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ABSTRACT

A proper selection of regularization parameter is essential for
regularization-based image deconvolution. The main contri-
bution of this paper is to propose a new form of general-
ized cross validation (GCV) as a criterion for this optimal
selection. Incorporating a nil-trace non-linear estimate, we
develop this new GCV based on Stein’s unbiased risk esti-
mate (SURE)—an unbiased estimate of mean squared error
(MSE). The key advantage of this GCV over SURE is that
it does not require the knowledge of noise variance. We ex-
emplify this criterion with both Tikhonov regularization and
`1-based sparse deconvolution. In particular, we develop a
recursive evaluation of GCV for the `1-estimate based on it-
erative soft-thresholding (IST) algorithm. Numerical experi-
ments demonstrate the nearly optimal parameter selection and
negligible loss of its resultant deconvolution quality.

Index Terms— Image deconvolution, regularization pa-
rameter, generalized cross validation (GCV), Stein’s unbiased
risk estimate (SURE).

1. INTRODUCTION

Image deconvolution attempts to solve the original image
x0 ∈ R

N from the following linear observation model [1–3]:

y = Hx0 + ε (1)

where y ∈RN is the observed image, H ∈RN×N denotes a con-
volution matrix, ε ∈ RN denotes an additive white Gaussian
noise with variance σ2 > 0. Regularization technique formu-
lates the estimation of x0 as [1–3]:

P : min
x

1
2

∥∥∥Hx−y
∥∥∥2

2 +λ ·J(Dx)︸                        ︷︷                        ︸
L(x)

(2)

where λ > 0 is a regularization parameter that balances the
data fidelity and the regularity enforcement J(Dx).

Note that the solution to (2), denoted by x̂, in general
strongly depends on the value of λ [3–5]. The Stein’s un-
biased risk estimate (SURE) has been developed as a popular

criterion for this selection (if matrix H is invertible) [6, 7]:

SURE =
1
N

∥∥∥̂x−H−1y
∥∥∥2

2 +
2σ2

N
Tr

(
H−TJy (̂x)

)
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σ2

N
Tr

(
H−1H−T

)
(3)

which is a statistical substitute for the mean squared error
(MSE):

MSE =
1
N
E
{∥∥∥̂x−x0

∥∥∥2
2

}
(4)

Here, Jy (̂x) ∈ RN×N in (3) is a Jacobian matrix defined as [4]:[
Jy (̂x)

]
m,n

=
∂x̂m

∂yn

which measures the sensitivity to change of x̂, which is deter-
mined by y.

Note that SURE (3) depends on y only, and thus, can be
practically used instead of MSE (4). Recently, SURE has
been extensively applied as an optimization tool for wavelet-
based denoising [8, 9], Wiener-type filtering [7, 10, 11] and
`1-based sparse deconvolution [3–5]. However, the SURE re-
quires the knowledge of noise variance σ2 (see (3)), which
is often unknown in practice. The purpose of this paper is to
propose a novel criterion that is independent of σ2, such that
the selected parameter λ leads to nearly optimal deconvolu-
tion performance in terms of MSE.

2. A NOVEL SURE-BASED NON-LINEAR GCV

2.1. The original GCV

Limited to a linear estimate x̂ = Uy, the original form of
GCV, first proposed in [12], is given as:

GCV =

∥∥∥(I−UH)y
∥∥∥2

2(
Tr(I−UH)

)2

which has been proved as a modified version of predicted-
SURE in [13], where the p-SURE for x̂ = Uy is:

p-SURE =
1
N

∥∥∥Uy−y
∥∥∥2

2 +
2σ2

N
Tr

(
U
)
−σ2

which is an unbiased estimate of predicted-MSE:

p-MSE =
1
N
E
{∥∥∥Hx̂−Hx0

∥∥∥2
2

}



However, this traditional GCV (related to predicted-SURE)
has two main drawbacks:

(1) it can be applied to linear estimate only;
(2) it is somewhat a modified measure of predicted-MSE,

which, compared to MSE, only takes a partial account for the
actual deconvolution performance [4, 5].

Now, we adopt a method similar to [13] to develop a new
form of GCV, corresponding to SURE (rather than p-SURE).
We are then able to optimize parameters for any (non-linear)
estimate x̂, without the knowledge of noise variance.

