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ABSTRACT

Recently, the plug-and-play priors (PPP) have been a popu-
lar technique for image reconstruction. Based on the basic
iterative thresholding scheme, we in this paper propose a new
iterative SURE-LET deconvolution algorithm with a plug-in
BM3D denoiser. To optimize the deconvolution process, we
linearly parametrize the thresholding function by using mul-
tiple BM3D denoisers as elementary functions. The key con-
tributions of our approach are: (1) the linear combination of
several BM3D denoisers with different (but fixed) parameters,
which avoids the manual adjustment of a single non-linear
parameter; (2) linear parametrization makes the minimization
of Stein’s unbiased risk estimate (SURE) finally boil down to
solving a linear system of equations, leading to a very fast
and exact optimization during each iteration. In particular,
the SURE of BM3D denoiser is approximately evaluated by
finite-difference Monte-Carlo technique. Experiments show
that the proposed algorithm, in average, achieves better de-
convolution performance than other state-of-the-art methods,
both numerically and visually.

Index Terms— Image deconvolution, Stein’s unbiased
risk estimate (SURE), linear expansion of thresholds (LET),
BM3D, finite-difference Monte-Carlo

1. INTRODUCTION

In this paper, we consider image deconvolution problem,
i.e. to find a good estimate of original image x0 ∈ R

N from
the following image degradation model [1]:

y = Ax0 + b (1)

where y ∈ RN is the blurred noisy image, A ∈ RN×N denotes
the convolution matrix constructed by point spread function,
b is often assumed as an additive white Gaussian noise with
variance σ2: b ∈ N(0,σ2I).

There have been a large amount of literature on this topic.
The regularization-based methods enforce a certain explicit
prior (i.e. regularizer) on the original image x0, e.g. frame-
based sparsity [2], total variation [3], FoE [4], MRF model

[5], and more complicated, possibly non-convex regulariz-
ers [6]. The related optimization algorithms typically include
iterative shrinkage/thresholding (IST) [7] and alternating di-
rection method of multipliers (ADMM) [8].

The key ingredient in both algorithms is the proximal
operator associated with the regularizer, which is essentially
an optimization problem corresponding to a simple denois-
ing of intermediate solutions. The algorithms are able to
decouple the handling of the convolution operator A from
that of the regularizer. To this end, the plug-and-play priors
(PPP) have been proposed to replace the proximal map-
ping by the existing high-quality denoiser. For example,
BM3D [9], WNNM [10], and NCSR [11] have been used to
replace the proximal operator in IST, FISTA and ADMM for
non-linear inverse scattering [12], tomographic reconstruc-
tion [13–15], and image superresolution [16]. Given more
flexibility, the PPP scheme often yields better restoration
quality than regularization-based methods, however, it fails
to be interpreted as an optimization problem of a fixed cost
function [12].

The SURE-LET methodology also provides an efficient
and flexible framework for image denoising [17] and decon-
volution [1, 18], which allows for the use of any existing
solvers as the basis functions of the linear parametrization,
and the optimal linear weights are automatically obtained by
minimizing Stein’s unbiased risk estimate (SURE). Thanks
to the quadratic nature of SURE, the optimization of the lin-
ear coefficients finally reduces to solving a low-order linear
system of equations, that is very fast and exact [1, 17].

Combining the PPP idea and the SURE-LET framework,
we in this work propose an iterative SURE-LET scheme, with
the linear parametrization of thresholding function using sev-
eral BM3D denoisers during each iterate. This leads to the
fast and exact optimization of SURE, and achieves the state-
of-the-art deconvolution performance.

2. SURE EVALUATION OF BM3D DENOISER

We begin with the SURE evaluation for the BM3D de-
noiser, which is necessary for the proposed SURE-LET algo-
rithm.



Any estimated image x̂ can be expressed as a function of
the observed image y with some parameter θ, i.e. x̂θ = f(y;θ).
In the context of pure denoising problem (i.e. A = I in (1)),
the SURE of denoised image x̂θ is given by [17, 19]:

SURE =
1
N
‖̂xθ −y‖22 +

2σ2

N
Tr(Jy (̂xθ))−σ2

which is an unbiased estimate of mean squared error (MSE),
defined as ‖̂xθ −x0‖

2
2/N.

