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ABSTRACT

We propose an efficient method for image registration based
on iteratively fitting a parametric model to the output of an
elastic registration. It combines the flexibility of elastic reg-
istration - able to estimate complex deformations - with the
robustness of parametric registration - able to estimate very
large displacement. Our approach is made feasible by us-
ing the recent Local All-Pass (LAP) algorithm; a fast and
accurate filter-based method for estimating the local defor-
mation between two images. Moreover, at each iteration we
fit a linear parametric model to the local deformation which
is equivalent to solving a linear system of equations (very fast
and efficient). We use a quadratic polynomial model however
the framework can easily be extended to more complicated
models. The significant advantage of the proposed method
is its robustness to model mis-match (e.g. noise and blur-
ring). Experimental results on synthetic images and real im-
ages demonstrate that the proposed algorithm is highly ac-
curate and outperforms a selection of image registration ap-
proaches.

Index Terms— Image registration, Iterative fitting, Elas-
tic registration, Parametric registration, Local All-Pass filters

1. INTRODUCTION

Image registration plays an important role in clinical appli-
cations [1, 2], remote sensing [3], and many other fields of
modern science. Aligning two or more images of the same
scene taken from different view points or at different times, is
known as monomodal image registration. In contrast, align-
ing images of the same scene taken by different sensors is
known as multimodal registration. In this paper, we focus
on monomodal image registration that involves two images.
One of them is refered to as the target image and the other is
the source image, and they are denoted by I1 and I2, respec-
tively. Under the assumption of brightness consistency [4],
these images are related by a displacement field u(x, y) =
(u1(x, y), u2(x, y)) as follows:

I1(x, y) = I2(x + u1(x, y), y + u2(x, y)), (1)
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where (x, y) is the pixel coordinate. Thus, the key task of
image registration is to estimate the displacement field u such
that I2 is aligned to I1.

In recent years, a variety of methods have been proposed
for image registration. These methods can be roughly split
into three groups. The first group [5, 6, 7] use a global para-
metric model to describe the displacement field, so the regis-
tration problem reduces to calculating the parameters of the
model (i.e. fast to compute). For example a linear poly-
nomial comprising 6 parameters can model transformations
such as translation, rotation and scaling [5]. However, as the
complexity of the displacement field increases more model
parameters are required and their estimation becomes prone
to local minima. In contrast, the second group of methods
[8, 9, 10, 11, 12, 13, 14] perform elastic registration and esti-
mate a displacement vector per pixel. Such methods can rep-
resent local, complex, distortions but are prone to model mis-
match [15] and require long run-times. The final group are
feature-based methods [16, 17, 18, 19] in which the displace-
ment is estimated by establishing the correspondence between
the extracted features or landmarks from the two images. The
performance of these methods are closely associated with the
feature types and the accuracy of the feature detection. Al-
though many of the above approaches perform well in some
particular scenarios, none are consistently robust in all cases
[1, 2].

In this paper, we present a novel method for parametric
image registration based on iteratively fitting the output of an
elastic registration. More precisely, we first use the recently
developed Local All-Pass (LAP) algorithm [20, 21] to obtain
an estimate of the local deformation field and then fit a para-
metric model to this estimate. This process is then iterated
until we obtain an accurate registration. The advantages of
this method are three-fold: firstly, by combining local estima-
tion with a global model, the approach can very accurately es-
timate deformations with both very large and very small dis-
placements. Secondly, as we are fitting very few parameters
to a dense deformation field, it is very robust to violations of
the brightness consistency. Finally, it is flexible, we can eas-
ily change the type and complexity of the parametric model
in the fitting process. We demonstrate these advantages us-
ing both synthetic and real images. In particular, we show
our algorithm is more accurate and robust under noise, image



Fig. 1. Diagram illustrating the flow chart of the proposed
iterative fitting method, in which4uLAPk,4ufk and Ωk are
the displacement increment estimated by the LAP algorithm
and obtained by polynomial fitting and valid region in the kth
iteration respectively. ufk is the displacement between the
original source image and the target image.

blur and information loss than a selection of standard image
registration algorithms.

Importantly, in contrast to many elastic registration meth-
ods, the LAP algorithm is very fast - on the order of seconds
to compute a dense deformation field [20, 21] - thus allow-
ing our iterative framework to be a practical approach to the
registration problem. This is supported by our experimental
results.

2. REGISTRATION BY ITERATIVE FITTING

In this section we present our iterative image registration
method. At each iteration, our method contains three key
steps: estimating the local deformation using the LAP al-
gorithm, parametric fitting using a polynomial function and
selection of a valid region in which to perform the fitting. The
technical details of these key steps are described in the rest of
this article and their connection to each other is illustrated in
Fig. 1.

Fig. 2. Diagram illustrating the equivalence of constant dis-
placement field and filtering with an all-pass filter within a
window. The local deformation field in the window R is ex-
tracted from the local all-pass filter. ∗ denotes the convolution
operator and hL is the local all-pass filter of the window.

