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ABSTRACT

This paper presents a simple yet effective color filter array

(CFA) interpolation algorithm. It is based on a linear interpo-

lating kernel, but operates on YUV space, which results in a

nontrivial boost on the peak signal-to-noise ratio (PSNR) of

red and blue channels. The algorithm can be implemented ef-

ficiently. At the end of the paper, we present its performance

compared with nonlinear interpolation methods and show that

it’s competitive even among state-of-the-art CFA demosaic-

ing algorithms.

Index Terms— color filter array, interpolation, linear ker-

nel, YUV

1. INTRODUCTION

Most digital cameras capture color images using a single,

monochrome sensor. The sensor is covered by a color filter

array (CFA) such that incoming light is spectrally sampled.

Due to the presence of the CFA, only one of R, G and B com-

ponents is sampled at each pixel sampling location, resulting

(together with other information) in the image known as the

raw image. The most popular type of such mosaic is Bayer

Filter Array [1], shown in figure 1.

The raw image undergoes a chain of processing stages in-

side the digital camera before finally presented as a full-color

image. One of the most important stages is demosaicing, in

which the missing color components at each pixel are esti-

mated using some prior knowledge.

Demosaicing can be essentially formulated as an upsampling

problem. The real image is first downsampled by the camera

and then upsampled in the demosaicing process. Therefore,

standard interpolation techniques such as bilinear interpo-

lation can be directly applied. Such techniques are fast,

memory-saving, but are subject to non-negligible artifacts

such as false color and zipper effect [14]. They are primar-

ily consequences of bad sampling and ringing effect across

edges.

Nonlinear methods make use of spatial and interchannel

correlation to help restoration. State-of-the-art restoration

Fig. 1. Left: A typical Bayer color filter array configured as

G R (first row), B G (second row) pattern for every 2 × 2
patch. The component indicated at each pixel is captured by

the camera. Right: Sampling assumption for the YUV com-

ponents. The goal is to use this assumption to interpolate Y,

U and V consistently with the layout of RGB sampled values.

techniques include smooth hue transition [14] [2] and edge-

directed interpolation [4] [15]. They achieve excellent results

in terms of peak signal-to-signal ratio (PSNR).

To our knowledge, all the state-of-the-art techniques men-

tioned make use of RGB information exclusively. We pro-

pose a new vision on demosaicing, with linear interpolating

kernels, but in the YUV space. Although the PSNR obtained

does not outperform all the techniques above on standard test

images (lighthouse 1, lighthouse 2, sails, buildings) in this

realm of research, we obtain a boost in the R and B channels

(about 5 dB) for almost free (no prior knowledge on hue or

edges is assumed). The linear interpolating kernels we ex-

perimented include B-spline family functions and O-MOMS

functions.

2. COLOR FILTER ARRAY INTERPOLATION

2.1. Traditional Approach

Bayer color filter array samples in such a way that the number

of samples in G channel double those in R and B channels

respectively. The reason is based on human visual system, the

luminance response of which peaks at around the frequency

of green light.
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Bayer color filter array is defined in figure 1. We define e1 =[
1
0

]
and e2 =

[
0
1

]
. The samples captured by the camera can

be represented as

Ssample(n) =

⎡
⎢⎢⎣
R′(n)
G′1(n)
G′2(n)
B′(n)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R(Dn+ e2)
G(Dn)

G(Dn+ e1 + e2)
B(Dn+ e1)

⎤
⎥⎥⎦ . (1)

Standard interpolation is based on Shannon sampling and re-

construction theorem. The reconstructed R channel from a

downsampled image R′(n), for example, can be expressed

as a convolution of samples and the sinc function Rint(r) =∑
k R

′(k)sinc(D−1(r− e2)− k), where r represents a con-

tinuous coordinate and we use the exponent “int” to indicate

the interpolated (rather than the real) value. D is the upsam-

pling matrix

[
2 0
0 2

]
.

Furthermore, generalized interpolation [9] [6] allows us to

use more generalized kernel functions ϕ(r) in lieu of the sinc

function and a sequence of generalized samples cR(k) instead

of the captured samples R′(k).
With generalized interpolation, a family of kernels based on

B-spline functions can be used [7]. A B-spline function βm

of degree m is defined by its Fourier transform β̂m(ω) =

( sin(ω/2)
ω/2 )(m+1). Nearest-neighbor and bilinear interpolations

correspond to β0 and β1 kernels, respectively.

