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Abstract—We present a generalization of the orthonormal
Daubechies wavelets and of their related biorthogonal flavors
(Cohen-Daubechies-Feauveau, 9/7). Our fundamental constraint
is that the scaling functions should reproduce a predefined set
of exponential polynomials. This allows one to tune the corre-
sponding wavelet transform to a specific class of signals, thereby
ensuring good approximation and sparsity properties. The main
difference with the classical construction of Daubechies et al. is
that the multiresolution spaces are derived from scale-dependent
generating functions. However, from an algorithmic standpoint,
Mallat’s Fast Wavelet Transform algorithm can still be applied;
the only adaptation consists in using scale-dependent filter banks.
Finite support ensures the same computational efficiency as in
the classical case. We characterize the scaling and wavelet filters,
construct them and show several examples of the associated func-
tions. We prove that these functions are square-integrable and that
they converge to their classical counterparts of the corresponding
order.

Index Terms—Approximation order, biorthogonal, compact sup-
port, exponential polynomials, mutiresolution, nonstationary, or-
thonormal, reproduction, Strang–Fix, wavelet.

I. INTRODUCTION

A. Scope of the Paper

I N less than 20 years, wavelets have risen from a research
curiosity to a standard signal processing tool in engineering

and applied mathematics. While the mathematical foundations
of wavelets and multiresolution analysis were laid down by
Mallat and Meyer [1], [2], Daubechies had a lasting impact on
the field with her construction of the first family of compactly
supported, orthogonal wavelet bases of [3]. Owing to
their remarkable properties and ease of implementation, the
Daubechies wavelets became popular right away and led to a
multitude of successful signal processing applications, such
as compression, denoising, classification, or fusion, especially
during the wavelet rush that took place in the 1990s.

A good part of the success of wavelets is due to their funda-
mental vanishing moment property—or, equivalently, the ability
of the scaling functions to reproduce polynomials. Indeed, the
special way in which the basis functions interact with polyno-
mials is the crucial ingredient that endows wavelets with their
good approximation properties for signals in Sobolev and/or
Besov spaces; in particular, it explains why piecewise smooth
signals tend to have sparse wavelet expansions. This observa-
tion applies particularly well to the field of image processing,
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where wavelets have had (and are still having) a profound im-
pact.

In this paper, we construct generalized wavelet bases that
can be tuned to wider classes of signals, e.g., with multiple
narrow bands or exponential trends. Still, we will retain the
user-friendly properties of Daubechies wavelets; namely, com-
pact support and othonormality (or biorthogonality if one also
wants to include symmetry). Our starting point is the constraint
that the scaling functions should reproduce a predefined set of
exponential polynomials, that is, functions of the form
where is a polynomial and is a complex parameter. For
the aforementioned signal types, exponential polynomials en-
sure approximation properties that are comparable to those pro-
vided by standard polynomials for slowly varying signals.

B. Illustration

Our derivations have concrete implications for discrete signal
processing, as illustrated in Fig. 1. We compare discrete or-
thonormal wavelet transforms of a signal made of two distinct
frequency components. Classical 8-tap Daubechies filters were
used in Fig. 1(a). We observe that a significant part of the en-
ergy is contained in the wavelet subbands, because the scaling
filters are not suitable for the representation of pure sinusoids.
For Fig. 1(b), the filters (of the same length) were adapted to
the input signal, so that it gets transferred entirely in the scaling
function subbands. From a practical standpoint, the only differ-
ence between (a) and (b) is that the latter uses scale-dependent
filters. This shows that tuning our generalized wavelet bases to
the class of signals to be decomposed can yield sparser repre-
sentations than classical wavelets, at strictly the same computa-
tional cost.

C. Relation With Existing Work

We emphasize that our approach is quite different from the
idea of wavelet packets [4]. In particular, the frequency behavior
of wavelet packet basis functions cannot be easily controlled.
While it is true that a wavelet packet tree can be designed to
concentrate on a given frequency, one cannot guarantee that the
resulting basis functions will be able to reproduce that precise
frequency. It is even more difficult to make statements about
the simultaneous reproduction of several distinct frequencies,
or more generally, the reproduction of arbitrary exponentials.

The relations between classical wavelet theory and the prop-
erties of B-splines are well known [5]. Similarly, our generalized
construction is closely related to exponential B-splines [6], [7].
The main mathematical result of this paper states that, for the
scaling functions to reproduce exponential polynomials, their
refinement filters must be divisible by scaling filters associated
with exponential B-splines.

Because these filters are scale-dependent, we cannot use the
framework of classical multiresolution spaces. Instead, our set-
ting is based on nonstationary multiresolutions as introduced by
de Boor, DeVore, and Ron [8]. In particular, this means that the
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Fig. 1. Three-level discrete orthonormal wavelet transforms of a signal with two harmonic components (x [k] = cos(k�=32) + cos(k�=6)). The wavelet
coefficients are y [k]; y [k], and y [k]; x [k] contains the scaling function coefficients at the coarsest level. (a) Using 8-tap Daubechies filters (corresponding to
~� = [0 0 0 0] in Section IV-B). (b) Using scale-dependent 8-tap generalized Daubechies filters (corresponding to ~� = [i �=32 �i �=32 i �=6 �i �=6]).

scaling functions at different scales are not dilates of one an-
other. This structure has already been used in previous work to
construct dual bases of exponential B-splines [8], [9], with the
important difference that the resulting functions are usually not
compactly supported.