2.1. Elastic Registration using Local All-Pass Filters

Recently, Gilliam and Blu [20, 21] proposed a fast and ac-
curate filter-based algorithm to estimate the deformation be-
tween two images, which is termed Local All-Pass (LAP) al-
gorithm. The main idea of this method is that the two images
can be related, on a local level, using an all-pass filter and the
displacement extracted from the filter, an example is shown
in Fig. 2. This process is then repeated for every pixel in the
image to obtain a dense deformation estimate.

Compared with the state-of-the-art elastic registration
methods, the LAP algorithm has three significant advantages.
First, it is a highly accurate algorithm when estimating a
deformation in which the brightness constraint is exactly
satisfied. Second, it is robust to violations of the bright-
ness consistency caused by noise corruption or illumination
change. Third, it does not require complex computation thus
is very fast and efficient.

However, although the LAP algorithm is accurate in most
cases, there are situations where it does not perform perfectly.
For example, the LAP relies upon the assumption that the de-
formation is locally constant thus it struggles when deforma-
tion is very large and highly non-constant (e.g. rotations). An-
other situation is when the brightness consistency is violated
by degradation such as image blur or loss of information. It
is these defects that we wish to remedy with our fitting ap-
proach.

2.2. Parametric fitting using a polynomial function

For this paper, we restrict the scope of our parametric fitting
to a polynomial model. Specifically, the fitting model we use
is a second order polynomial function:

uf (z) = c1 + c2z + c3z + c4zz + c5z
2 + c6z

2, (2)

where z = x+iy, z = x−iy is the complex conjugate of z, x
and y are the vertical coordinate and horizontal coordinate of
a pixel, respectively. c1, c2, c3, c4, c5 and c6 are the unknown
coefficients, and they are all complex numbers. As u is a vec-
tor field, it can easily be represented using a complex number.
Thus we use the following notation u(z) = u1(z) + i ∗ u2(z)
to represent the vector field u.

In the proposed method, estimating the displacement on
a global level is equivalent to calculating the six coefficients
in (2). They are obtained from the minimization of the differ-
ence between4uLAP and4uf . Therefore, we minimize the
following energy function:

min
c

∑
z∈Ω

|4uf (z)−4uLAP (z)|2, (3)

where c = [c1, c2, c3, c4, c5, c6]T and Ω is the valid region
which will be described in detail in Section 2.3. The solution
to (3) is equivalent to solving a linear system of equations
which is fast and efficient.



Table 1. Error comparison for the iterative fitting method and the state-of-the-art image registration methods.

Noiseless Image Noisy Image (15dB) Gaussian Blurry Image Missing Information

EMed EMean Time EMed EMean Time EMed EMean Time EMed EMean Time

Parametric Ours 0 0 18.45 0.238 0.430 19.08 0.505 0.590 32.22 0 0 38.58
algorithms AECC [22] 0.851 1.155 9.10 0.908 1.229 9.522 1.001 1.289 8.10 0.907 1.206 9.32

LAP [20] 0.006 1.189 4.60 1.799 4.076 4.52 3.118 3.415 5.94 0.011 2.131 7.94
Elastic Demons [23] 5.114 32.874 37.15 7.601 10.241 22.13 6.066 7.497 31.75 5.700 10.575 20.81

algorithms MIRT [24] 3.232 9.931 75.00 7.976 12.065 52.51 7.420 11.467 65.67 7.764 12.661 80.00
bUnwarpJ [8] 1.3402 1.4107 14.64 1.6763 1.8072 25.07 3.346 4.512 23.80 1.924 7.220 325.38

(1) Bold values indicate the best results. (2) The size of images is 388 by 584 pixels. (3) PSNR between the noisy image and original noiseless image is 15dB. (4)
The largest displacement is 61 pixels.

(a) source image (b) target image

Fig. 3. Diagram illustrating the common region (marked in
red) of source image and target image.

After obtaining the coefficients, the parametric displace-
ment field is used to warp the source image closer to the tar-
get image. Since the estimated displacement is non-integer,
it is essential to build a continuous model of image for im-
age warping. We adopt the shifted linear interpolation [25] to
obtain a high quality warped image.

2.3. Valid Region Selection - a robust region for fitting

Ideally we would use all available vectors of the deformation
field to perform the fitting. In practice, however, some regions
of the scene may only be visible in one image. Consequently
the deformation estimate in these regions may be unreliable
as the LAP algorithm works on a local level. Thus we need
to identify a common region that exists in both images and
use this region for the fitting. An example of the common re-
gion between the images to be registered is shown in Fig. 3.
In a similar manner, we also want to exclude erroneous de-
formation estimates caused by brightness change, occlusion,
missing information or noise. Therefore we want to refine the
common region to a region where we have confidence in the
deformation estimate - we call this the valid region. The valid
region is obtained and updated every iteration as follows.

