
1954 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 5, MAY 2013
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Abstract— In this paper, we propose a novel deconvolution
algorithm based on the minimization of a regularized Stein’s
unbiased risk estimate (SURE), which is a good estimate of the
mean squared error. We linearly parametrize the deconvolution
process by using multiple Wiener filters as elementary functions,
followed by undecimated Haar-wavelet thresholding. Due to the
quadratic nature of SURE and the linear parametrization, the
deconvolution problem finally boils down to solving a linear
system of equations, which is very fast and exact. The linear
coefficients, i.e., the solution of the linear system of equations,
constitute the best approximation of the optimal processing on the
Wiener–Haar-threshold basis that we consider. In addition, the
proposed multi-Wiener SURE-LET approach is applicable for
both periodic and symmetric boundary conditions, and can thus
be used in various practical scenarios. The very competitive (both
in computation time and quality) results show that the proposed
algorithm, which can be interpreted as a kind of nonlinear
Wiener processing, can be used as a basic tool for building more
sophisticated deconvolution algorithms.

Index Terms— Deconvolution, multi-Wiener filtering, Stein’s
unbiased risk estimate (SURE) minimization, undecimated Haar-
wavelet thresholding.

I. INTRODUCTION

IMAGE DECONVOLUTION is a standard linear inverse
problem with applications in medical imaging [2],

seismology [3], astronomy [4], remote sensing [5], optical
imaging [6], etc. The observed image is mathematically
described as a blurring operator convolved with the original
(unknown) image, further degraded by a zero-mean additive
white Gaussian noise (AWGN) [7]. In particular, singular
or ill-conditioned convolution operators yield highly noise-
sensitive solutions, which makes the deconvolution problem
particularly challenging [8]. We briefly review hereafter the
most popular deconvolution approaches.

Regularization is a standard technique to cope with the ill-
posed nature of the deconvolution problem. It formulates the
problem as a convex constrained minimization problem [9], by
imposing certain regularity conditions on the original image.
The commonly used regularizers are:
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1) Wiener filtering/Tikhonov regularization [10], [11]: This
regularization leads to a closed-form linear solution
due to the �2-norm nature of the regularizer. While
straightforward to implement, this type of regularization
often produces over-smoothed edges.

2) Transform-domain sparsity constraints [12]–[16]: Here,
the coefficients of a frame-based representation of the
original image are estimated under a sparsity-inducing
regularizer such as the �1-norm [17]. Algorithmic imple-
mentations are frequently based on iterative shrink-
age/thresholding (IST) [15], [16], [18], and [19].

3) Total-Variation (TV) regularization [20], [21]: TV regu-
larization assumes that the �1-norm of the gradient of the
original image is small. It is well-suited for piecewise
smooth images, and remarkably effective at preserving
edges [22]–[25].

A. Regularized Inversion Followed by Denoising

Except for a few works, e.g. [26], that merge both deblurring
and denoising steps, deconvolution is usually decomposed
as a two-step procedure that consists of regularized inverse
followed by additive Gaussian noise reduction. Some repre-
sentatives of this popular deconvolution approach are:

1) ForWaRD [27]: This two-stage shrinkage procedure suc-
cessively operates in Fourier and wavelet domains with
an optimal (in terms of an approximate MSE metric)
balance between the amount of Fourier and wavelet
regularization. To ensure shift-invariance, the results
obtained after all possible shifts of an orthogonal dis-
crete wavelet transform (DWT) are averaged. ForWaRD
also considers different Fourier shrinkage parameters at
different DWT scales.

2) More sophisticated denoising techniques: In the
SV-GSM [28], SA-DCT [29] and BM3D [30] image
restoration algorithms, the regularized inverse is fol-
lowed by a more sophisticated denoising technique
(BLS-GSM [31], Shape-Adaptive DCT [32] and BM3D
[33], respectively). These deconvolution strategies
achieve state-of-the-art results, usually at the expense
of a high computational complexity.

B. Bayesian Approach

Another class of deconvolution algorithms [34]–[44] are
derived in a Bayesian framework, where some a priori sta-
tistical knowledge of the original image are assumed. Some
regularization approaches can be re-interpreted in this frame-
work as maximum a posteriori (MAP) or penalized likelihood.
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We refer the interested reader to [37], [45] for a more detailed
description of the Bayesian approach.

Either regularization techniques or Bayesian methods need
to find a reasonable value of the regularization parameter, to
keep a good balance between data-fidelity and regularization
terms [46]–[49].

C. SURE-Based Approaches

A statistical, yet non-Bayesian, approach to image denoising
based on Stein’s unbiased risk estimate (SURE) [50] has
been recently revitalized [51], [52]. SURE is an unbiased
estimate of the MSE under additive Gaussian noise assump-
tion. Although the first applications of SURE were restricted
to denoising only, it is possible to extend it to any linear
restoration problem [53]–[56]. Since SURE depends on the
observed data only, it can be practically used for the following
purposes:

1) To optimize the parameters of the processing, e.g., the
Tikhonov regularization parameter [55] or the optimal
parameters involved in the non-local means (NLM)
denoising technique [57];

2) To monitor the PSNR improvement during the iterations
of IST algorithms, without referring to the original
unknown data, e.g., automatic determination of the num-
ber of iterations [53], optimal update of the parameters
at each iteration [56];

3) As a minimization criterion for designing denoising
algorithms expressed as a linear expansion of thresholds
(LET), the so-called SURE-LET approach [52], [58].
It requires the basic structure or parametric form of
the estimator to be determined in advance [52], [54],
and [55].

The present paper follows the last point. Similar to the
work of [54], we further extend the SURE-LET approach to
regularized inversion followed by denoising. Note that [54]
empirically chooses the regularization parameter of the reg-
ularized inverse filter. The main contribution of our work,
also the major difference from [54], is that besides applying
a linear combination of non-linear thresholding functions for
the denoising step as in [54], we also linearly parametrize
the regularized inversion into a number of basic Wiener filters
with different (but fixed) regularization parameters. Instead of
optimizing or empirically choosing non-linear regularization
parameters [47], [48], [54], and [55], the proposed multi-
Wiener SURE-LET approach finds the best linear combination
of multiple Wiener deconvolutions. The linear parametrization
reduces the deconvolution problem to solving a linear system
of equations. Its solution, i.e., the weights in the linear com-
bination, automatically constitutes the minimum MSE/SURE
combination as final estimate. As a result, the proposed
deconvolution algorithm is fast and of low computational
complexity1.

The paper is organized as follows. Section II introduces
the theoretical background of the SURE-LET approach in
the general linear model. In Section III, we exemplify the

1A demo software is available at www.ee.cuhk.edu.hk/~tblu/demos.

SURE-LET approach by describing the deconvolution process
as the linear combination of elementary functions consisting
of Wiener filters followed by transform-domain thresholding,
with the linear coefficients automatically obtained by minimiz-
ing SURE. Section IV discusses the computational aspects of
the SURE-LET approach for periodic and symmetric bound-
ary conditions. Section V reports and discusses the exper-
imental results. Some concluding remarks are finally given
in Section VI.

II. THEORETICAL BACKGROUND

This section presents the SURE-LET approach in the gen-
eral linear framework—i.e., not limited to convolution oper-
ators. We use boldface lowercase letters, e.g. x ∈ R

N , to
denote N-dimensional real vectors, where N is typically the
number of pixels in an image. The n-th element of x is written
as xn . The linear (matrices) and non-linear transformations
R

N → R
M are denoted by boldface uppercase letters, e.g.

H ∈ R
M×N . HT ∈ R

N×M denotes the transpose of matrix H.
The identity matrix is denoted as I.