2.2. A novel SURE-based non-linear GCV

For any (non-linear) estimate x̂, the SURE is given by (3).
We now consider the following linear combination:

x = αH−1y + (1−α)̂x = x̂ +α(H−1y− x̂)︸        ︷︷        ︸
bias of x w.r.t. x̂

weighted by a parameter α. Then, similar to (3), the SURE of
the estimate x is:

SURE(x) =
1
N

∥∥∥x−H−1y
∥∥∥2

2 +
2σ2

N
Tr

(
H−TJy(x)

)
−
σ2

N
Tr

(
H−1H−T

)
To make SURE(x) to be independent of σ2, we let

Tr
(
H−TJy(x)

)
= 0

which yields that

α =
Tr(H−TJy (̂x))

Tr(H−TJy (̂x))−Tr(H−TH−1)

Thus, the matrix associated with x, i.e. H−TJy(x), has trace 0.
The estimate x, therefore, is called nil-trace (non-linear) esti-
mate. Thus, the SURE procedure on this estimate becomes:
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∥∥∥2
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(5)

where the constant C = σ2

N Tr
(
H−1H−T

)
.

Thus, we obtain a new objective functional—non-linear
GCV (5), the minimization of which is equivalent to that of
the SURE of x. Note that there is no need of noise variance
σ2 to compute (5).

For fixed regularizer J(Dx), the GCV can be used to op-
timize the parameter λ in (2), instead of SURE. An intuitive

idea for this optimization is to repeatedly evaluate this GCV
for the estimates x̂ obtained by various tentative values of λ,
then, the minimum GCV indicates the optimal λ (see Fig.1
for example). This global search has been frequently used
in [3, 5, 14].

3. APPLICATION TO IMAGE DECONVOLUTION

Now, we exemplify the GCV criterion with two typ-
ical deconvolution methods: Tikhonov regularization and
`1-based sparse estimation.

3.1. Tikhonov regularization

Considering the regularizer J(Dx) = 1
2 ‖Dx‖22, Tikhonov

regularization gives the following estimate [10]:

x̂ =
(
HTH +λDTD

)−1
HT︸                    ︷︷                    ︸

U

y

where D denotes discrete Laplacian operator in this paper.
Due to the linearity of Tikhonov estimate, we have Jy (̂x) = U,
and the GCV becomes:

GCV =

∥∥∥(U−H−1)y
∥∥∥2

2(
Tr(H−T(U−H−1))

)2 (6)

3.2. `1-based sparse deconvolution

A typical wavelet-based synthesis formulation for the `1-
based sparse deconvolution is given as [1, 2]:

ĉ = min
c

1
2

∥∥∥HRc−y
∥∥∥2

2 +λ · ‖c‖1︸                       ︷︷                       ︸
L(c)

(7)

to solve the problem y = HRc0 +ε. Here, R denotes a wavelet
reconstruction, c denotes the wavelet coefficients. We apply a
basic iterative soft-thresholding (IST) algorithm to solve (7),
which updates c as [2]:

c(i+1) = Ttλ

(
c(i)− t

(
RTHTHRc(i)−RTHTy

)︸                                  ︷︷                                  ︸
u(i)

)
(8)

where t is a step size. The GCV of the `1-estimate ĉ can be
evaluated in a recursive manner. For the update c(i), the GCV
is:

GCV(c(i)) =

∥∥∥c(i)−R−1H−1y
∥∥∥2

2(
Tr(H−TR−TJy(c(i)))−Tr(H−TR−TR−1H−1)

)2

where the recursion of Jacobian matrix is [15]:

Jy(c(i+1)) = P(i)
( (

I− tRTHTHR
)︸              ︷︷              ︸

A

Jy(c(i)) + tRTHT
)

(9)



with the diagonal element of P(i) ∈ RN×N :[
P(i)

]
n,n

=

 1, if |u(i)
n | > tλ

0, if |u(i)
n | ≤ tλ

Thus, the final GCV of ĉ is obtained by the IST iteration
and the recursion of Jacobian matrix until convergence (see
Fig.3-(1) for example).

To simplify this example, we in this paper only consider
decimated Haar1, which implies that R−1 = RT = D, where D
denotes Haar decomposition. Thus, the GCV becomes:

GCV(c(i)) =

∥∥∥c(i)−DH−1y
∥∥∥2

2(
Tr(H−TRJy(c(i)))−Tr(H−TH−1)

)2 (10)

3.3. Regularization of GCV

Note that unlike the original GCV, the SURE-based GCV
in (6) and (10) needs to compute the inverse H−1, which may
cause numerical instability for the ill-conditioned convolution
matrix H. In practice, for stable computation, we use H−1

β to
replace H−1:

H−1
β = (HTH +βI)−1HT

with a regularization parameter β. In this paper, we empiri-
cally choose β = 10−4, which guarantees both numerical sta-
bility and optimality.

3.4. Monte-Carlo for practical computation

Note that the difficulty for computing GCV lies in the
trace terms of (6) and (10). For 2-D case, due to the lim-
ited computational resources (e.g. RAM), it is impractical to
store the huge matrices and compute the trace.