In the first iteration, we use the LAP algorithm to estimate
the displacement 4uLAP between the source image and tar-
get image. The 1st valid region, Ω1, is the set of pixels that

(a) source image (b) target image (c) ugt

(d) Ir of bUnwarpJ [8](e) Ir of MIRT [24] (f) uLAP

(g) Ir of LAP [20] (h) Ir of ours (i) uf

Fig. 4. Example of image registration on synthetic images.
(c) is the ground-truth displacement field ugt. The zoom-in
regions in the yellow rectangle are shown in the top-right cor-
ner in the image.

remain within the bounds of the target image when warping
the source image with 4uLAP . In the following iterations,
we obtain a new common region using4uf(k−1) and sort the
amplitude of 4uLAP in this region from small to large. The
top 50 percent of the sorted values of 4uLAP are then set to
be the valid region Ωk, where k is the number of iteration.

3. EXPERIMENTAL RESULTS

In this section, extensive experiments are performed on both
synthetic images and real images with the proposed method.
We compare our method with the LAP algorithm [20] and
other four well-known registration methods: intensity-based



(a) source image, I2 (b) target image, I1 (c) |I2 − I1|

(d) uLAP of the LAP (e) Ir of the LAP (f) |Ir − I1| of the LAP

(g) uf of ours (h) Ir of ours (i) |Ir − I1| of ours

Fig. 5. Example of image registration on real images. (c)
is the absolute difference between the source image and tar-
get image. (f) and (i) are the absolute difference between the
registered image Ir and the target image of the LAP and the
proposed method, respectively.

image registration using residual complexity minimisation
from the Medical Image Registration Toolbox (MIRT) [24],
parametric image alignment using enhanced correlation co-
efficient maximization (AECC) [10], the Demons algorithm
based on the implementation in [23] and elastic registration
using a cubic B-spline free form deformation model imple-
mented in ImageJ (bUnwarpJ) [8]. The parameters of each
method are set to its default values. In this paper, we set the
iteration number to 5 for all the cases. All algorithms are run
on an Intel Core i7-5557U 3.4 GHz with 4 GB RAM.

3.1. Synthetic images

To show the robustness of the proposed method, we gener-
ate synthetic deformation fields and four types of situations
including noiseless images, noisy images, Gaussian blurry
images and images of missing information. The evaluation
results are shown in Table 1. Instead of evaluating the reg-
istered image quality directly, we evaluate the estimated dis-
placement field by using the Median Absolute Error (EMed)
and the Mean Absolute Error (EMean). Note that the results
are calculated in the common region and averaged over 5 dif-
ferent deformation fields. Also, the largest amplitude of dis-
placement is 61 pixels. The table shows that the proposed
method is highly accurate and outperforms the other methods
significantly in terms of displacement accuracy. In terms of

computation time, the LAP algorithm is the fastest one. Note
that the computation time of our method is not five times that
of the LAP algorithm, because, as the iterations increase, the
registered image becomes closer to the target image which
reduces the computation time of the LAP. For the AECC al-
gorithm, it is only effective for limited types of transforma-
tion with a low order. As the order becomes higher, however,
it becomes unstable. An example of image registration on
blurry images shown in Fig. 4 illustrates that the proposed
method is robust to blur. Whereas parts (d), (e) and (g) illus-
trate the artifacts caused by the other registration algorithms.
By comparing (f) and (i), we can see that the local inaccurate
estimates from the LAP are remedied after iterative fitting.

3.2. Real images

To demonstrate the practicality of the proposed algorithm, we
test our method on real photographs, captured from Huawei
Honor camera phone. The registered results obtained by the
LAP and the proposed method are shown in Fig. 5. For com-
parision, we show the absolute difference between the target
image and registered image. The PSNR values are 31.97 dB
and 30.94 dB, the SSIM values are 0.98 and 0.96 for the LAP
and the proposed method, respectively. The computation time
are 15.92 seconds and 96.97 seconds for the image of size
612 by 816 pixels, respectively. We note that the value of
PSNR and SSIM are lower than that of the LAP algorithm, it
is mainly because of the different depth of the tree and build-
ings. But we can run the LAP again with a very small window
size to improve the result. The PSNR and SSIM values in-
crease to 37.66 dB and 0.99, respectively. And this operation
is very fast.

4. CONCLUSION

An efficient and accurate iterative fitting algorithm for image
registration is proposed in this paper. The proposed method
iteratively fits a parametric deformation field to the output of a
fast elastic registration. More precisely, in each iteration, the
LAP algorithm is applied to estimate the deformation on a lo-
cal level. Then a polynomial function is used to fit this local
displacement field and obtains a global, parametric, deforma-
tion. After that, the source image is warped to the target im-
age. After several iterations, accurate displacement and high
quality registered image are obtained. Extensive experiments
showed that the proposed algorithm performs better than sev-
eral methods in terms of image quality and computaion time.

In the future work, the proposed method will be extended
to solve multimodal registration, video stabilization and video
deblurring problems. Furthermore, we will look at optimizing
the method to make it more efficient. An obvious step is to
combine the polynomial fitting with the LAP algorithm thus
reducing the number of iterations required.
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