The hypothesis for R channel can thus be formulated as

Rint(r) =
∑

k
cR(k)ϕ(D

−1(r− e2)− k) (2)

where ϕ is an arbitrary good approximation kernel function

satisfying properties described in [9]. The superscript int in-

dicates that the image is interpolated rather than given. Ex-

amples of those functions include B-spline functions [7] and

O-MOMS functions [12].

2.2. Choice of Color Space

The main disadvantage of RGB representation is the high cor-

relation between its components. Tkalcic [5] reported that

there is a 0.78 for τBR (cross correlation between B and R),

0.98 for τRG and 0.94 for τGB.

RGB is HVS based, and RGB devices have a luminance re-

sponse similar to figure 2, from which we observe a substan-

tial channel overlap. Therefore, it is very likely that interpo-

lating them separately and ignoring the interchannel correla-

tion may not produce a “good” result. For this reason, it is

desirable to look for alternative color spaces in which each

component is isolated from the others.

2.3. New Prior Based on Alternative Color Space

An example of such a color space representation is the YUV

color space. Our rationale is that this color space is character-

ized by a luminance (Y) component and two chrominance (U

Fig. 2. Human visual system response to luminance. There

are three types of cone cells, and two of them concentrate on

green-yellow color band.

and V) components. The three components are less correlated

in the sense that luminance and chrominance components are

separated explicitly on the CFA [3]. Luminance component

accounts for light intensity, whereas chrominance compo-

nents are differential components used to discriminate colors.

For example, R can be obtained by subtracting a weighted

chrominance component (V) from the luminance component.

RGB space is related to YUV space by a linear transformation

matrix [1, 0, 1.13983; 1,−0.39465,−0.5806; 1, 2.03211, 0].
Based on the new color space, we make a new hypothesis in

a similar fashion to the one in RGB space:

• Y can be represented with its samples on the quincunx

grid where G is sampled.

• U and V can be represented with samples on the inter-

lacing grids respectively where B and R are sampled.

Now, we adapt equation 2 to our new hypothesis:

Y int
1 (r) =

∑
k
cY1(k)ϕ(D

−1r− k)

Y int
2 (r) =

∑
k
cY2(k)ϕ(D

−1(r− e1 − e2)− k)

U int(r) =
∑

k
cU(k)ϕ(D

−1(r− e1)− k)

V int(r) =
∑

k
cV(k)ϕ(D

−1(r− e2)− k). (3)

The hypothesis can also be represented as matrix form

Tint(r) =
∑

k
Φ(D−1r− k)Γ(k) (4)

where Φ is a 4× 4 diagonal matrix, and we define

Tint(r) =
[
Y int
1 (r) Y int

2 (r) U int(r) V int(r)
]T

Γ(k) =
[
cY1(k) cY2(k) cU(k) cV(k)

]T
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Fig. 3. Flowchart of the sampling and reconstruction process. Note that the interpolated image is consistent with the full-color

unknown image on samples captured by the camera. (a) Full-color unknown image; (b) CFA image captured by camera; (c)

Generalized YUV samples; (d) Interpolated full-color image in YUV representation; (e) Reconstructed RGB image.

.

We relate equation 4 to the RGB samples captured by the

camera. A 4 × 4 version of transformation matrix M4×4 =⎡
⎢⎢⎣
1 1 0 1.13983
1 1 −0.39465 −0.5806
1 1 −0.39465 −0.5806
1 1 2.03211 0

⎤
⎥⎥⎦ by first replicating the first

column, and then the second row.⎡
⎢⎢⎣
Rint(r)
Gint

1 (r)
Gint

2 (r)
Bint(r)

⎤
⎥⎥⎦ =

∑
k
M4×4Φ(D−1r− k)Γ(k) (5)

3. DECONVOLVING AND INTERPOLATION

In order to perform the interpolation in equation 5, the coef-

ficients in Γ(k) must be found at first. This process is essen-

tially a deconvolution operation.

Substitute the captured samples in equation 1 to obtain

Ssample(n) =
∑

k
Φ′(n− k)Γ(k). (6)

where Φ′(k) can be obtained directly from the sampled val-

ues of M4×4Φ(r). This equation can be solved efficiently by

using DFT and solving a linear system in the Fourier domain.

The step corresponds to the stage between (b) and (c) in fig-

ure 3.

Finally, the full image in YUV representation (figure 3 (d))

can be interpolated with equation 3. The RGB image is ob-

tained using the color space transformation matrix M4×4.

