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ABSTRACT

We design two complex filters {h[n], g[n])} for an or-
thogonal filter bank structure based on two atom functions
{ρα0 (t), ρα1/2(t)}, such that: 1) they generate an orthonormal
multiwavelet basis; 2) the two complex conjugate wavelets
are Hilbert wavelets, i.e., their frequency responses are sup-
ported either on positive or negative frequencies; and 3)
the two scaling functions are real. The developed complex
wavelet transform (CWT) is non-redundant, nearly shift-
invariant, and distinguishable for diagonal features. The
distinguishability in diagonal features is demonstrated by
comparison with real discrete wavelet transform.

Index Terms— Non-redundant, orthonormal complex
multiresolution analysis

1. INTRODUCTION

Though real wavelet transform has widely used in signal and
image processing, it suffers from two main problems: 1)
shift invariance; and 2) poor directional selectivity. Complex
wavelet transform (CWT) is developed to overcome these two
problems [1, 2]. But current CWT introduces some redun-
dancy into the transform, such as the single-tree CWT has re-
dundancy 2J with J scale level [1] and the dual-tree DTCWT
has redundancy 4 [2] for two dimensional images. However,
the redundancy complicates such applications as image/video
compression where a parsimonious signal representation is
critical. To address this problem, some non-redundant CWTs
have been proposed [3–5]. But [3, 4] neither provide ex-
plicit filters nor discuss the complex multiresolution analysis
(MRA). Paper [5] proposed a pair of complex filters where
the wavelets are Hilbert functions, but the complex MRA is
not orthonormal, i.e., the frequency responses of the wavelets
and scaling functions are overlapped, which makes hard dis-
tinguish the diagonal components for images.

In this paper, based on the same orthconjugate filter
bank structure shown in Fig 1 as [5], we aim to develop a
new complex wavelet transform which is non-redundant for
real input signals, nearyly shift-invariant and distinguish-
able in the diagonal features. In detail, our objective is to
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design complex filters {h[n], g[n])} by two atom functions
{ρα0 (t), ρα1/2(t)}, such that: 1) they generate an orthonormal
complex multiresolution analysis; 2) the two complex conju-
gate wavelets are Hilbert wavelets that offer shift-invariance
and directivity; and 3) the two scaling functions are real that
preserve the polynomial trends for signals between scales.
Here, {ρα0 (t), ρα1/2(t)} are such functions whose frequency

responses are ρ̂α0 (ω) = 1
|ω|α+1 and ρ̂α1/2(ω) = −j sgn(ω)

|ω|α+1 ,
where α is a degree parameter and sgn(ω) is the sign func-
tion with 1 for ω > 0, −1 for ω < 0, and 1

2 for ω = 0. The
Hilbert wavelet is a complex function whose imaginary part
is the Hilbert transform of the real part, i.e., its support of the
frequency respose is either in positive or in negative.

Because an orthogonal filter bank is only the necessary
condition to generate an orthonormal complex MRA [6], so
we will start from the sufficient condition: firstly construct the
orthonormal complex MRA and then determine the filters.

2. CONSTRUCTION OF AN ORTHONORMAL
COMPLEX MULTIRESOLUTION ANALYSIS

Let ℜ{·}, ℑ{·}, [·]∗ and [̃·] be real, imaginary, complex con-
jugate and synthesis filter operators, respectively. In Fig. 1,
u[n] = { 1√

2
, j√

2
} is an orthonormal filter derived from the

Haar filter by frequency shifting; x[n], y[n] and w[n] denote
the input, lowpass output for iteration and highpass output
(wavelet coefficients), respectively. There exist: 1) w[n] =∑

k g[k−4n]x[k]; 2) y[n] =
∑

k,l 2ℜ{u[2k−n]h[l−4k]}x[l].
Our objective is to design the complex filters {h[n], g[n]} by
two atom functions {ρα0 (t), ρα1/2(t)}, such that {h[n], g[n]}
generates an orthonormal complex multiresolution analysis.