A. Problem Statement

Consider the linear model

y = Hx + b, (1)

where y ∈ R
N is a distorted observation of the original

(unknown) data x ∈ R
N . The matrix H ∈ R

N×N implements
a linear distortion2, while the vector b ∈ R

N is a zero-mean
additive Gaussian noise corruption with covariance matrix
C � 0. Our objective is to find a function (or operation)
f : R

N → R
N of the measured data y such that the MSE

MSE = 1

N
E
{∥∥f(y) − x

∥
∥2} (2)

is minimized. Here, E {·} denotes the mathematical expectation
operator. We would like to insist that the estimate x̂ = f(y)
is only the outcome of the processing. A key feature of our
approach is to estimate the function f that transforms y into
x̂, rather than the estimate x̂ itself.

B. Stein’s Unbiased Risk Estimate (SURE)

Notice that we cannot directly minimize the MSE given
by (2) to obtain the estimate x̂, as we have no access to the
original data x. However, based on the linear model (1) and the
additive Gaussian noise assumption, the MSE can be replaced
by a statistical estimate, SURE, involving the measurements y
only. This is summarized in the following theorem [55], [59]
(see the proof in Appendix A).

Theorem 2.1: Given the linear model (1) with any invertible
matrix H ∈ R

N×N , the following random variable

ε = 1

N

(
‖f(y)‖2 − 2yTH−Tf(y) + 2divy

{
CH−Tf(y)

})

+ 1

N
‖x‖2

2The theory that follows can be applied to rectangular matrices, but for the
sake of simplicity, we restrict ourselves to square matrices.
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Fig. 1. Example of linearly combining three Wiener filters with regularization parameters λ1, λ2, and λ3, balanced by their weights a1 = 0.43, a2 = 0.61,
and a3 = −0.04 given by (8). The linearly-combined estimate is equivalent to a single optimal Wiener filtering in terms of PSNR.

is an unbiased estimator of the MSE defined in (2); i.e.,

E {ε} = 1

N
E
{
‖f(y) − x‖2

}
.

In particular, if the Gaussian noise b is independent
and identically distributed (i.i.d.) with variance σ 2, SURE
becomes

ε = 1

N

(
‖f(y)‖2 − 2yTH−Tf(y) + 2σ 2divy

{
H−Tf(y)

})

+ 1

N
‖x‖2 , (3)

which results from specifying the covariance matrix C = σ 2I.
Corollary 2.1: In the particular case of an i.i.d. Gaussian

noise with variance σ 2, if the processing f(·) can be expressed
as f(y) = HT f̃(y), then SURE becomes

ε= 1

N

(∥
∥
∥HT f̃(y)

∥
∥
∥

2−2yTf̃(y)+2σ 2divy

{
f̃(y)

})
+ 1

N
‖x‖2 .

(4)

C. Regularized Approximation of SURE

If the matrix H is ill-conditioned or singular, ε in (3) fails
to be a reliable estimate of the MSE. To keep the stability of
ε, we may intuitively replace the unstable inverse H−1 by a

Tikhonov regularized inverse [8]

H−1
β =

(
HTH + βSTS

)−1
HT, (5)

for some parameter β > 0 and matrix S ∈ R
N × R

N . We can
then approximate SURE as

εβ = 1

N

(
‖f(y)‖2 − 2yTH−T

β f(y) + 2σ 2div
{

H−T
β f(y)

})

+ 1

N

∥
∥H−1

β Hx
∥
∥2

. (6)

This approximated estimator of the MSE turns out to be
an unbiased estimate of 1

N

∥
∥f(y) − H−1

β Hx
∥
∥2 (see the proof

in Appendix B). Hence, if H−1
β Hx is close enough to x

(hypothesis on x), then, εβ , the approximated SURE, is a good
estimate of the MSE.

In imaging application, a good choice for S is a high-pass
operator. A reasonable value for β should achieve a good bal-
ance between the approximation accuracy and the stability of
εβ ; i.e., β should be neither too large, to avoid significant loss
of high-frequency features, nor too small, to keep the stability
of εβ . In this paper, we choose S as a Laplacian operator
and β = 10−5σ 2, as extensive tests on various natural images
have shown any value of β ∈ [5 × 10−6σ 2, 5 × 10−5σ 2] to be
consistently close to the minimum MSE one. We also define
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a regularized inverse for S as S−1
β = β

(
HTH + βSTS

)−1 ST,
which leads to the following decomposition of the identity
matrix: H−1

β H + S−1
β S = I.

D. SURE-LET Approach

In practice, we will minimize the approximated SURE
(6) instead of the actual MSE (2). The next question that
naturally arises is: how to choose the function f , such that
f(y) is sufficiently close to x? Here, we adopt the LET
method [51], [52], and [58], which parametrizes f(y) as a
linear combination of a small number of pre-defined basic
functions (or processing) fk for k = 1, 2, . . . , K ; i.e.,

f(y) =
K∑

k=1

akfk(y) = [f1(y) f2(y) . . . fK (y)]
︸ ︷︷ ︸

F(y)

⎡

⎢
⎢
⎢
⎣

a1
a2
...

aK

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
a

= Fa,

(7)
where K � N is the number of linear coefficients ak . Here,
f(y) = Fa is a shorthand matrix notation to outline the
linearity of the representation. The deconvolution problem then
amounts to find the linear coefficients ak that minimize εβ .
This parametrization dramatically reduces the size of the
estimation problem from N number of pixels to K number
of basis functions. Note that the LET decomposition (7) does
not imply any hypothesis on x itself. Yet, a “bad” basis
of processing fk will obviously lead to poor deconvolution
performances compared to a “good” basis (See however the
note in Section V-C on the robustness w.r.t. thresholding
functions).

Substituting (7) into (6), and performing the differentiation
of εβ with respect to ak for all k = 1, 2, . . . , K , we obtain the
linear system of equations

K∑

k′=1

1

N
fT
k (y)fk′(y)

︸ ︷︷ ︸
Mk,k′

ak′= 1

N

(
yTH−T

β fk(y)−σ 2div
{

H−T
β fk(y)

})

︸ ︷︷ ︸
ck

(8)

for k = 1, 2, . . . , K . These equations can be summarized
in matrix form as Ma = c, where M = [Mk,k′ ]k,k′=1,2,...,K
and c = [c1 c2 · · · cK ]T. Due to the possible singularity
of M, we solve the following �2-regularized linear system of
equations

(M + μI)a = c ⇔ a = (M + μI)−1c (9)

instead of (8), where μ > 0 is a regularization parameter. We
empirically found that any value of μ ∈ [0.01, 0.1] achieves
very similar deconvolution performance. In this paper, we
empirically set μ = 5 × 10−2.

It is also worth noting that the corresponding MSE mini-
mization leads to solving MaMSE = FTx, with the solution,
namely MSE-LET, serving as a counterpart to SURE-LET. The
accuracy of using the SURE-LET estimate can then be verified
by comparing it with MSE-LET.

Fig. 2. Flowchart of the proposed multi-Wiener SURE-LET approach.

III. CONSTRUCTION OF ELEMENTARY FUNCTION fk

This section shows how to choose the elementary processing
fk in the context of image deconvolution.

