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ABSTRACT
Recently, total variation (TV)-based regularization has be-
come a standard technique for signal denoising. The re-
construction quality is generally sensitive to the value of
regularization parameter. In this work, based on Cham-
bolle’s algorithm, we develop two data-driven optimization
schemes based on minimization of Stein’s unbiased risk esti-
mate (SURE)—statistically equivalent to mean squared error
(MSE). First, we propose a recursive evaluation of SURE to
monitor the estimation error during Chambolle’s iteration;
the optimal value is then identified by the minimum SURE.
Second, for fast optimization, we perform alternating up-
date between regularization parameter and solution within
Chambolle’s iteration. We exemplify the proposed methods
with both 1-D and 2-D signal denoising. Numerical experi-
ments show that the proposed methods lead to highly accurate
estimate of regularization parameter and nearly optimal de-
noising performance.

Index Terms— Signal denoising, total variation (TV),
Stein’s unbiased risk estimate (SURE), Chambolle’s algo-
rithm

1. INTRODUCTION

Consider the standard signal denoising problem: find a
good estimate of x0 ∈ R

N from the following observation
model [1–4]:

y = x0 + ε (1)

where y ∈ RN is the observed noisy data, ε ∈ RN is an additive
Gaussian white noise with known variance σ2 > 0.

Since the seminal work of ROF [5], total variation(TV)-
based regularization has become a standard technique for sig-
nal denoising, which is particularly effective for recovering
those signals with piecewise constant region while preserv-
ing edges [5, 6]. It formulates the denoising problem as the
following TV-minimization [2, 3, 5, 7, 8]:

min
x

1
2

∥∥∥y−x
∥∥∥2

2 +λ ·TV(x)︸                     ︷︷                     ︸
L(x)

(2)

In this paper, we choose Chambolle’s algorithm to solve
the TV minimization [9], since it is quite fast and probably

one of the most popular algorithms in the recent decade. In
the original algorithm of [9], the TV follows the standard non-
smooth definition. However, we consider here a smooth ap-
proximation of isotropic TV, defined as:

TV(x) =


∑

n

√∣∣∣(Dx)n
∣∣∣2 +β (1-D case)∑

n

√∣∣∣(D1x)n
∣∣∣2 +

∣∣∣(D2x)n
∣∣∣2 +β (2-D case)

(3)

for some small β > 0. Here D1 and D2 denote the horizontal
and vertical first-order differences, respectively. Such con-
tinuously differentiable definition of TV would facilitate the
computation of SURE (see Eq.(10) in Section 2.2.1).

For a pleasant denoising quality, it is essential to select
a proper value of the regularization parameter λ, to keep a
good balance between data fidelity and TV enforcement [7,9].
Discrepancy principle has been used to tune this parameter in
Chambolle’s algorithm [9].

We denote the solution to (2) by x̂λ, to emphasize the
strong dependency of the estimate upon λ. In this paper, we
quantify the denoising performance by the mean squared er-
ror (MSE) [1, 10]:

MSE =
1
N
E
{∥∥∥̂xλ−x0

∥∥∥2
2

}
(4)

and attempt to select a value of λ, such that the corresponding
solution x̂λ achieves minimum MSE. Notice that MSE (4) is
inaccessible due to the unknown x0. In practice, Stein’s unbi-
ased risk estimate (SURE) has been proposed as a statistical
substitute for MSE [1, 11]:

SURE =
1
N

∥∥∥̂xλ−y
∥∥∥2

2 +
2σ2

N
Tr

(
Jy (̂xλ)

)
−σ2 (5)

since it depends on the observed data y only. Here, Jy (̂xλ)
∈ RN×N is a Jacobian matrix defined as:[

Jy (̂xλ)
]
n,m

=
∂(̂xλ)n

∂ym

Recently, SURE has become a popular criterion for opti-
mization, in the context of non-linear denoising and decon-
volution [1, 10], and `1-based sparse reconstruction [12–14].
However, to our best knowledge, there are very few literature
on the application of SURE to TV-minimization.



This paper is to optimize the regularization parameter λ
for TV denoising, based on minimization of SURE (5). Our
main contributions are twofold. First, we develop a recur-
sive evaluation of SURE for Chambolle’s algorithm, which
finally provides a reliable estimate of the MSE for the non-
linear reconstruction. The optimal λ can then be identified by
exhaustive search for minimum SURE. Furthermore, for fast
optimization, we perform alternating update between regular-
ization parameter and solution within the Chambolle’s iter-
ation, which yields very accurate estimate of optimal λ and
nearly optimal denoising performance.