The BM3D is a complicated denoising procedure [9],
thus, it is difficult to write the function f in an explicit form,
and exactly compute the Jacobian matrix Jy (̂xθ). Instead,
we simply treat the BM3D as a black box, and use finite-
difference Monte-Carlo (FDMC) technique to approximate
the trace term [19, 20]:

Tr(Jy (̂x)) = E

{
nT

0
f(y + εn0)− f(y)

ε

}
(2)

with a very small number ε. Here, n0 ∼N(0,I) is a generated
standard white Gaussian noise, f(y + εn0) denotes the BM3D
denoised image with the input image being y + εn0—a per-
turbed version of y. In practice, we found that only one ran-
dom realization of n0 and ε = 0.1σ could provide the sufficient
accuracy for the trace computation.

Notice that the BM3D allows for an input parameter θ, re-
lated to the noise standard deviation σ [9]. In general, θ =

σ yields the best denoising quality. To check the reliabil-
ity of SURE (computed by FDMC) w.r.t. the actual MSE,
we vary the BM3D parameter θ by θ = k ·σ with the factor
k ∈ [0.1,3.5], and show the comparisons between SURE and
MSE for each value of θ in Fig.1. The closeness of the two
curves demonstrates that the FDMC evaluation of SURE is
accurate for the BM3D denoiser.
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Fig. 1. MSE/SURE evaluations for BM3D denoising with various
parameters k = θ/σ.

3. THE BM3D-BASED ITERATIVE SURE-LET
ALGORITHM

3.1. The iterative thresholding scheme with BM3D de-
noiser

The general iterative thresholding algorithm takes the fol-
lowing form (assuming that ‖A‖2 = 1 for the normalized blur

kernel) [21]: 
z(i) = y−Ax(i)

u(i) = x(i) + ATz(i)

x(i+1) = D(u(i);θ(i))

(3)

where z(i) denotes the residual error of each step. The op-
eration of D(·, θ) performs denoising of input ‘noisy’ image
u(i) for each iteration, with some parameter θ(i). The sim-
ple soft/hard thresholding as D (with θ as a threshold) yields
the famous IST/IHT algorithm [7]. Based on PPP scheme
[12,13], we propose to use BM3D denoiser asD to solve im-
age deconvolution. In addition, it is often suggested to choose
the standard deviation of the residual error as the parameter

value, i.e. θ(i) = σ(i) =

√
‖z(i)‖22/N [21].

3.2. The proposed iterative SURE-LET scheme

However, we empirically found that the above choice of
θ(i) is not optimal for the deconvolution problem. And, it is
rather time consuming, if we use exhaustive search to find
the optimal θ(i) by minimizing MSE of ‖x(i)−x0‖

2
2/N for each

step.
To speed up the optimization, we adopt the linear expan-

sion of thresholds (LET) strategy [1, 17, 18, 22], i.e. represent
the denoising function D in (3) by a linear combination of
a small number of BM3D denoisers with different, but fixed
parameters θ(i)

k , i.e.

x(i+1) =

K∑
k=1

a(i)
k D

(
u(i);θ(i)

k

)
= D(i)a(i) (4)

where K is the number of linear coefficients a(i)
k to be de-

termined, and generally K � N. D(i)a(i) is a matrix nota-
tion, where D(i) =

[
D(u(i);θ(i)

1 ), ...,D(u(i);θ(i)
K )

]
∈ RN×K , a(i) =

[a(i)
1 , ...,a

(i)
K ]T ∈ RK . Now, the iterative deconvolution algo-

rithm essentially amounts to finding the linear weights a(i),
such that the MSE

MSE =
1
N

∥∥∥x(i+1)−x0
∥∥∥2

2 (5)

is minimized.
Since the actual MSE is not accessible in practice due to

the unknown original image x0, we use the SURE as a practi-
cal substitute of MSE, given as [1, 19]1:

SURE =
∥∥∥x(i+1)

∥∥∥2
2 −2yTA−Tx(i+1) + 2σ2Tr

(
A−TJy(x(i+1))

)
(6)

Substituting x(i+1) of (4) into the SURE (6), we obtain:

SURE =
∥∥∥D(i)a(i)

∥∥∥2
2 −2yTA−TD(i)a(i)

+ 2σ2
K∑

k=1

a(i)
k Tr

(
A−TJy(D(u(i);θ(i)

k ))
)

(7)

1Here, we omit the factor 1/N and the last constant term ‖x0‖
2
2 for brevity,

since they are irrelevant to the optimization process.