A. Linear Deconvolution: Multi-Wiener Filtering

We first choose each fk(y) to be a Wiener filter with a given
regularization parameter λk :

fk(y) =
(

HTH + λkSTS
)−1

HT

︸ ︷︷ ︸
H−1

λk

y, for k = 1, 2, . . . , K . (10)

In the standard case of a shift-invariant convolution operator,
the matrix products with H or HT are commutative. Each
elementary processing fk(y) can then be written as fk(y) =
HT f̃(y) where f̃(y) = (

HTH + λkSTS
)−1

y and Corollary 2.1
applies. Consequently, we do not need to use the regularized
SURE εβ defined in (6). The SURE-LET method (7) consists
in finding the minimum SURE/MSE combination of these
Wiener filters, which is achieved by solving (8). The flowchart
of the SURE-optimized multi-Wiener deconvolution is shown
in Fig. 1. We observe that different values of λk capture
different details and features of the image, and the optimal
linear coefficients ak produce the combined estimate with the
best balance between noise reduction and edge preservation.
The key advantage of the multi-Wiener SURE optimization is
that it avoids the empirical adjustment of a unique non-linear
regularization parameter λ, contrary to [47], [48], and [55].

B. Non-Linear Deconvolution: Multi-Wiener Filtering Fol-
lowed by Transform-Domain Thresholding

We now present the construction of elementary functions
fk(y) for the non-linear deconvolution approach which con-
sists of multi-Wiener filtering followed by transform-domain
thresholding3. Both steps are linearly parametrized using the
LET strategy (7).

An illustrative description of the proposed non-linear decon-
volution approach is shown in Fig. 2 and 3. In Fig. 2,
the matrices D and R represent a pair of linear decompo-
sition/reconstruction that satisfies the perfect reconstruction
condition RD = I. Typically, D and R implement a (J + 1)-
band filterbank of decimated or undecimated filters. They are
structured as D = [

DT
1 DT

2 · · · DT
J DT

J+1

]T ∈ R
Q×N and

3By thresholding, we denote any non-linear operation (smooth or non-
smooth).
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Fig. 3. Illustration of the proposed multi-Wiener SURE-LET approach. Note that: (1) The undecimated wavelet subbands and their processed reconstructions
are displayed in reduced size for convenience. (2) The reconstruction R j is performed to the specific j-th subband only, by setting all the other subbands to
zero [52]. (3) The thresholding function θ(·) can also be linearly parametrized as θ(·) = ∑L

l=1 alθl (·).

R = [
R1 R2 · · · RJ RJ+1

] ∈ R
N×Q , where D j ∈ R

N j ×N

and R j ∈ R
N×N j for j = 1, 2, . . . , J, J + 1. We consider

(J + 1) bands for the convenience of the future discussion.
The dimensions Q and N j depend on the transform being
performed. Mathematically, the flowchart of Fig. 2 can be
described by the following function

f(y) = Rθ
(

DH−1
λ y

)
. (11)

Corollary 3.1: Given the processing f(·) defined by (11)
and considering a pointwise function θ(·), the regularized
approximation of SURE εβ introduced in (6) can be further
derived as

εβ = 1

N

(
‖f(y)‖2 − 2yTH−T

β f(y) + 2σ 2αTθ ′(w)
)

+ 1

N

∥∥H−1
β Hx

∥∥2
. (12)

In (12), the vector w = DH−1
λ y = [

wT
1 wT

2 · · · wT
J wT

J+1

]T ∈
R

Q , with w j = D j H−1
λ y ∈ R

N j for j = 1, 2, . . . , J + 1,
denotes the transform coefficients. The vector θ ′(w) =[
θ ′

n(wn)
]

n∈[1;Q] represents the first derivative of the pointwise
function θ . The vector α ∈ R

Q is defined by

α = diag
{

DH−1
λ H−T

β R
}

= [
Pn,n

]
n∈[1;Q]

where P = DH−1
λ H−T

β R ∈ R
Q×Q . Consequently, the vector α

is structured as α = [
αT

1 αT
2 · · · αT

J αT
J+1

]T
, where

α j = diag
{

D j H
−1
λ H−T

β R j

}
∈ R

N j (13)

for j = 1, 2, . . . , J + 1.
The proof of Corollary 3.1 is very similar to that of Corollary 1
in [52]. We thus omit it here.

When D and R implement an orthogonal transform (e.g., an
orthonormal wavelet transform), the transform-domain mini-
mization of εβ is equivalent to its image-domain minimiza-
tion, thanks to the MSE preservation property of orthogonal
transforms. If the applied transform is not orthogonal (e.g., an
undecimated wavelet transform), the minimization of εβ has to
be performed in the image domain to ensure a global minimum
MSE optimality. In the remainder of this paper, we confine
ourselves to undecimated wavelet transforms, due to their
superior denoising abilities. Consequently, the minimization
of the regularized approximation of SURE εβ is performed in
the image domain.

Suppose that the decomposition D produces J high-
pass subbands and one lowpass subband (indexed as the
(J + 1)-th subband) that is not thresholded, then f(y) of (11)
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can be linearly parametrized as

f(y) =
M∑

m=1

L∑

l=1

J∑

j=1

am,l, j R jθl
(
wm, j

)

︸ ︷︷ ︸
highpass subbands

+
M∑

m=1

am,J+1RJ+1wm,J+1

︸ ︷︷ ︸
lowpass subband

, (14)

where M denotes the number of Wiener filters (typically
M = 3, which is validated by Table I in Section V-B), L
the number of elementary pointwise thresholding functions
(typically L = 2), and J the number of highpass wavelet
subbands (typically J = 9 for three decomposition levels).

As (14) shows, K = M · J · L + M (typically, K = 3 ·
9 · 2 + 3 = 57) weights am,l, j and L thresholding function
need to be determined. The weights am,l, j are obtained by
minimizing the regularized approximation of SURE εβ , which
boils down to solving a linear system of K equations (9). To
be efficient, the pointwise thresholding functions θl(·) have to
satisfy some desirable properties that are discussed in [51],
[52]. We empirically found that a linear combination of the
following two functions (see Fig. 4)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1(w) = w

(

1 − exp

(

−
(

w

T1

)4
))

θ2(w) = w

(

1 − exp

(

−
(

w

T2

)4
)) (15)

yields satisfactory results. Other thresholding functions, such
as the ones reported in [52], [54], do not result in significant
PSNR loss (maximum 0.2 dB loss). The thresholds T1 and T2
are subband-adaptive. We empirically found that the proposed
algorithm is able to keep similar deconvolution quality for
a wide range of value T1 and T2. In this paper, we choose
T1 = 4σ j and T2 = 9σ j for the j -th wavelet subband, where
σ 2

j is the variance of the colored noise b j = D j H
−1
λ b ∈ R

N j ;
i.e.,

σ 2
j = 1

N j
E
{

bT
j b j

}

= 1

N j
E
{
bTH−T

λ DT
j D j H−1

λ b
}

= σ 2

N j
Tr
(

H−T
λ DT

j D j H−1
λ

)
. (16)

The variance σ 2
j in (16) and the vector α j in (13) can be

analytically computed, as shown in the next section.

IV. COMPUTATIONAL ASPECTS

The proposed method requires to compute several Wiener
filters (10), the subband-dependent noise variances σ 2

j (16)
and the subband-dependent vectors α j (13), listed here below:

1) Wiener filter: H−1
λ = (

HTH + λSTS
)−1

HT;
2) Variance σ 2

j of the colored noise b j = D j H
−1
λ b;

3) Vector α j = diag
{

D j H−1
λ H−T

β R j

}
.
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Fig. 4. Shape of our two basic thresholding functions θ1(·) and θ2(·), given
by (15).

In this section, we show how to perform these compu-
tation analytically in the Fourier domain. For the sake of
brevity of the discussion and formulation, we stick to the
one-dimensional case. The 2-D computations can then be
straightforwardly deduced. We define the coefficients of a
1-D filter as g(n), the coefficients of the input of the 1-D
filter as x(n) and the coefficients of the output of the 1-D
filter by y(n), for n = 0, 1, . . . , N − 1. All these coefficients
are assumed to be zero outside the domain [0, N − 1]. Note
that the implementation of the proposed approach needs the
specification of boundary conditions. The most commonly
used are periodic extensions. Yet, periodic extensions may
generate unwanted artifacts (discontinuity at the boundaries),
so symmetric boundary extensions are often preferred in
practice [25], [60], and [61]. In the next two sections, we
discuss the computations of the above mentioned terms for
these two particular choices of boundary conditions.