2. RECURSIVE EVALUATION OF SURE FOR
CHAMBOLLE’S ALGORITHM

2.1. Basic scheme of Chambolle’s algorithm

The original Chambolle’s algorithm is for image denois-
ing of 2-D case only [9]. Now, we will present this algorithm
in matrix language for both 1-D and 2-D cases, which helps
to keep a succinct style for the development of SURE later.

For 2-D case, introducing an auxiliary vector u in TV do-
main, Chambolle’s iteration can be expressed as:

u(i+1) = V
(i)
( w(i)︷                       ︸︸                       ︷
u(i)−

τ

λ
D (y +λDTu(i))︸         ︷︷         ︸

x(i)

)
(6)

where τ is a step-size, x(i) can be obtained by the update of
u(i). D and diagonal matrix V

(i)
are

D =

D1

D2

 ∈ R2N×N ; V(i)
=

V(i) 0
0 V(i)

 ∈ R2N×2N

with diagonal V(i) ∈ RN×N given by:

V(i)
n,n =

(
1 +

τ

λ

√(
(D1x(i))n

)2
+

(
(D2x(i))n

)2
+β

)−1

For 1-D case, Chambolle’s iteration is also expressed by
(6), with the diagonal matrix V(i) ∈ RN×N given by:

V(i)
n,n =

(
1 +

τ

λ

√(
(Dx(i))n

)2
+β

)−1

2.2. Recursive evaluation of SURE

From (5), the SURE for the i-th iterate is:

SURE =
1
N

∥∥∥x(i)−y
∥∥∥2

2 +
2σ2

N
Tr

(
Jy(x(i))

)
−σ2 (7)

The computation of SURE requires to compute Jy(x(i)), which
can be evaluated in a recursive manner, as shown later. We
first develop SURE for 2-D case, and then 1-D case will be
readily obtained.

2.2.1. SURE for 2-D case

We rewrite (6) as:u(i+1)
1

u(i+1)
2

︸  ︷︷  ︸
u(i+1)

=

V(i) 0
0 V(i)

︸        ︷︷        ︸
V

(i)

w(i)
1

w(i)
2

︸︷︷︸
w(i)

Let us consider the first part—u(i+1)
1 :

u(i+1)
1 = V(i)

(
u(i)

1 −
τ

λ
D1x(i)︸          ︷︷          ︸

w(i)
1

)

The Jacobian matrix of u(i+1)
1 is:

[
Jy(u(i+1)

1 )
]
m,n

=
∂(u(i+1)

1 )m

∂yn
=

∂

∂yn

(
V(i)

m,m(w(i)
1 )m

)
= (w(i)

1 )m
∂V(i)

m,m

∂yn
+ V(i)

m,m
∂(w(i)

1 )m

∂yn
(8)

Let a = D1x(i) and b = D2x(i) (ignoring the superscript (i) of
a and b for brevity). The continuous differentiability of TV
definition (3) makes (8) easy to compute:

∂V(i)
m,m

∂yn
=
∂V(i)

m,m

∂am
·
∂am

∂yn
+
∂V(i)

m,m

∂bm
·
∂bm

∂yn

=−
τ

λ
·

am(V(i)
m,m)2√

a2
m + b2

m +β︸           ︷︷           ︸
(C(i)

1 )m,m

·
∂am

∂yn
−
τ

λ
·

bm(V(i)
m,m)2√

a2
m + b2

m +β︸           ︷︷           ︸
(C(i)

2 )m,m

·
∂bm

∂yn

= −
τ

λ

[
C(i)

1 D1Jy(x(i))
]
m,n
−
τ

λ

[
C(i)

2 D2Jy(x(i))
]
m,n

(9)

Substituting (9) into (8), we obtain:

Jy(u(i+1)
1 ) = −

τ

λ
W(i)

1

(
C(i)

1 D1 + C(i)
2 D2

)
Jy(x(i)) + V(i)Jy(w(i)

1 )

where Jy(w(i)
1 ) = Jy(u(i)

1 )− τ
λD1Jy(x(i)) by the basic property

of Jacobian matrix [14]. Similarly, Jy(u(i+1)
2 ) is given by:

Jy(u(i+1)
2 ) = −

τ

λ
W(i)

2

(
C(i)

1 D1 + C(i)
2 D2

)
Jy(x(i)) + V(i)Jy(w(i)

2 )

Finally, the recursion of Jy(u(i+1)) is summarized as:

Jy(u(i+1)) =

Jy(u(i+1)
1 )

Jy(u(i+1)
2 )

 =

V(i) 0
0 V(i)

Jy(u(i))

−
τ

λ

W(i)
1 C(i)

1 + V(i) W(i)
1 C(i)

2

W(i)
2 C(i)

1 W(i)
2 C(i)

2 + V(i)

DJy(x(i)) (10)

Note that x(i) = y +λDTu(i), we have:

Jy(x(i)) = I +λDTJy(u(i))



2.2.2. SURE for 1-D case

Based on the above discussions of 2-D case, the recur-
sions of Jacobian matrices for 1-D case are given by: Jy(u(i+1)) = V(i)Jy(u(i))− τ

λ

(
W(i)C(i) + V(i)

)
DJy(x(i))

Jy(x(i)) = I +λDTJy(u(i))
(11)

where the diagonal matrix C(i) is [C(i)]n,n =
(Dx(i))n(V(i)

n,n)2
√

((Dx(i))n)2+β
.