Since the SURE is a quadratic function of a(i), minimizing
SURE w.r.t. a(i) boils down to solving a simple K-order linear
system of equations:

(D(i))TD(i)a(i) = (D(i))TA−1y−σ2c(i) (8)

where c(i) = [c(i)
1 , ...,c

(i)
K ]T ∈ RK with

c(i)
k = Tr

(
A−TJy(D(u(i);θ(i)

k ))
)

Thus, the solution to (8) automatically constitutes the best
reconstruction performance for each step in terms of MSE/

SURE.
The algorithm flowchart is summarized in Fig.2. The

main computation of each iterate is to build and solve (8).
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Fig. 2. The proposed iterative SURE-LET scheme based on
BM3D denoiser.

It is also worth noting that the corresponding MSE mini-
mization for each step leads to

(D(i))TD(i)a(i) = (D(i))Tx0 (9)

with the solution, namely iterative MSE-LET, serving as a
counterpart to the iterative SURE-LET.

3.3. Implementation issues

Notice that the SURE requires to compute the inverse
A−1, which may yield the numerical instability for the ill-
conditioned A. In practice, we use a regularized inverse A−1

β
instead:

A−1
β = (ATA +βI)−1AT

with a parameter β. Experimentally, we found that β= 10−5σ2

is a good choice for the accuracy.
Regarding the trace term of SURE, we applies FDMC in

Section 2 to compute c(i)
k for k = 1,2, ...,K:

Tr
(
A−T
β Jy(D(u(i);θ(i)

k ))
)

= E

{(
A−1
β n0

)TD(u(i)
ε )−D(u(i))

ε

}
where u(i)

ε denotes the i-th update from the initial perturbed
y + εn0.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Experimental setting

We consider 7 standard test images of size 512 × 512:
Lena, House, Bridge, California, Mandrill, Couple and Mix-
ture2. They are blurred by 4 typical kernels: (1) rational filter:
h(i, j) = (1+ i2 + j2)−1 for i, j = −7, ...,0, ...,7; (2) separable fil-
ter: [1 4 6 4 1]/16 along both vertical and horizontal direc-
tions; (3) 5×5 uniform blur; (4) 9×9 uniform blur; and then
contaminated by Gaussian noise with σ = 1,5,10,30,50,100,
respectively [1, 22, 24].

For our algorithm, we use K = 3 BM3D denoisers with
θ(i)

1 = 0.1σ(i), θ(i)
2 = σ(i) and θ(i)

3 = 10σ(i) for all test cases.
We compare with recent high-quality deconvolvers, includ-
ing SURE-LET deconv [1], BM3D-DEB [23], BM3D-IDD
[24], NCSR [11], EPLL [25] and a learning-based method—
MLP [26]3. The deconvolution performance is measured by
the peak signal-to-noise ratio (PSNR), defined as (in dB) [1,
22, 24]:

PSNR = 10× log10

(
2552

‖x̂−x0‖2/N

)

4.2. Experimental results

First, we show the variations of PSNR by SURE/MSE-
LET during the iterations in Fig.3, which demonstrates that
the SURE-LET estimate is very close to that by MSE-LET.
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Fig. 3. Variations of PSNR during iterative SURE/MSE-LET pro-
cess.

Due to the page limitation, Table 1 reports only the aver-
age PSNR results (in dB) of all the 7 images, under various
blurs and noise levels. ‘ISL-BM3D’ and ‘IML-BM3D’ stand
for our proposed BM3D-based iterative SURE/MSE-LET al-
gorithms, where the results of oracle MSE-LET are shown in
italics. The best PSNR results within 0.1dB margin are high-
lighted by boldface. Figs.4–5 show the visual comparisons
between various methods.