A. Periodic Boundary Extensions

1) Circular Convolution: Under periodic boundary condi-
tions, the convolution is circular and reads as

y(n) =
∑

k∈Z

g(n − k)x(k) =
N−1∑

k=0

gN (n − k)x(k)

where
gN (n) =

∑

n0∈Z

g(n + n0 N). (17)

Consequently, the matrices H−1
λ , D j , R j , and H−T

β are all
circulant. They can thus be efficiently computed by discrete
Fourier transform (DFT) with period N [62], where the Fourier
coefficient of gN (n) is given as

G
(
e j 2πk

N
) =

N−1∑

n=0

gN (n)e− j 2πk
N n . (18)

2) Analytic Computation of σ 2
j Given in (16):

Theorem 4.1: Under periodic boundary conditions, given a
zero-mean white Gaussian noise b(n) with variance σ 2 and
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a filter g(n), the variance of p(n) = ∑
k∈Z

g(n − k)b(k) is
given by

E
{

p(n)2
}

= σ 2
N−1∑

n=0

gN (n)2 = σ 2

N

N−1∑

k=0

∣
∣G(e j 2πk

N )
∣
∣2

for n = 0, 1, . . . , N − 1, where gN (n) and G
(
e j 2πk

N
)

are
given by (17) and (18).

Proof: The second equality comes from Parseval’s theo-
rem [62]. The i.i.d. condition of the zero-mean white Gaussian
noise b(n) implies that

E
{
b(n)b(n′)

} = σ 2δ(n − n′) =
{

σ 2, for n = n′
0, otherwise.

(19)

Thus, we obtain that the variance of the filtered noise p(n) is:

E
{

p(n)2
}

=
∑

k∈Z

∑

k′∈Z

gN (n − k)gN (n − k ′)E
{
b(k)b(k ′)

}

(19)= σ 2
∑

k∈Z

g(n − k)2

= σ 2
N−1∑

n=0

gN (n)2.

Note that Theorem 4.1 is a straightforward application of the
result obtained for filtered wide-sense stationary process (see
for instance [63, Theorem 3.14]). It is restated and proved
here for later comparison with that obtained under symmetric
boundary conditions.

3) Analytical Computation of α j Given by (13):
Theorem 4.2: Under periodic boundary conditions, the vec-

tor formed by the diagonal elements of the convolution matrix
G ∈ R

N×N is given by

diag{G} = gN (0) · 1 =
(

1

N

N−1∑

k=0

G(e j 2πk
N )

)

· 1

where gN (n) given by (17) is the filter implemented by G,
G
(
e j 2πk

N
)

is given by (18).
Proof: The second equality is essentially the inverse DFT.

In matrix form, each element of the diagonal of G can be
obtained as eT

k′ Gek′ , where the indicator vector ek′ is defined
as ek′ = [0 · · · 0 1 0 · · · 0]T ∈ R

N with k ′-th element 1. In
convolution form, it reads as

eT
k′Gek′ =

N∑

k=1

δ(k − k ′)
(

N∑

n=1

gN (k − n)δ(n − k ′)
)

= gN (0)

where δ(k − k ′) is defined as in (19).
We conclude the proof by using the fact that, under periodic

boundary conditions, the convolution matrix G is circulant and
thus its diagonal elements are all equal.

B. Symmetric Boundary Extensions

1) Symmetric Convolution: The term “symmetric convolu-
tion” was first introduced by S. Martucci in [64], to describe
the convolution under symmetric boundary conditions. In [64],
he discussed 64 possible types of symmetric convolutions,

depending on half-point or whole-point symmetry. The sym-
metric convolution can be performed by DCT or Types I–
VIII DST, according to specific types of symmetry. Among all
these, half-point symmetric boundary extensions correspond-
ing to Type II DCT deserves a particular consideration [25].
The following computations are based on this typical case.

Lemma 4.1: Given a signal x(n) and filter g(n), under half-
point symmetric boundary conditions, convolution is defined
as

y(n) =
N−1∑

k=0

(
g2N (n − k) + g2N (n + k + 1)

)
x(k)

for n = 0, 1, . . . , N − 1, where

g2N (n) =
∑

n0∈Z

g(n + 2n0 N). (20)

Proof: Under half-point symmetric extension, the signal
x(n) is periodic with period 2N . Thus, the convolution become
circular with period 2N :

y(n) =
∑

k∈Z

g(n − k)x(k) =
2N−1∑

k=0

g2N (n − k)x(k) (21)

where g2N (n) is given as (20). Using the property of half-point
symmetry that x(n) = x(2N − 1 − n) and changing variables
in (21) completes the proof.

Since the half-point symmetric extension can be considered
as the periodic condition with period 2N , besides from DCT,
the filtering H−1

λ , D j , R j , and H−T
β can also be efficiently

computed by DFT with period 2N , by means of the Fourier
coefficient of g2N (n) given as:

G
(
e j πk

N
) =

2N−1∑

n=0

g2N (n)e− j πk
N n. (22)

Note that G
(
e j πk

N
)

will be used for computing σ 2
j and α j .

2) Analytic Computation of σ 2
j Given in (16):

Theorem 4.3: Under half-point symmetric boundary con-
ditions, given a zero-mean white Gaussian noise b(n) with
variance σ 2 and a filter g(n), the variance of p(n) =∑

k∈Z
g(n − k)b(k) is given by

E
{

p(n)2
}

= σ 2
N−1∑

k=0

[
g2N (n − k) + g2N (n + k + 1)

]2

in spatial domain, where g2N (n) is given as (20), and is also
expressed as:

E
{

p(n)2
}

= σ 2

2N

2N−1∑

k=0

{∣
∣G(e j πk

N )
∣
∣2

+Re
{
(G(e j πk

N ))2e j πk
N (2n+1)

}}

in Fourier domain, where G(e j πk
N ) is given as (22).

See the proof in Appendix C.
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TABLE I

PSNR RESULTS OF OUR MULTI-WIENER SURE-LET FOR VARIOUS NUMBER OF WIENER FILTERS

Case
House, Separable Filter, σ = 1

(Input: 30.92 dB; BM3D: 35.80 dB)
Cameraman, Gaussian With std 3, σ = 10

(Input: 20.22 dB; BM3D: 22.60 dB)
Coco, Gaussian With std 3, σ = 1

(Input: 26.45 dB; BM3D: 31.27 dB)

Number of
Deconvolutions

Regularization
Parameter

λ/σ2 SURE-LET MSE-LET λ/σ2 SURE-LET MSE-LET λ/σ2 SURE-LET MSE-LET

One λ/σ2 1 × 10−4 34.33 34.59 1 × 10−4 22.30 22.47 1 × 10−4 31.02 31.20

Two
λ1/σ2

λ2/σ2
1 × 10−4

1 × 10−2 35.78 36.04
1 × 10−4

1 × 10−2 22.37 22.65
1 × 10−4

1 × 10−2 31.40 31.68

Three
λ1/σ2

λ2/σ2

λ3/σ2

1 × 10−4

1 × 10−3

1 × 10−2
36.31 36.47

1 × 10−4

1 × 10−3

1 × 10−2
22.52 22.70

1 × 10−4

1 × 10−3

1 × 10−2
31.70 32.00

Four

λ1/σ2

λ2/σ2

λ3/σ2

λ4/σ2

1 × 10−5

1 × 10−4

1 × 10−3

1 × 10−2

36.27 36.51

1 × 10−5

1 × 10−4

1 × 10−3

1 × 10−2

22.54 22.74

1 × 10−5

1 × 10−4

1 × 10−3

1 × 10−2

31.70 32.03

(d)(c)(b)(a)

(h)(g)(f)(e)

Fig. 5. Original images. (a) Cameraman 256 × 256. (b) Coco 256 × 256.
(c) House 256 × 256. (d) Couple 512 × 512. (e) Crowd 512 × 512. (f) Lake
512 × 512. (g) Bridge 512 × 512. (h) Mixture 512 × 512.