4. EXPERIMENTS AND RESULTS

The algorithm is implemented with MATLAB. We test our

algorithm by first applying the Bayer filter to a full color test

image, mimicking the capturing operation in the digital cam-

era, and then demosaicing the sampled image. For a 768 by

512 image, it takes about 1 second to reconstruct using β3 ker-

nel. We use Peak Signal-to-Noise Ratio (PSNR) as the metric

for the demosaicing quality. The PSNR between the original

image for reference Iref and the reconstructed image Icmp for

a certain channel is given by

PSNR = 10 · log10(
(max(max(Iref)))

2

1
mn

∑∑ ||Iref − Icmp||2
) (7)

where mn is the total number of pixels in the image.

We tested the algorithm over a wide range of kernels, includ-

ing β0 through β5 and O-MOMS functions ϕ0
o through ϕ5

o,

which generally outperforms the B-spline kernel of the same

degree [11] [12]. Increasing the kernel degree does not affect

the processing time significantly. Some of the representative

results are tabulated in tables 1.

We observe a nontrivial improvement on PSNR with linear

interpolation in YUV space, for any interpolating kernel, by 3

∼ 5 dB in R and B PSNRs. However, the G PSNR is actually

a little bit smaller than if interpolated in RGB space. Never-

theless, the loss is tolerable. The loss can be compensated by

performing another interpolation in the G channel using prior

in equation 2 and swapping it back to the reconstructed im-

age.

Since the interpolation is done in Fourier space, very little

adaptive step could be applied within the process. It is our on-

going project to apply a nonlinear post-processing step (such

as [14]) to improve the quality in artifact prone regions such

as edges.

5. CONCLUSIONS AND DISCUSSIONS

We present an efficient algorithm for demosaicing a Bayer

image in YUV space with a linear kernel function, which

significantly improves the quality of blue and red channels.

The generalized linear interpolation can be used as a basis for

more sophisticated, nonlinear techniques, such as median fil-

tering [13] or alternating projections [2] [16]. When a 3 × 3
median filter is applied to the U and V channels in the recon-

structed image, the PSNR of G channel increases by about

0.7 dB, and 0.3 dB for R and B channels (on lighthouse 1).
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B-spline 1 (bilinear) B-spline 3 O-MOMS 3

RGB YUV RGB YUV RGB YUV

Buildings 22.267 25.325 21.854 26.651 21.701 26.680

27.280 26.126 29.764 29.372 29.870 29.594

22.371 25.751 21.924 26.690 21.770 26.681

Lighthouse 1 26.811 30.132 26.590 31.765 26.450 31.815

31.766 30.566 34.382 33.877 34.500 34.126

26.999 30.739 26.686 31.999 26.554 31.984

Lighthouse 2 27.106 30.144 26.784 30.560 26.632 30.374

31.339 29.952 32.811 32.224 32.784 32.358

27.452 30.466 26.929 30.592 26.753 30.345

Sailboats 31.246 33.325 31.073 34.652 30.905 34.625

34.936 33.752 37.359 36.884 37.444 37.097

29.571 33.865 29.621 34.697 29.547 34.644

Table 1. PSNR for Interpolation results. Each cell shows in turn the PSNR for R, G and B channel.

Experiments on YUV-siblings such as YPbPr, YCbCr or YIQ

reveal similar performance.

Having shown that YUV space is good for improving the

demosaicing quality, we hypothesize that there exists a non-

standard color space that particularly leverages a certain chan-

nel. We are working in search of such a magic color space by

modifying the linear transformation matrix M4×4.
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[3] D. Alleysson, S. Süsstrunk and J. Herault, “Linear de-

mosaicing inspired by the human visual system”. IEEE
Transactions on Image Processing, vol. 14, no. 4, 439 –

449, April 2005.

[4] J. F. Hamilton Jr. and J. E. Adams, “Adaptive Color

Plane Interpolation in Single Sensor Color Electronic

Camera”, United States Patent 5629734, May 1997.

[5] Marko Tkalcic and Jurij F. Tasic, “Colour Spaces - Per-

ceptual, Historical and Applicational Background”, EU-
ROCON Computer as a Tool, vol. 1, 304 – 308, 2003.

[6] M. Unser, “Sampling - 50 Years After Shannon”, Pro-
ceedings of the IEEE, Vol. 88, No. 4, April 2000.

[7] M. Unser, “Splines: A Perfect Fit for Signal and Image

Processing”, IEEE Signal Processing Magazine, 16:22

– 38, November 1999.
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