2.3. Summary of Chambolle’s algorithm with SURE eval-
uation

Finally, we summarize the proposed algorithm as Algo-
rithm 1, which enables us to solve (2) with a prescribed value
of λ, and simultaneously evaluate the SURE during the Cham-
bolle’s iterations.

Algorithm 1: SURE evaluation for Chambolle’s algo-
rithm of 1-D and 2-D cases

Input: y, λ, β, τ, initial u(0) and x(0)

Output: reconstructed x̂λ and SURE(̂xλ)
for i = 1,2, ... (Chambolle’s iteration) do

1 compute x(i) by (6);
2 update Jy(x(i)) by (10) or (11);
3 compute SURE of i-th iterate by (7);

end

To find the optimal value of λ, an intuitive idea is to re-
peatedly implement Algorithm 1 for various tentative val-
ues of λ, then, the minimum SURE indicates the optimal λ
(see Fig.2-(2) for example). This global search has been fre-
quently used in [12–14].

2.4. Monte-Carlo for practical computation

For 2-D case, due to the limited computational resources
(e.g. RAM), it is impractical to store the huge matrix Jy(x(i))
and compute the trace. Monte-Carlo simulation provides an
alternative way to compute the trace by the following fact [1]:

Tr
(
Jy(x(i))

)
= E

{
nT

0 Jy(x(i))n0
}

(12)

with n0 ∼ N(0,IN). We rewrite (10) as: Jy(u(i+1)
1 ) = V(i)Jy(u(i)

1 )− τ
λP(i)

1 Jy(x(i))

Jy(u(i+1)
2 ) = V(i)Jy(u(i)

2 )− τ
λP(i)

2 Jy(x(i))

where P(i)
1 = (W(i)

1 C(i)
1 + V(i))D1 + W(i)

1 C(i)
2 D2 and P(i)

2 =

W(i)
2 C(i)

1 D1 + (W(i)
2 C(i)

2 + V(i))D2. With the input n0, the noise
evolution with the Chambolle’s iteration is:


n(i+1)

u1︷        ︸︸        ︷
Jy(u(i+1)

1 )n0 = V(i)

n(i)
u1︷     ︸︸     ︷

Jy(u(i)
1 )n0−

τ
λP(i)

1

n(i)
x︷     ︸︸     ︷

Jy(x(i))n0

Jy(u(i+1)
2 )n0︸        ︷︷        ︸

n(i+1)
u2

= V(i) Jy(u(i)
2 )n0︸     ︷︷     ︸

n(i)
u2

− τλP(i)
2 Jy(x(i))n0︸     ︷︷     ︸

n(i)
x

(13)

and
Jy(x(i))n0︸     ︷︷     ︸

n(i)
x

= n0 +λDT
1 Jy(u(i)

1 )n0︸     ︷︷     ︸
n(i)

u1

+λDT
2 Jy(u(i)

2 )n0︸     ︷︷     ︸
n(i)

u2

(14)

Thus, instead of using (10), we can successfully compute the
trace of Jy(x(i)) by (13) and (14), without the storage of huge
matrices. The MC evaluation is summarized as follows.

Algorithm 2: MC for SURE evaluation (for 2-D case)

for i = 1,2, ... (Chambolle’s iteration) do
1 compute x(i) by (6);
2 compute n(i)

u1 , n(i)
u2 and n(i)

x by (13) and (14);
3 compute the trace of Jy(x(i)) by (12);
4 compute SURE of i-th iterate by (7);

end

3. SURE-BASED ALTERNATING OPTIMIZATION
WITHIN CHAMBOLLE’S ALGORITHM

Note that the global search for the optimal λ requires re-
peated implementations of the Chambolle’s algorithm, which
is rather computationally expensive. It is possible to reduce
the computational complexity, if the optimization of λ can
be completed within ONE execution of the Chambolle’s it-
eration. A possible solution is to alternatively optimize the
parameter λ(i) (by the SURE minimization) and update the
solution x(i) (using λ(i)) within the i-th iterate—so-called al-
ternating optimization, summarized in Fig.1.

input

known y
initial u(0), x(0)

optimize λ(i)

by min. SURE
update x(i)

by Chambolle

alternating update between λ(i) and x(i)

Chambolle’s iteration by i := i + 1 output

optimal λopt
solution x̂opt

Fig. 1. Alternating optimization between parameter λ(i) and
solution x(i) within i-th step of Chambolle’s iteration.