For the Tikhonov regularization, the trace term of (6) can
be easily computed in Fourier domain. For the `1-estimate
(10), Monte-Carlo (MC) simulation provides an alternative
way to compute the trace Tr(H−TRJy(c(i))) by the following
fact [9]:

Tr(H−TRJy(c(i))) = E
{
nT

0 H−TRJy(c(i))n0︸     ︷︷     ︸
n(i)

c

}
(11)

where n0 ∼ N(0,IN). By (9), with this input noise n0, the
noise evolution during IST update is:

Jy(c(i+1))n0︸        ︷︷        ︸
n(i+1)

c

= P(i)AJy(c(i))n0︸     ︷︷     ︸
n(i)

c

+tP(i) DHTn0︸  ︷︷  ︸
n1

(12)

where A is expressed in (9). Notice that n1, n(i)
c and H−TRn(i)

c
can be computed by Fourier and wavelet transforms, without
the storage of huge matrices. The MC evaluation is summa-
rized as Algorithm 1.

1Please keep in mind that the purpose of this paper is to demonstrate
the effectiveness of the proposed GCV as a novel criterion for parameter
selection, rather than to achieve the best deconvolution quality. The simple
decimated Haar should suffice.

Algorithm 1: MC for GCV evaluation (for `1-estimate)

for i = 1,2, ... (IST iteration) do
1 compute c(i) by (8);
2 compute n1 and n(i)

c by (12);
3 compute the trace of H−TRJy(c(i)) by (11);
4 compute GCV of i-th iterate by (10);

end

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we are going to implement the pro-
posed GCV-based parameter selection method for both ex-
amples mentioned above. We stress here that we perform
SURE/MSE minimization to obtain the optimal value of λ,
denoted as λopt, as the benchmark for comparison with the
resultant λGCV by the proposed method. We use PSNR2 to
evaluate deconvolution quality, where the best PSNRopt and
PSNRGCV denote the resultant quality with the parameters
λopt and λGCV, respectively. The PSNR loss is defined as
their difference.

We consider two typical test images Cameraman and
House, blurred by the following two kernels, commonly used
in the literature [1, 10]:

• Type-I: rational filtering: h(i, j) = K · (1 + i2 + j2)−1;

• Type-II: Gaussian kernel: h(i, j) = K ·exp
(
−

i2+ j2

2s2

)
with

s = 2.0;

Here, K is a normalization factor, s.t.
∑

i, j h(i, j) = 1. The
noise levels we consider here correspond to BSNR3 being
from 40dB to 10dB.

4.1. Tikhonov regularization

Fig.1 shows the results of two degradation cases. We
can see that the GCV has the same trend as MSE/SURE
for various values of λ, and yields very similar results with
MSE/SURE minimization.

We perform the global optimization of λ (as shown in
Fig.1) for various BSNR, and show the results in Fig.2. We
can see that the GCV selected values of λ are always very
close to that by MSE/SURE selection for various images,
blurs and noise levels.

2For a typical 8-bit grayscale image, peak signal-to-noise ratio (PSNR) of
any estimate x̂ w.r.t. true x0 is defined as: 10log10

(
2552

‖̂x−x0‖
2
2/N

)
in dB [1, 11].

3Blur signal-to-noise ratio (BSNR) is defined as:

10log10

( ‖Hx0−mean(Hx0)‖22
Nσ2

)
in dB [1, 11].
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Fig. 2. Optimal values of λ under various BSNR (Tikhonov).

4.2. `1-based sparse deconvolution

We use IST (8) to obtain the `1-based estimate. Fig.3-
(1) shows the recursive SURE and GCV with fixed λ = 0.1
during the iterations. Repeatedly implementing the IST for
various values of λ (until convergence), we obtain the SURE
and GCV of the corresponding `1-based estimate, shown in
Fig.3-(2).

(1) iteration with fixed λ = 0.1
recursive SURE and GCV
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Fig. 3. Estimated λ by GCV (`1-estimate).

We perform the global optimization of λ for various
BSNR, and show the results in Fig.4.

Finally, to demonstrate the influence of estimation accu-
racy of λ upon the deconvolution quality, we evaluate the
PSNR loss, which has been defined at the beginning of Sec-
tion 4. The results are shown in Fig.5. We can see that the
PSNR loss is always within 0.03dB for Tikhonov and 0.3dB
for `1-estimate, which indicates that the GCV selection could
yield nearly optimal performance, without the knowledge of
noise level.
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Fig. 4. Optimal values of λ under various BSNR (`1-estimate).
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Fig. 5. PSNR loss by GCV (Tikhonov and `1-estimate).