3) Analytical Computation of α j Given in (13):
Theorem 4.4: Under half-point symmetric boundary con-

ditions, the vector formed by the diagonal elements of the
convolution matrix G ∈ R

N×N is given by
[
diag {G}]n = g2N (0) + g2N (2n + 1)

for n = 0, 1, . . . , N −1, where g2N (n) is given by (20). It can
also be expressed in the Fourier domain as

[
diag {G}]n = 1

2N

2N−1∑

k=0

G
(
e j πk

N
)(

1 + e j πk
N (2n+1)

)

where G(e j πk
N ) is given as (22).

Since the proof is similar to that of Theorem 4.2, it is
omitted here. Contrary to the periodic boundary conditions, the
diagonal elements of G are not equal, as G is not a circulant
matrix under symmetric boundary conditions. However, it is
not in contradiction to the fact that if we consider the problem
as periodic extension with period 2N , the matrix G2N×2N is
still circulant.

V. RESULTS AND DISCUSSION

A. Experimental Setting

We consider the following benchmark convolution kernels
commonly used in [12], [25], [30], and [65]:

1) Rational filter: h(i, j) = (1 + i2 + j2)−1 for i, j =
−7, . . . , 7;

2) Separable filter: 5×5 filter with weights [1, 4, 6, 4, 1]/16
along both horizontal and vertical directions;

3) 5 × 5 uniform blur;
4) 9 × 9 uniform blur;
5) Gaussian blur with standard deviation (std) 3.

The blurred images are subsequently contaminated by i.i.d
Gaussian noise with various variance σ 2. The test dataset
contains eight 8-bit images of size 256 × 256 or 512 ×
512 displayed in Fig. 54, covering a wide range of nat-
ural images. The experimental performance is measured by
the peak signal-to-noise ratio (PSNR), defined as PSNR =
10 log10(2552/(‖x̂ − x‖2/N )). Note that all the PSNR results
(in dB) reported in this section have been averaged over 10
noise realizations.

B. Influence of the Number of Wiener Filters

Our multi-Wiener SURE-LET approach involves several
Wiener filters as elementary processing in the linear combina-
tion. In this section, we evaluate the influence of the retained
number of Wiener filters on the deconvolution performance.
Based on the observation that a reasonable value of the
regularization parameter λ should be proportional to the noise
variance σ 2 [24], [30], we focus on the ratio λ/σ 2. Table I
shows the results obtained when considering one to four
Wiener filters for various images, blur kernels and noise levels.
We observe that one or two Wiener filters may not always
produce the best performance, whereas three or four are able
to cope with various scenarios (different images and different
blur kernels). Moreover, using four Wiener filterings does not
bring any significant performance improvement, compared to
using three. Besides, we also found that for one Wiener filter,
the optimal value of λ/σ 2 typically varies in the range 2×10−4

to 2 × 10−3. For these reasons, in the following sections,
we use three Wiener filters (i.e. M = 3) with λ1 = 1×10−4σ 2,
λ2 = 1 × 10−3σ 2 and λ3 = 1 × 10−2σ 2. Extensive tests show
that the deconvolution performance is largely insensitive to the
actual choice of λ’s.

4All 512×512 images are available at http://decsai.ugr.es/cvg/CG/base.htm
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TABLE II
PARAMETERS SETTING OF THE PROPOSED MULTI-WIENER

SURE-LET ALGORITHM

S in (5) and (10) Discrete Laplacian Operator
β in (5) β = 1 × 10−5σ 2

λk in (10) λ1 = 10−4σ 2; λ2 = 10−3σ 2; λ3 = 10−2σ 2

Tl in (15) T1 = 4σ j ; T2 = 9σ j
Transforms D and R Undecimated Haar wavelet transform

μ in (9) μ = 5 × 10−2

BM3D: 29.19dB

SURE-LET: 29.27dBTV-MM: 29.35dB C-SALSA: 29.25dB

SA-DCT: 28.94dBBlurred noisy: 24.22dB

Fig. 6. Restoration of House degraded by Gaussian blur of variance 9 with
noise std σ = 1.

In this paper, we apply an undecimated Haar wavelet to per-
form wavelet-domain thresholding, since the redundant Haar
substantially outperforms other types of redundant wavelets
for image denoising [52]. This observation is also true for
image deconvolution.

C. Influence of the Parameters on the Deconvolution Perfor-
mance

All the parameters involved in the proposed multi-Wiener
SURE-LET algorithm are specified in Table II. According to
this table, we have K = M J L + M = 6J + 3 elementary
functions, which yields K weights to be optimized using (9).
Typically, J = 9 or 12, for three or four levels of an
undecimated Haar wavelet decomposition. Table II shows
that only 7 parameters involved in our algorithm need to be
manually tuned, whereas we have typically up to K = 75 (for
4 wavelet iterations) parameters that are automatically adjusted
to the image. By comparison, BM3D [30], [33] has more than
60 non-linear parameters to be manually determined for an
efficient block matching and collaborative filtering.

Apart from the case of λ1, λ2 and λ3 already discussed
above (Section V-B), we report the following experimental
observations:

1) Choosing β in [5 × 10−6σ 2, 5 × 10−5σ 2] and μ in
[0.01, 0.1] yields very similar deconvolution results with
PSNR loss within 0.05 dB, compared to the maximum
PSNR with optimal values.

2) Any combinations of T1 in [3σ, 6σ ] and T2 in [7σ, 10σ ]
achieve very similar PSNR performance (the PSNR
variations are generally within 0.1 dB).

SA-DCT: 14.97dB

ForWaRD: 15.25dB C-SALSA: 15.65dB SURE-LET: 15.79dB

Blurred noisy: 7.55dB BM3D: 14.93dB

Fig. 7. Restoration of Crowd degraded by Gaussian blur of variance 9 with
noise std σ = 100.

3) Applying the other two choices of thresholding functions
θ1 and θ2 reported in [52], [54] does not result in
significant PSNR loss (maximum 0.2 dB), compared to
using (15).

Based on these observations, we now draw the conclu-
sion that the proposed algorithm is very robust and largely
insensitive to the parameters. No optimization is needed here.
The main reason for the robustness is that any changes on
the parameters or functions (β, μ, θ1, θ2, T1 and T2) are
eventually counterbalanced by an (optimal) adaptation of the
(at least 57) LET coefficients ak (final PSNR variations of
0.1∼0.2 dB). For this reason, the proposed algorithm becomes
highly adaptive to variousscenarios, even if the parameters in
Table II are not well-tuned.

D. Influence of the Boundary Conditions: Periodic versus
Symmetric

Table III displays the PSNR results obtained for differ-
ent boundary conditions (periodic, half-point symmetric or
whole-point symmetric). As observed, the type of boundary
conditions has an impact on the deconvolution performance.
From the results, we can conclude that symmetric bound-
ary conditions perform uniformly better than periodic. This
is mainly because symmetric boundary conditions ensure
slowly-varying changes at the boundaries, unlike periodic
conditions which may introduce discontinuities. The deconvo-
lution gain obtained by symmetric boundary conditions over
periodic ones depends on the image and blur scenario. Table III
reports the PSNR results obtained on House and Camera-
man as two extreme cases: for Cameraman, the boundary
conditions have almost no influence on the deconvolution
performance, whereas significant differences are noticed for
House.