2.1. Complex multiresolution analysis

Let {φ0(t), φ1(t)} be the scaling functions and {ψ(t), ψ∗(t)}
be the complex conjugate wavelets. Define subspaces Vj =
Spann∈Z

{φ0(2jt−n), φ1(2jt−n)}, Wj = Spann∈Z
{ψ(2jt−

n)} and W
∗
j = Spann∈Z

{ψ∗(2jt − n)}. The complex mul-
tiresolution analysis states that: 1) · · · ⊂ V−1 ⊂ V0 ⊂
V1 ⊂ · · · ,

⋃∞
j=−∞ Vj = L2(R) and

⋂∞
j=−∞ Vj = {0}; 2)

Vj = Vj−1 ⊕ Wj−1 ⊕ W
∗
j−1, where ⊕ denotes the Kro-

necker direct sum; and 3) any square integrable real function
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h[n] ↓ 4 ↑ 2 u[n]

y[n]

h∗[n] ↓ 4 ↑ 2 u∗[n]

x[n]

g[n] ↓ 4 w[n]

g∗[n] ↓ 4 w∗[n]

(a) Analysis filter bank

ũ[n] ↓ 2 ↑ 4 h̃[n]

y[n]

ũ∗[n] ↓ 2 ↑ 4 h̃∗[n]

x̂[n]

w[n] ↑ 4 g̃[n]

w∗[n] ↑ 4 g̃∗[n]

(b) Synthesis filter bank

Fig. 1. The orthconjugate filter bank structure for 1D non-redundant complex wavelet transform (NRCWT) implementation.
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Fig. 2. Frequency-domain energy localization of the orthonormal multiwavelet basis {2j/2 φi(2jt − n), 2j/2 ψ(2jt −
n), ψ∗(2jt − n)}, where φi(2jt − n) are real functions whose frequency responses are supported within [−2j−1π, 2j−1π],
while ψ(2jt− n) are Hilbert functions whose frequency responses are supported in the positive frequencies [2j−1π, 2jπ].

f(·) ∈ Vj , there exists f(2·) ∈ Vj+1. The complex multires-
olution analysis implies both the scaling functions and the
wavelets satisfy a matrix-dilation equation,

[
φ0

(
t
2

)

φ1
(
t
2

)
]
=

√
2
∑

l

M [l]

[
φ0(t− l)
φ1(t− l)

]
, (1a)

[
ψ
(
t
2

)

ψ∗ ( t
2

)
]
=

√
2
∑

l

N [l]

[
φ0(t− l)
φ1(t− l)

]
, (1b)

where M [l] =
√
2

[
ℜ{h[2l]} ℜ{h[2l − 1]}
−ℑ{h[2l]} −ℑ{h[2l − 1]}

]
and

N [l] =

[
g[2l] g[2l − 1]
g∗[2l] g∗[2l − 1]

]
,

[
g0[l] g1[l]
g∗0 [l] g∗1 [l]

]
. Define

the vector functions φ(t) =
[
φ0(t)
φ1(t)

]
, ψ(t) =

[
ψ(t)
ψ∗(t)

]
.

Let φ̂(ω) and ψ̂(ω) be their Fourier transforms. Then the
matrix-dilation equations in the frequency domain can be
represented as

φ̂(ω) =

√
2

2
M(ej

ω
2 ) φ̂

(ω
2

)
, (2a)

ψ̂(ω) =

√
2

2
N(ej

ω
2 ) φ̂

(ω
2

)
, (2b)

whereM(ejω) =
∑

lM [l] e−jlω andN(ejω) =
∑

lN [l] e−jlω

are called the refinement matrices.

The complex MRA is orthonormal if and only if:

• {φ0(t − n), φ1(t − n)} forms a basis for the subspace
V0, i.e., 〈φ(t),φ(t− n)〉 = I2 δn0, where I2 is a two-
dimensional identity matrix and δ is the Kroneck delta
function;

• ψ(t − n) forms a basis for the subspace W0 and
ψ∗(t − n) forms a basis for the subspace W

∗
0 , i.e.,

〈ψ(t),ψ(t− n)〉 = I2 δn0;

• {ψ(t − n), ψ∗(t − n)} are orthogonal to {φ0(t −
n), φ1(t − n)}, i.e., 〈φ(t),ψ(t− n)〉 = 02 where 02

is a two-dimensional zero matrix.

2.2. Problem

In this paper, our objective is to determine {h[n], g[n]} or
equivalently {M(ejω),N(ejω)} by {ρα0 (t), ρα1/2(t)}, such
that: 1) the complex multiresolution analysis is orthonormal;
2) the wavelets are Hilbert functions; and 3) the scaling func-
tions are real.