Fig.6 shows a visual example, which demonstrates that
the GCV selection yields very similar result with MSE/SURE
optimization.

observed image MSE/SURE optimized GCV optimized
PSNR=22.43dB PSNR=24.96dB PSNR=24.89dB

Fig. 6. A visual example of Cameraman.

5. CONCLUSIONS

In this paper, we proposed a novel SURE-based non-
linear GCV as a criterion for selection of regularization pa-
rameter. Without knowledge of noise variance, this method
yields negligible loss of deconvolution quality, compared to
the MSE-based optimization. Not limited to image recovery,
this proposed GCV can be efficiently used for many appli-
cations, e.g. sparse reconstruction, regression analysis and
model selection.

6. ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China under grant number 61401013 and the Hong
Kong Research Grant Council (CUHK14210617).



7. REFERENCES

[1] Hanjie Pan and Thierry Blu, “An iterative linear expansion of thresh-
olds for `1-based image restoration,” IEEE Transactions on Image Pro-
cessing, vol. 22, no. 9, pp. 3715–3728, 2013.

[2] Amir Beck and Marc Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging Sci-
ences, vol. 2, no. 1, pp. 183–202, 2009.

[3] R. Giryes, M. Elad, and Y.C. Eldar, “The projected GSURE for auto-
matic parameter tuning in iterative shrinkage methods,” Applied and
Computational Harmonic Analysis, vol. 30, no. 3, pp. 407–422, 2010.

[4] S. Ramani, Zhihao Liu, J. Rosen, J. Nielsen, and J.A. Fessler, “Regu-
larization parameter selection for nonlinear iterative image restoration
and MRI reconstruction using GCV and SURE-based methods,” IEEE
Transactions on Image Processing, vol. 21, no. 8, pp. 3659–3672, 2012.

[5] C. Vonesch, S. Ramani, and M. Unser, “Recursive risk estimation for
non-linear image deconvolution with a wavelet-domain sparsity con-
straint,” in Proceedings of the 15th IEEE International Conference
on Image Processing, San Diego CA, USA, October 12-15, 2008, pp.
665–668.

[6] Charles M Stein, “Estimation of the mean of a multivariate normal
distribution,” The Annals of Statistics, pp. 1135–1151, 1981.

[7] Y.C. Eldar, “Generalized SURE for exponential families: Applications
to regularization,” IEEE Transactions on Signal Processing, vol. 57,
no. 2, pp. 471–481, 2009.

[8] David L Donoho and Iain M Johnstone, “Adapting to unknown smooth-
ness via wavelet shrinkage,” Journal of the American Statistical Asso-
ciation, vol. 90, no. 432, pp. 1200–1224, 1995.

[9] T. Blu and F. Luisier, “The SURE-LET approach to image denoising,”
IEEE Transactions on Image Processing, vol. 16, no. 11, pp. 2778–
2786, 2007.

[10] F. Xue, F. Luisier, and T. Blu, “Multi-Wiener SURE-LET deconvo-
lution,” IEEE Transactions on Image Processing, vol. 22, no. 5, pp.
1954–1968, 2013.

[11] F. Xue and T. Blu, “A novel SURE-based criterion for parametric PSF
estimation,” IEEE Transactions on Image Processing, vol. 24, no. 2,
pp. 595–607, 2015.

[12] G.H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation
as a method for choosing a good ridge parameter,” Technometrics, vol.
21, no. 2, pp. 215–223, 1979.

[13] Ker-Chau Li, “From Stein’s unbiased risk estimates to the method of
generalized cross validation,” Annals of Statistics, vol. 13, no. 4, pp.
1352–1377, 1985.

[14] F. Xue, Anatoly G. Yagola, J.Q. Liu, and G. Meng, “Recursive SURE
for iterative reweighted least square algorithms,” Inverse Problems in
Science and Engineering, vol. 24, no. 4, pp. 625–646, 2016.

[15] Feng Xue, Runle Du, and Jiaqi Liu, “A recursive predictive risk es-
timate for proximal algorithms,” in Proceedings of the 41st IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing,
Shanghai, China, March 20-25, 2016, pp. 4498–4502.


	 Introduction
	 A novel SURE-based non-linear GCV 
	 The original GCV
	 A novel SURE-based non-linear GCV 

	 Application to image deconvolution 
	 Tikhonov regularization
	 1-based sparse deconvolution 
	 Regularization of GCV
	 Monte-Carlo for practical computation

	 Numerical results and discussions
	 Tikhonov regularization
	 1-based sparse deconvolution 

	 Conclusions
	 Acknowledgments
	 References