E. Comparison With the State-of-the-Art

In Tables IV–VI, we present several comparisons between
the proposed multi-Wiener SURE-LET method and some
state-of-the-art deconvolution techniques whose softwares are
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TABLE III

PSNR RESULTS OF OUR MULTI-WIENER SURE-LET FOR DIFFERENT BOUNDARY CONDITIONS (σ 2 = 1)

Blur Kernel Rational Filter Separable Filter 9 × 9 uniform Gaussian Blur With std 3

Boundary
Conditions

Periodic
Symmetric

Periodic
Symmetric

Periodic
Symmetric

Periodic
Symmetric

Half-point Whole-point Half-point Whole-point Half-point Whole-point Half-point Whole-point

Image House 256 × 256

Input 25.64 26.30 26.29 30.92 31.83 31.82 24.09 24.75 24.75 24.22 24.86 24.86

SURE-LET 35.33 35.50 35.46 36.40 36.51 36.47 32.97 32.98 32.97 29.37 30.03 30.01

MSE-LET 35.48 35.61 35.58 36.58 36.82 36.77 33.19 33.26 33.20 29.74 30.32 30.32

Image Cameraman 256 × 256

Input 22.24 22.37 22.36 25.67 25.79 25.79 20.76 20.89 20.89 20.97 21.10 21.10

SURE-LET 30.91 30.97 30.96 30.83 30.93 30.90 27.40 27.47 27.46 23.97 24.14 24.14

MSE-LET 31.12 31.17 31.16 31.10 31.17 31.16 27.75 27.77 27.76 24.25 24.41 24.40

TABLE IV

COMPARISON OF SOME STATE-OF-THE-ART DECONVOLUTION METHODS UNDER GAUSSIAN BLUR WITH VARIANCE 9∗

σ 1 5 10 30 50 100 1 5 10 30 50 100

Image Cameraman 256 × 256 Coco 256 × 256
Input 20.97 20.78 20.22 16.61 13.33 7.91 26.45 25.78 24.19 17.92 13.89 8.06

ForWaRD 23.76 22.88 22.40 21.18 20.35 18.79 31.18 29.48 28.51 25.91 24.22 20.80
SA-DCT 23.73 23.10 22.50 20.80 19.39 16.86 31.27 29.82 28.58 24.76 22.16 18.09
BM3D 24.05 23.10 22.61 21.46 20.78 19.74 31.27 29.70 28.72 26.61 25.48 23.80

TV-MM 23.93 22.80 22.06 21.10 20.24 18.65 31.65 29.59 28.56 26.30 24.75 21.81
C-SALSA 23.75 22.81 22.26 21.27 20.47 18.95 31.35 29.07 28.47 26.13 24.31 21.50

[54] 23.32 22.44 21.83 20.78 20.25 18.95 30.39 28.58 27.70 25.81 24.82 16.88
SURE-LET 23.97 23.01 22.52 21.50 20.91 19.80 31.57 29.80 28.80 26.95 25.78 24.02
MSE-LET 24.25 23.30 22.70 21.72 21.11 20.08 31.88 30.10 29.12 27.28 26.10 24.46

Image House 256 × 256 Couple 512 × 512
Input 24.22 23.81 22.73 17.52 13.73 8.02 23.55 23.20 22.26 17.39 13.68 8.01

ForWaRD 28.87 27.43 26.63 24.27 22.87 20.23 26.40 25.25 24.62 23.12 22.25 19.64
SA-DCT 28.94 27.86 26.75 23.51 21.32 17.69 26.43 25.35 24.62 22.75 21.20 18.04
BM3D 29.19 27.90 27.10 25.17 23.98 22.32 26.60 25.39 24.76 23.42 22.72 21.37

TV-MM 29.35 27.50 26.72 24.60 23.08 20.63 26.12 24.92 24.20 23.02 21.79 19.53
C-SALSA 29.25 27.46 26.55 24.51 22.97 20.50 26.36 25.20 24.59 23.30 22.04 19.91

[54] 28.19 26.64 25.90 23.93 22.72 15.57 26.29 25.06 24.49 23.20 22.44 21.48
SURE-LET 29.27 27.81 27.00 25.20 24.10 22.35 26.56 25.40 24.80 23.59 22.90 21.88
MSE-LET 29.62 28.01 27.24 25.54 24.33 22.62 26.64 25.47 24.88 23.68 22.99 21.96

Image Crowd 512 × 512 Lake 512 × 512
Input 16.56 16.49 16.27 14.45 12.19 7.55 22.98 22.67 21.83 17.24 13.61 7.99

ForWaRD 19.97 18.83 18.22 17.21 16.57 15.25 26.80 25.39 24.65 22.94 21.72 18.84
SA-DCT 19.87 18.97 18.33 17.02 16.30 14.97 26.82 25.49 24.57 22.44 20.97 18.05
BM3D 20.01 18.80 18.15 16.83 16.15 14.93 26.90 25.48 24.68 22.97 22.10 20.42

TV-MM 19.43 18.77 18.17 17.10 16.18 14.87 26.58 25.25 24.38 22.83 21.46 19.12
C-SALSA 19.92 18.88 18.31 17.33 16.73 15.65 26.74 25.40 24.67 23.05 21.73 19.50

[54] 19.80 18.61 18.04 16.91 16.36 15.55 26.67 25.20 24.44 22.89 22.04 20.74
SURE-LET 20.05 18.90 18.30 17.25 16.67 15.79 26.90 25.48 24.80 23.33 22.48 21.18
MSE-LET 20.21 19.06 18.48 17.40 16.81 15.89 26.97 25.62 24.92 23.49 22.64 21.32

Image Bridge 512 × 512 Mixture 512 × 512
Input 21.39 21.18 20.57 16.77 13.41 7.94 14.84 14.79 14.64 13.31 11.46 7.29

ForWaRD 23.73 22.79 22.28 21.32 20.53 18.41 16.63 15.94 15.72 15.15 14.77 14.08
SA-DCT 23.75 22.84 22.32 21.27 20.50 18.63 16.64 16.13 15.80 15.19 14.75 13.64
BM3D 23.85 22.88 22.38 21.38 20.78 19.61 16.74 15.95 15.59 14.91 14.60 14.02

TV-MM 23.56 22.69 21.99 20.51 19.80 18.12 16.37 15.69 15.20 14.72 14.46 13.52
C-SALSA 23.78 22.87 22.09 21.38 20.52 18.89 16.52 15.96 15.65 15.07 14.70 13.92

[54] 23.70 22.73 22.24 21.27 20.71 19.87 16.56 15.88 15.57 14.98 14.67 14.27
SURE-LET 23.90 22.95 22.44 21.54 20.95 20.01 16.70 16.07 15.74 15.15 14.80 14.43
MSE-LET 23.97 23.01 22.53 21.61 21.05 20.14 16.78 16.12 15.81 15.28 14.93 14.53

∗Best PSNR results within a 0.1 dB margin are highlighted. The results have been averaged over 10 noise realizations.

available online. Various degradation scenarios have been con-
sidered. In order to compare with other methods in exactly the

same experimental situations, we have considered only peri-
odic boundary condition. The state-of-the-art methods include
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TABLE V