Note that though φ0(t) and φ1(t) are orthogonal each
other, their freqeuncy responses might be overlapped. As-
sume the scaling functions φ̂(ω) are supported within [−π

2 ,
π
2 ],

while the wavelet ψ̂(ω) is supported within [π2 , π]. Fig. 2
plotts the frequency enery localizations of the orthonormal
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Fig. 3. Frequency-domain energy localization of the or-
thonormal multiwavelet basis {2j/2 φi(2jt−n), 2j/2 ψ(2jt−
n), ψ∗(2jt− n)} after 2D NRCWT. φ̂−1 is the Fourier trans-
form of the tensor scaling functions by φi(2jt − n) at scale
j = 1, while ψ̂−1

pq are the Fourier transorm of the tensor
wavelets at scale j = −1 for p, q = 1, 2. The gray parts
are the complex conjugates of the white parts in the border.

multiwavelet basis where the wavelets are Hilbert functions.
In the figure, φ̂(ω) represents both φ̂0(ω) and φ̂1(ω). It is
clear that as the scale j decreases by 1, the frequency supports
of the scaling functions and wavelets are double.

By implementating 2D NRCWT and removing the com-
plex conjugate highpass branches,four separately complex
wavelets and one real scaling function are generated. Fig. 3
plotts the the frequency energy localizations of these 2D
complex wavelet basis functions, where the gray color parts
corresponding to the removed complex conjugate wavelets.
Because of the one-sided frequency support of the Hilbert
wavelet, this filter bank provides distinct basis functions in
vertical (ψ̂−1

21 ), horizontal (ψ̂−1
12 ), +45◦ degree (ψ̂−1

11 ) and
−45◦ degree (ψ̂−1

22 ) subbands.

2.3. Formulation

Define ρα(t) =

[
ρα0 (t− n)
ρα1/2(t− n)

]
. Our objective is to find

two coefficinet matrices Cn and Dn that satisfy

φ

(
t

2

)
=

∑

n

Cnρ
α

(
t

2
− n

)
,ψ

(
t

2

)
=

∑

n

Dnρ
α(t−n).

such that {h[n], g[n]} generate an orthonormal complex mul-
tiresolution analysis (OCMA) with ψ

(
t
2

)
Hilbert functions

and φ
(
t
2

)
are real. Taking the Fourier transform, we have

φ̂(ω) = C(ejω) ρ̂α(ω), ψ̂(ω) = 2αD(ej
ω
2 ) ρ̂α(ω),

where C(ejω) =
∑

n Cn e
−jnω , D(ejω) =

∑
nDn e

−jnω

and ρ̂α(ω) =
[

ρα0 (ω)
ρα1/2(ω)

]
. Relating to (2), there exist

M(ejω) = 2−(α+1/2)C(ej2ω)C(ejω)−1, (3a)

N(ejω) =

√
2

2
D(ejω)C(ejω)−1, (3b)

where [·]−1 denotes the inverse operator.
The orthonormality of the complex multiresolution anal-

ysis in the frequency domain is equivalent that [7]

1

2
I2 = C(ejω)R(ejω)C(ejω)H , (4a)

2I2 =D(ejω)R(ejω)D(ejω)H

+D(−ejω)R(−ejω)D(−ejω)H , (4b)

02 = C(ej2ω)R(ejω)D(ejω)H

+C(ej2ω)R(−ejω)D(−ejω)H , (4c)

whereR(ejω) is the autocorrelation matrix-filter:

R(ejω) =

[ ∑
k

1
|ω+2kπ|2(α+1) j

∑
k

sgn(ω+2kπ)
|ω+2kπ|2(α+1)

−j ∑
k

sgn(ω+2kπ)
|ω+2kπ|2(α+1)

∑
k

1
|ω+2kπ|2(α+1)

]
.

Our objective is to obtain {C(ejω),D(ejω)} by solving (4).

2.4. Construction of orthonormal complex MRA

By using spectral decomposition and linear algebra operation
to (4), we get the coefficient matrices with

C(ejω) =

[
ejβ3 0
0 ejβ4

] [
cos θ2 − sin θ2
sin θ2 cos θ2

]

×




2√
a(ejω)

j2√
a(ejω)

2√
a(e−jω)

−j2√
a(e−jω)


 , (5a)

D(ejω)

= e−jω

[
cos θ1 sin θ1
− sin θ1 cos θ1

] [
ejβ1 0
0 ejβ2

]
×




√
1

a(ejω) − 2−2(α+1)

a(ej2ω) j
√

1
a(ejω) − 2−2(α+1)

a(ej2ω)√
1

a(e−jω) − 2−2(α+1)

a(e−j2ω) −j
√

1
a(e−jω) − 2−2(α+1)

a(e−j2ω)


 ,

(5b)

where βi and θj are real parameters of ω. The corresponding
wavelets and scaling functions can be also represented by
[
φ̂0(ω)