Let us consider the highlighted step of Fig.1—optimization
of λ(i) by minimizing SURE, which is written as:

λ(i) = argmin
λ

1
N

∥∥∥x(i)
λ −y

∥∥∥2
2 +

2σ2

N
Tr

(
Jy(x(i)

λ )
)
−σ2︸                                         ︷︷                                         ︸

SURE of x(i)
λ

(15)

Here, x(i)
λ is obtained by (6) with the previous iterate x(i−1)

and tentative λ. Since the SURE is not a simple function of λ,
a straightforward method is to perform exhaustive search for
the optimal value of λ(i) during each iterate.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Parameter setting and initialization

Recalling that to facilitate the computation of SURE, we
defined a differentiable TV with a smoothing parameter β.



Extensive experiments found that β = 10−12 is sufficient to
keep both differentiability and accuracy of TV. We always use
this value throughout this paper.

Typically, u(0) is initialized as u(0) = 0 ∈R2N , and thus, the
resultant x(0) = y by (6).

4.2. 1-D signal denoising

We first consider a 1-D signal denoising, where x0 ∈ R
256

denotes a 1-D signal. Then, we add the noise ε with noise
variance σ2 = 100. First, we apply Algorithm 1 to solve (2)
with fixed λ = 1. Fig.2-(1) shows the Chambolle’s conver-
gence and the evolution of SURE during the iterations. Fig.2-
(2) shows the global search for optimal λ. We can see that the
SURE is always a reliable substitute for MSE.

(1) with fixed λ = 1.0 (2) global search for optimal λ
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1 0 0
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0 . 1 1 1 0 1 0 0

3 0

6 0

9 0

1 2 0

r e g u l a r i z a t i o n  p a r a m e t e r  �

 M S E
 S U R E

optimal λopt = 12.89

Fig. 2. The convergence of Chambolle’s algorithm and the global
optimization (1-D case).

We implement the procedure of Fig.1 to perform alternat-
ing optimization, and show the results in Fig.3.

(1) update of λ(i) (2) SURE evolution

0 3 0 6 0 9 0 1 2 0 1 5 0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0
2 0 0 0 0
2 4 0 0 0

i t e r a t i o n  n u m b e r

 o b j e c t i v e  v a l u e 2

4

6

8

1 0

1 2

 u p d a t e  o f  λ
0 3 0 6 0 9 0 1 2 0 1 5 0

2 0

4 0

6 0

8 0

1 0 0

i t e r a t i o n  n u m b e r

 M S E
 S U R E

λ(i)→ 10.83

Fig. 3. Alternating optimization (1-D case).

4.3. Image denoising

We now consider a 2-D image Cameraman, the noise vari-
ance is σ2 = 100. First, we apply Algorithm 2 to solve (2)
with fixed λ = 1, where the SURE is evaluated by MC. Fig.4
shows the Chambolle’s convergence and global optimization
of λ. Fig.5 shows the results of alternating optimization. Fig.6
shows the optimally denoised images.

(1) with fixed λ = 1.0 (2) global search for optimal λ
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optimal λopt = 5.16

Fig. 4. The convergence and the global optimization (2-D case).

(1) update of λ(i) (2) SURE evolution
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Fig. 5. Alternating optimization (2-D case).

observed image global optimized alternating optimized
PSNR=28.13dB PSNR=32.59dB PSNR=32.50dB

Fig. 6. A visual example of Cameraman.

Table 1 reports the results and computational time (in sec-
onds) of global and alternating (‘ALT’ in the table) optimiza-
tions. We also compare both methods with discrepancy prin-
ciple used in [9] (‘DP [9]’ in the table). We can see that
the alternating strategy yields nearly optimal denoising per-
formance, with considerably faster computational speed.

Table 1. Comparisons between global and alternating optimization

case 1-D signal 2-D image Cameraman
methods est. λ MSE time est. λ MSE time
DP [9] 16.11 30.13 15 8.13 45.55 121
global 12.89 25.89 75 5.16 35.83 767
ALT 10.83 26.34 10 4.18 36.58 70

5. CONCLUSIONS

In this paper, we presented two SURE-based automatic
methods of tuning regularization parameter for total variation
denoising, based on Chambolle’s algorithm [9]. Future work
will deal with extension of this technique to handle other reg-
ularizers [12–14] and image deconvolution [10, 13].
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