DECONVOLUTION OF THE Bridge IMAGE FOR VARIOUS BLURS AND NOISE LEVELS∗

σ 1 5 10 30 50 100 1 5 10 30 50 100

Blur Rational Filter Separable Filter

Input 22.60 22.33 21.55 17.15 13.58 7.98 25.78 25.22 23.82 17.85 13.88 8.06

ForWaRD 28.32 24.65 23.37 21.48 20.20 18.60 29.09 26.47 25.04 22.77 21.74 19.75

SA-DCT 28.94 25.00 23.74 21.99 20.99 19.02 29.23 26.97 25.68 23.43 22.40 20.77

BM3D 28.95 25.12 23.70 21.87 21.05 19.67 29.40 27.00 25.72 23.37 22.36 20.43

TV-MM 28.64 25.10 23.42 20.16 18.71 17.32 28.95 26.93 25.70 22.98 20.87 19.28

C-SALSA 28.63 24.90 23.49 20.45 18.82 18.31 28.96 26.57 25.34 22.44 20.46 16.46

[54] 28.44 24.87 23.53 21.71 20.91 19.92 29.03 26.70 25.48 23.25 22.16 20.61

SURE-LET 28.87 25.10 23.81 22.12 21.32 20.19 29.37 27.00 25.70 23.50 22.52 21.04
MSE-LET 28.90 25.23 23.95 22.22 21.44 20.32 29.48 27.07 25.80 23.58 22.59 21.16

Blur 5 × 5 Uniform Blur 9 × 9 Uniform Blur

Input 23.24 22.92 22.04 17.33 13.66 8.01 21.16 20.96 20.38 16.69 13.37 7.93

ForWaRD 28.31 25.15 23.89 22.06 20.11 18.82 25.77 23.48 22.65 21.21 20.08 18.63

SA-DCT 27.96 24.76 23.82 22.32 21.43 19.86 25.83 23.31 22.48 20.82 19.71 18.23

BM3D 28.57 25.50 24.46 22.65 21.88 20.21 26.12 23.75 22.82 21.50 20.90 19.70

TV-MM 28.31 25.52 24.41 21.74 19.97 18.24 25.85 23.57 22.43 19.95 18.39 16.44

C-SALSA 28.36 25.16 24.15 21.78 18.59 17.48 25.74 23.42 22.58 20.67 19.52 18.00

[54] 28.25 25.20 24.17 22.52 21.74 20.41 25.82 23.39 22.47 21.32 20.83 19.96

SURE-LET 28.65 25.55 24.43 22.78 22.00 20.78 26.10 23.79 22.95 21.71 21.10 20.13
MSE-LET 28.69 25.64 24.56 22.90 22.11 20.88 26.17 23.88 23.05 21.81 21.19 20.24

∗Best PSNR results within a 0.1 dB margin are highlighted. The results have been averaged over 10 noise realizations.

TABLE VI

DECONVOLUTION OF THE Mixture IMAGE FOR VARIOUS BLURS AND NOISE LEVELS∗

σ 1 5 10 30 50 100 1 5 10 30 50 100

Blur Rational Filter Separable Filter

Input 15.96 15.89 15.70 14.07 11.95 7.47 18.38 18.27 17.94 15.47 12.76 7.74

ForWaRD 27.67 19.95 17.77 15.76 15.01 13.99 26.01 22.03 20.42 17.50 16.30 14.96

SA-DCT 28.54 20.64 18.20 15.99 15.32 14.40 24.35 22.25 20.95 17.93 16.70 15.46

BM3D 28.53 19.24 17.25 15.45 14.85 14.10 26.54 22.26 20.04 17.14 16.15 14.86

TVMM 28.28 20.40 17.30 14.41 13.78 13.18 27.17 22.80 20.64 17.15 15.25 13.80

C-SALSA 27.26 20.14 18.04 15.80 15.02 13.99 26.58 21.75 20.16 17.51 16.19 13.80

[54] 25.92 19.52 17.74 15.77 15.12 14.42 24.67 21.40 20.01 17.67 16.67 15.41

SURE-LET 29.90 21.10 18.53 16.12 15.50 14.71 27.80 23.13 21.08 18.05 16.94 15.70
MSE-LET 30.28 21.34 18.70 16.27 15.58 14.78 28.11 23.40 21.43 18.21 17.06 15.79

Blur 5 × 5 Uniform Blur 9 × 9 Uniform Blur

Input 15.92 15.86 15.67 14.04 11.94 7.46 14.58 14.54 14.40 13.13 11.35 7.24

ForWaRD 24.76 19.80 18.26 16.29 15.58 14.42 20.42 17.21 16.16 15.20 14.68 13.79

SA-DCT 25.35 19.40 17.57 16.03 15.48 14.74 21.29 17.10 16.13 15.06 14.60 13.93

BM3D 25.53 19.78 17.90 16.18 15.56 14.58 20.66 17.07 16.01 15.00 14.68 14.09

TVMM 25.70 20.39 18.31 15.66 14.52 13.64 20.70 17.02 15.65 14.23 13.66 12.87

C-SALSA 24.29 19.67 18.15 15.77 15.37 14.00 20.24 17.23 16.30 14.95 14.29 13.30

[54] 23.19 19.14 17.83 16.37 15.78 15.00 19.39 16.67 15.92 14.99 14.70 14.36

SURE-LET 26.34 20.75 18.90 16.74 16.04 15.25 21.60 17.75 16.65 15.32 15.01 14.52
MSE-LET 26.60 21.00 19.06 16.85 16.13 15.35 21.90 17.89 16.76 15.42 15.07 14.60

∗Best PSNR results within a 0.1 dB margin are highlighted. The results have been averaged over 10 noise realizations.

ForWaRD5 [27], SA-DCT6 [29], BM3D7 [30], TV-MM8 [24],

5The source code of ForWaRD is available at
http://dsp.rice.edu/software/forward.

6The source code of SA-DCT is available at http://www.cs.tut.fi/~foi/SA-
DCT/ref_software.

7The source code of BM3D is available at http://www.cs.tut.fi/~foi/GCF-
BM3D/.

8The source code of TV-MM is available at http://www.
lx.it.pt/~bioucas/code.htm.

C-SALSA9 [16] and Pesquet’s et al. work10 [54]. We have run
all the source codes by default throughout all the experiments
performed. For TV-MM [24] and C-SALSA [16], we used the

9The source code of C-SALSA is available at
http://cascais.lx.it.pt/~mafonso/salsa.html.

10The source code of [54] is available at http://www-syscom.univ-
mlv.fr/~chaux/toolbox/TOOLBOX_Surelet_deconvolution_v1.0.zip.
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TABLE VII

COMPARISON OF THE COMPUTATIONAL TIME OF VARIOUS DECONVOLUTION TECHNIQUES (UNITS: SEC.)∗

Degradation Scenario ForWaRD SA-DCT BM3D TV-MM C-SALSA Pesquet [54] SURE-LET

Cameraman 256 × 256
Gaussian blur, σ = 1

3.62 2.81 1.90 103.91 33.52 114.12 0.69

Mixture 512 × 512
Rational filter, σ = 10

31.11 12.28 8.00 93.50 34.32 375.74 2.69

Crowd 512 × 512
9 × 9 uniform, σ = 50

45.53 12.33 7.80 59.08 25.18 353.52 2.69

∗ Hardware environment used: Intel(R) Core(TM) i3-2100 CPU @3.10GHz, memory size: 2GB.

SA-DCT: 13.93dB

SURE-LET: 14.52dBBM3D: 14.09dB C-SALSA: 13.30dB

ForWaRD: 13.79dBBlurred noisy: 7.24dB

Fig. 8. Restoration of Mixture degraded by 9 × 9 uniform blur with noise
std σ = 100.

default stopping criteria suggested by their respective authors.
For [54], we used symlet-8 translation invariant wavelet, as it
gives slightly better performance than using Haar undecimated
wavelet (generally by 0.2∼0.3 dB).

The “MSE-LET” rows of Tables IV–VI are the results of
minimizing the actual MSE in lieu of the SURE, demonstrat-
ing that the latter is a good substitute to the MSE minimization.

