of rotation-covariant (complex)
wavelets [19]. For example, Unser et al. generalised the
Riesz transform (multi-dimensional extension of the Hilbert
transform) to higher-orders in [28], which is used to construct
steerable wavelets. The optimality of the Fourier-Argand rep-
resentation suggests that it is a more compact representation of
objects independent of their orientation. For example, in many
vision tasks, the low level filters contain rotated versions
of the same filter, which is heavily redundant [29]. The
Fourier-Argand representation could, in principle, be useful
for eliminating this redundancy. The rotation-covariance of the
Fourier-Argand representation suggests that it could also be
useful for designing rotation-invariant features [30].

2http://www.ee.cuhk.edu.hk/ tblu/demos/FourierArgand/http://www.ee.cuhk.
edu.hk/~tblu/demos/FourierArgand/

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 31,2020 at 01:18:58 UTC from IEEE Xplore.  Restrictions apply. 



6370 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

APPENDIX A
PROOF OF THEOREM 1

Since the approximation is an orthogonal projection of the
target function h onto the approximation space, we can rewrite
the square of the approximation error as follows

e2
N = 
h
2 −

N∑
n=1

1

2π

∫ π

−π

∣∣� αh, ϕn�∣∣2
dα. (33)

From the rotation-covariance property (9) of the Fourier-
Argand representation (7), we have

1

2π

∫ π

−π

∣∣� αh, ϕn�∣∣2
dα

= 1

2π

∫ π

−π

∣∣∣∣∣∑
k

�Hk, ϕn�e−ikα

∣∣∣∣∣
2

dα

=
∑

k

∑
k

�Hk, ϕn��ϕn, Hk � 1

2π

∫ π

−π
ei(k−k)α dα

=
∑

k

|�ϕn, Hk�|2. (34)

Substituting (34) back into (33), we find that minimising the
approximation error amounts to the following maximisation
problem under the orthonormality condition,

max
ϕ1,ϕ2,...,ϕN

N∑
n=1

∑
k

|�ϕn, Hk�|2

s.t . : �ϕn, ϕn � = δn−n . (35)

We define λk = �Hk, Hk� ≥ 0. Note that λ−k = λk if h is
real-valued. We choose k1, k2, . . . , kN ∈ Z such that

λk ≤ λkn , for all n ∈ {1, 2, . . . , N} and k �∈ {k1, k2, . . . , kN },
then the solution to (35) is given by ϕn = Hkn /

√
λkn , and

in which case, the minimum approximation error is e2
N =


h
2 − ∑N
n=1 λkn .

We prove this by induction on N . First, if N = 1, there is∑
k

|�ϕ1, Hk�|2 =
∑

k

λk

∣∣∣∣
〈
ϕ1,

Hk√
λk

〉∣∣∣∣2

≤ max
k

(λk) �ϕ1, ϕ1� = max
k

(λk),

where we used the orthonormality � Hk√
λk

,
Hk√
λk

� = δk−k . The

inequality becomes an equality iff k1 = arg max
k

λk and ϕ1 =
Hk1/

√
λk1 . Next, suppose the theorem holds for N − 1, then

N∑
n=1

∑
k

|�ϕn, Hk�|2

=
N−1∑
n=1

∑
k

|�ϕn, Hk�|2 +
∑

k

|�ϕN , Hk�|2

≤
N−1∑
n=1

λkn +
∑

k /∈{k1,k2,...,kN−1}
λk

∣∣∣∣
〈
ϕN ,

Hk√
λk

〉∣∣∣∣2

≤
N−1∑
n=1

λkn + max
k /∈{k1,k2,...,kN−1} λk,

where we used the same trick on the second term as we did
for N = 1. The equality is reached iff kN = arg max

k /∈{k1,k2,...,kN−1}
λk

and ϕN = HkN /
√

λkN . This completes the proof.
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