φ̂1(ω)

]
= C(ejω) ρ̂α(ω)

=




(
2 cos θ2√
a(ejω)

1+sgn(ω)
|ω|α+1 − 2 sin θ2√

a(e−jω)

1−sgn(ω)
|ω|α+1

)
ejβ3

(
2 sin θ2√
a(ejω)

1+sgn(ω)
|ω|α+1 + 2 cos θ2√

a(e−jω)

1−sgn(ω)
|ω|α+1

)
ejβ4


 ,

(6)
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[
ψ̂(ω)

ψ̂∗(−ω)

]
= 2αD(ej

ω
2 ) ρ̂α(ω)

=

[
cos θ1 sin θ1
− sin θ1 cos θ1

] [
ejβ1 0
0 ejβ2

]

×




2α
√

1

a(ej
ω
2 )

− 2−2(α+1)

a(ejω)

1+sgn(ω
2 )

|ω|α+1 e−j ω
2

2α
√

1

a(e−j ω
2 )

− 2−2(α+1)

a(e−jω)

1−sgn(ω
2 )

|ω|α+1 e−j ω
2


 . (7)

Let θ1 = β1 = β2 = β4 = 0, θ2 = π
4 and ej β3(ω) =

sgn(ω) ej
ω
2 , we get a pair of real scaling functions, a pair of

Hilbert wavelets; particularly, we also obtain a highpass fil-
ter G(ejω) = G0(e

j2ω) + e−jω G1(e
j2ω) which is only sup-

ported in the positive frequencies.

2.5. Complex filters

Applying (3), we obtain M(ejω) and N(ejω); then by using
the polyphase filters [8],

[
F0(z)
F1(z)

]
=M(z2)

[
1
z−1

]
,

[
F2(z)
F3(z)

]
=N(z2)

[
1
z−1

]
,

the two complex filters in the z-domain are solved,

H(z) =

√
2

2
[F0(z)− j F1(z)] , G(z) = F2(z). (8)

Figure 4 plots the specifical complex filters, scaling functions
and wavelets when α = 4.5. It is noticable that 1) |H(ejω)| is
asymmetric and continuous in ω ∈ (−π

4 ,
π
4 ), while |G(ejω)|

is almost supported in ω ∈ (π2 , π); 2) the scaling functions

φ̂i(ω) have the same magnitudes and are supported in ω ∈
(−π, π); and 3) the wavelet ψ̂(ω) is in ω ∈ (π, 2π).
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−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8
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Fig. 4. The frequency responses of the complex filters
{H(ejω), G(ejω)} (8) with z = ejω , the real scaling func-
tions (6) and the Hilbert wavelets (7) when α = 4.5. The
x-label is ω

2π .

3. PROPERTIES OF NRCWT

The distinguishability of our NRCWT in diagonal features
provided by {H(ejω), G(ejω)} is demonstrated by Fig. 5 for
‘Architecture.jpg’. In the Fig. 5, (a) is the original figure; (b)
is the discrete wavelet transform (DWT) figure taken from
the diagonal subband of the classical two-band perfect recon-
struction filter bank at scale level 3, where the real, normal-
ized fractional (α, τ)-B-spline filters (FBF) with α = 4.5 and
τ = 0 are used [9]; (c) and (d) are the complex wavelet trans-
form (CWT) figures taken from our 2D NRCWT ‘+45◦’ di-
agonal’ subband and ‘−45◦’ diagonal’ subband at scale leve
2 with α = 4.5. Observing these figures, we can see that both
the ‘+45◦’ line features in (c) and the ‘−45◦’ line features in
(d) are highly enhanced and could be easily extracted; how-
ever, in subfig (b), these two directionally line features are
tangled each other, which makes hard split and extract the
‘+45◦’ directional features from ‘−45◦’ directional features.

Original

(a)

diagonal−DWT

(b)

+45° diagonal−CWT

(c)

−45° diagonal−CWT

(d)

Fig. 5. Demonstration of directivities of 2D NRCWT. (a)
- original image, (b) - image from the diagonal subband
of classical two-band perfect reconstruction filter bank with
real, normalized fractional (α, τ)-B-spline filters (FBF) for
α = 4.5 and τ = 0, (c) and (d) – images from the diagonal
subbands of our 2D NRCWT: ‘+45◦ diagonal’ subband and
‘−45◦ diagonal’ subband. The line features along the positive
and negative diagonal directions can be easily distinguished,
splitted and extracted from (c) and (d), respectively.
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