It can be seen from the reported PSNR scores that the
proposed SURE-LET algorithm uniformly achieves the high-
est performance. Although TV-MM is well-known for its
outstanding performance on regularly-structured images such
as House, Coco, and the left-bottom of Mixture, it is sub-
stantially outperformed by the proposed algorithm. For more
complicated images like Crowd with lots of irregular edges
and disordered features, the proposed method also shows
better PSNR results than the other techniques. ForWaRD
is more effective for these less structured images than for
cartoon-like images. BM3D, which achieves the best per-
formance among the other techniques on average, is not
as efficient on these irregular structures. Note that the pro-
posed multi-Wiener SURE-LET algorithm is very robust to
a wide range of noise levels from σ 2 = 1 to σ 2 =
1 × 104. In particular, significant improvements over other
deconvolution algorithms are frequently observed for large
noise variance.

Regarding the subjective visual quality (see Figs. 6–8),
the proposed deconvolution algorithm preserves various
image details, while introducing very few artifacts.

For House, it achieves good preservation of uniform
areas and regularly-sharp edges, while for Crowd, it preserves
the finer details of the irregularities. In Fig. 8, the differences
between the various algorithms are clearly visible: the
proposed algorithm introduces fewer artifacts than the other
techniques. In particular, the text part of Mixture is easier
to read in the image restored by the proposed multi-Wiener
SURE-LET.

F. Analysis of Computational Complexity

The most computationally-intensive part of the proposed
algorithm is the construction of the elementary functions fk(y),
due to the computation of the thresholding θ(·) and of its first-
order derivative, as well as the independent reconstructions
of all the processed subbands. Compared to these steps, the
construction and resolution of the linear system of equations
(9) of low order K has a negligible computational cost.

Based on these observations, the computational complexity
of the proposed multi-Wiener SURE-LET is roughly evaluated
as K N , which is linearly proportional to both the number of
basis functions K and pixel number N . Since the processing
time of the proposed deconvolution algorithm is independent
of the content of the input data, it grows linearly with the
data size. Table VII reports the execution time of the various
algorithms, measured on an Intel(R) Core(TM) i3-2100 CPU
@3.10 GHz, with 2 GB of memory. As expected, the process-
ing time of a 512 × 512 image is roughly four times that of a
256 × 256 image for the proposed algorithm.

Finally, we would like to emphasize the low complexity
of the proposed algorithm. Since our deconvolution approach
merely boils down to solving a linear system of equations,
it is substantially faster than other state-of-the-art techniques,
as confirmed in Table VII. We would also like to stress that
our implementation uses standard MATLAB code only, without
any compiled routines, and can be easily parallelized for even
faster processing.

VI. CONCLUSION

In this paper, we have presented a new image deconvolution
method based on the SURE-LET approach initially developed
for image denoising applications. The main originality of the
proposed deconvolution approach is the use of multiple Wiener
filters with different but fixed regularization parameters, to
avoid the empirical and fastidious adjustment of the non-linear
regularization parameter.
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Although the proposed multi-Wiener SURE-LET decon-
volution algorithm has low complexity, its performances are
already quite competitive with the state-of-the-art deconvo-
lution techniques, both quantitatively and visually. The great
flexibility and the limited computational cost of the pro-
posed approach suggest that it is possible to develop more
sophisticated forms of basic processings; e.g., performing a
multivariate thresholding by taking into account inter-scale
and/or intra-scale dependencies between the wavelet coeffi-
cients as in [51]. Electing more directional deconvolutions
instead of using classic Wiener filters might also lead to
improved performances. There is thus a substantial margin of
improvement for SURE-LET type deconvolution algorithms.

APPENDIX A
PROOF OF THEOREM 2.1

Proof: Expanding the MSE (2) and using x = H−1(y−b),
we obtain (ignoring the factor 1

N )

E
{
‖f(y) − x‖2

}
= E

{
‖f(y)‖2

}
− 2E

{
xTf(y)

}
+ E

{
‖x‖2

}

= E
{
‖f(y)‖2

}
− 2E

{
yTH−Tf(y)

}

+ 2E
{

bTH−Tf(y)
}

+ E
{
‖x‖2

}
. (23)

Consider the multivariate Gaussian probability density func-
tion q(b) ∝ exp(−bTC−1b

2 ). It satisfies q(b)b = −C∇bq(b)
where ∇b is the gradient operator w.r.t. b. Hence,

E
{

bTH−Tf(y)
}

=
∫

bTH−Tf(y)q(b)db

= −
∫

(∇bq(b))T CH−Tf(y)
︸ ︷︷ ︸

u(y)

db

= −
N∑

n=1

∫
∂q(b)

∂bn
un(y)db.

Noting that
∫∞
−∞

∂q(b)
∂bn

undbn = − ∫∞
−∞

∂un
∂bn

q(b)dbn,
which follows from integration by parts,
and the fact that |unq(b)| → 0 as
|bn| → ∞, we have

E
{

bTH−Tf(y)
}

=
N∑

n=1

∫ ∞

−∞
∂un

∂bn
q(b)∂b

= E

{
N∑

n=1

∂un

∂bn

}

= E

{
N∑

n=1

∂un

∂yn

}

= E
{
divyu

}
. (24)

Substituting (24) into (23) completes the proof.

APPENDIX B
PROOF OF (6) IN SECTION II-C

Proof: Similar to Appendix A, using Hx = y − b, we
expand the modified MSE as (ignoring the factor 1

N )
∥
∥∥f(y) − H−1

β Hx
∥
∥∥

2 = ‖f(y)‖2 − 2xTHTH−T
β f(y) +

∥
∥∥H−1

β Hx
∥
∥∥

2

(25)
where the second term is:

xTHTH−T
β f(y) = yTHTH−T

β f(y) − bTHTH−T
β f(y). (26)

According to Appendix A, we have

E
{

bTH−T
β f(y)

}
= E

{
divy

{
CH−T

β f(y)
}}

. (27)

Substituting (26) and (27) into (25) completes the proof.

APPENDIX C
PROOF OF THEOREM 4.3

Proof: From Lemma 4.1, p(n) can be expressed as:

p(n) =
N−1∑

k=0

[
g2N (n − k) + g2N (n + k + 1)
︸ ︷︷ ︸

u(k)

]
b(k)

then, using the i.i.d. condition of b(n) as in (19), the variance
of p(n) is

E
{

p(n)2} = E

⎧
⎨

⎩

(
N−1∑

k=0

u(k)b(k)

)2
⎫
⎬

⎭
= σ 2

N−1∑

k=0

u(k)2. (28)

Due to the fact that u(−k) = u(k − 1) and u(k + 2N) = u(k),
by change of variable and Parseval’s theorem, we have

N−1∑

k=0

u(k)2 = 1

2

2N−1∑

k=0

u(k)2 = 1

4N

2N−1∑

k=0

∣
∣U(k)

∣
∣2 (29)

where U(k) is the DFT of u(k ′):

U(k) =
2N−1∑

k′=0

u(k ′)e− j 2πkk′
2N

= e− j πkn
N

2N−1∑

k′=0

g2N (k ′)e j πkk′
N

+ e j πk
N (n+1)

2N−1∑

k′=0

g2N (k ′)e− j πkk′
N .

Recalling Eq.(22): G
(
e j πk

N
) = ∑2N−1

n=0 g2N (n)e− j πkn
N , and

combining with U(k), U(k) is related to G
(
e j πk

N
)

through:

U(k) = e− j πkn
N G

(
e− j πk

N
)+ e j πk

N (n+1)G
(
e j πk

N
)
. (30)

Substituting (30) into (29), and combining with (28) complete
the proof.
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