2All the standard test images can be downloaded in http:

//www.imageprocessingplace.com/root_files_V3/image_

databases.htm.
3Note that the codes of NCSR [11] and MLP [26] do not contain the

implementation of deconvolution with rational and separable filters. Thus,
we cannot report the results in Table 1.

 http://www.imageprocessingplace.com/root_files_V3/ image_databases.htm
 http://www.imageprocessingplace.com/root_files_V3/ image_databases.htm
 http://www.imageprocessingplace.com/root_files_V3/ image_databases.htm


Table 1. PSNR comparison of some state-of-the-art deconvolution methods (in dB)

σ 1 5 10 30 50 100 1 5 10 30 50 100
blur type rational filter separable filter

SURE-LET deconv [1] 32.10 26.84 25.17 22.94 22.02 20.73 32.17 28.96 27.36 24.62 23.29 21.57
BM3D-DEB [23] 32.08 26.94 25.12 22.61 21.60 19.97 32.16 29.20 27.54 24.65 23.24 20.83
BM3D-IDD [24] 31.95 27.29 25.27 22.76 21.65 20.07 32.50 29.64 28.00 24.87 23.30 21.07

EPLL [25] 29.35 25.84 24.23 22.13 21.37 17.45 30.10 28.45 27.05 24.28 23.05 17.88
ISL-BM3D 32.74 27.63 25.84 23.24 22.26 20.81 33.22 29.91 28.20 25.09 23.55 21.60
IML-BM3D 32.91 27.76 25.91 23.27 22.27 20.82 33.30 29.96 28.26 25.13 23.57 21.60

blur type 5×5 uniform 9×9 uniform
SURE-LET deconv [1] 31.21 27.47 25.91 23.74 22.71 21.32 28.00 24.96 23.84 22.38 21.71 20.65

BM3D-DEB [23] 31.27 27.61 26.08 23.75 22.63 20.59 28.10 25.05 23.86 22.14 21.43 19.98
BM3D-IDD [24] 31.69 28.04 26.32 23.80 22.57 20.64 28.78 25.46 24.22 22.45 21.61 20.20

NCSR [11] 28.21 27.92 26.02 20.36 — — 28.11 25.31 23.98 19.55 — —
EPLL [25] 29.09 26.26 25.06 23.34 22.39 17.97 25.99 23.75 22.95 21.86 21.18 17.54
MLP [26] 25.99 25.58 25.19 24.03 22.84 20.88 25.74 24.92 24.13 22.48 21.63 20.36

ISL-BM3D 32.08 28.23 26.61 24.16 22.99 21.33 28.56 25.70 24.52 22.79 21.99 20.77
IML-BM3D 32.24 28.31 26.70 24.24 23.01 21.34 28.75 25.78 24.58 22.84 22.03 20.80

observed
PSNR = 17.30dB

SURE-LET deconv [1]
PSNR = 23.73dB

MLP [26]
PSNR = 23.77dB

BMM3D-DEB [23]
PSNR = 23.55dB

BM3D-IDD [24]
PSNR = 23.59dB

our ISL-BM3D
PSNR = 23.99dB

Fig. 4. Visual restoration quality (Couple, 9×9 uniform, σ = 30).

We can see that compared to other state-of-the-art, the
proposed ISL-BM3D achieves the best performance, and sim-
ilar results with IML-BM3D. Recognizing that the BM3D de-
noiser is a key ingredient, we would also like to emphasize the
advantage of the proposed iterative SURE-LET framework.
From Table 1, we can see that the proposed algorithm out-
performs BM3D-DEB and BM3D-IDD by, in average, 0.8dB
and 0.5dB, which is a substantial improvement brought by the
iterative SURE-LET optimization scheme.

5. CONCLUSIONS

In this paper, we presented a new iterative SURE-LET
scheme for image deconvolution. Incorporating BM3D de-
noiser as the basis functions, this algorithm achieves the most

observed
PSNR = 20.60dB

SURE-LET deconv [1]
PSNR = 24.11dB

EPLL [25]
PSNR = 23.13dB

BMM3D-DEB [23]
PSNR = 23.90dB

BM3D-IDD [24]
PSNR = 23.98dB

our ISL-BM3D
PSNR = 24.40dB

Fig. 5. Visual restoration quality (California, rational, σ = 5).

state-of-the-art performance. Notably, the proposed method
provides a fast optimization framework of SURE-LET, and
a flexible way by PPP for image deconvolution. In this pa-
per, we use only 3 basis functions to demonstrate the effec-
tiveness. One can expect better results, if incorporating more
high-quality denoisers as the LET bases.

Future works may include the convergence analysis, faster
algorithm/implementation and the better plug-in basis func-
tions of SURE-LET.
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