Another important connection can be established with
nonstationary subdivision schemes [10]–[12], where the re-
finement filters are allowed to vary from one scale to the next.
In particular, Dyn et al. [13] worked on generalized Deslau-
riers–Dubuc subdivision schemes [14]. The limit functions
of these schemes can be seen as the autocorrelation of the
generalized orthonormal Daubechies scaling functions that are
constructed here.

Finally, from a filter-design perspective, this paper is con-
cerned with conjugate quadrature filters that have arbitrarily
placed zeros [15].

D. Contents

The paper is organized as follows. In Section II we give basic
definitions and properties concerning nonstationary multireso-
lutions, including a quick review of wavelet theory in this gen-
eralized framework. In Section III we state the main theorem of
this paper, which relates the reproduction of exponential poly-
nomials to the roots of the scaling filters. Based on this re-
sult, we characterize the scaling filters of generalized Deslau-
riers–Dubuc interpolation functions in Section IV-A. Different
factorizations of these filters are used in Sections IV-B and C to
obtain the generalized Daubechies wavelets and scaling func-
tions. In Section IV-D we prove the convergence of the infinite
products defining these functions. In the Appendix, we provide
a summary of the notations used in this paper, as well as proofs
of its main results.

II. NONSTATIONARY MULTIRESOLUTIONS

A. Definition

The fundamental structure we are interested in is derived from
the work of de Boor et al. [8].

Definition 1 (Nonstationary Multiresolution Spaces): Given
an integer and a sequence of functions in ,
the spaces

for , define a nonstationary multiresolution if and only if
• for all generates a Riesz basis;
• for all ;
• is dense in .
Note that in a classical (stationary) multiresolution [1], the

functions would all be equal to a single function
—the scaling function. Therefore, we shall call the func-

tions scaling functions. In the sequel, to keep the
notations simple, we will often omit the variable when refer-
ring to functions. Also, we will use a dot as a silent variable
in -norms and scalar products.

B. Basic Properties and Notations

The Riesz basis constraint means that, at every scale ,
there exist constants such that, for all

(1)

The values of the tightest pair are called lower and
upper Riesz bounds, respectively. They are equal in the event of
an orthogonal basis and their value is 1 if in addition the basis
is normalized (i.e., orthonormal).

Throughout this paper, for a function , we will
use the notation
for its sampled autocorrelation. We shall also denote

the z-transform of a sequence . We recall that
the z-transform of an autocorrelation sequence is always real-
valued and positive over the unit circle (i.e., for ).

With these notations, there is an alternative way to charac-
terize the fact that a function generates a Riesz basis: it is nec-
essary and sufficient that there exist positive constants
such that, for almost every
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Fig. 2. Nonstationary perfect-reconstruction filter bank.

Moreover, the tightest-possible bounds are the same
as those defined by (1).

The embedding of the spaces implies the existence of
scaling filters such that

(2)

As the notation suggests, the scaling filters are scale-dependent
in general. One can also consider the frequency-domain version
of the scaling relation (2), which is

(3)

Here, denotes the Fourier
transform of a function .

C. Wavelets, Biorthogonality, and Filter Banks

In this paper, we will primarily be focused on the design of
scaling functions that generate dual multiresolutions
and (respectively the analysis and the synthesis
spaces). This means that their basis functions are mutually
biorthogonal1

where and if .
Before going further, we shall briefly review the main in-

gredients of the corresponding (nonstationary) wavelet decom-
positions. Most of the material is analogous to the standard
theory (see, e.g., [1], [16]), except for the important difference
that the functions and the filters are now scale-dependent. To
simplify the presentation, we will use the notations

and for all
and all .

The following standard result gives a consequence of the
biorthogonality for the scaling filters. It is given without proof
[1].

Property 1: Assume that the scaling functions and
generate multiresolutions as in Definition 1. Also as-

sume that they are real-valued, compactly supported, and mu-
tually biorthogonal for all . Then, for all ,
the scaling filters and have finite length and their

-transforms satisfy

(4)

From the scaling filters, one can construct the wavelet filters
and ,

1We will always denote with a tilde “ ” the entities that are related to the
dual spaces ( ~V ) (e.g., scaling functions, wavelets, filters, . . .).

where the integers can be chosen arbitrarily. Then the
wavelets are given by

At each scale , the dilated and shifted functions
and generate

spaces and , respectively; the previous definitions and
the biorthogonality constraint imply that

and
and

A -scale wavelet decomposition of a function is
given by

where and . This is the same
formula as in the stationary theory, but one should keep in mind
that the wavelets (respectively ) are no more dilates and
translates of a single mother wavelet.

The filter bank in Fig. 2 implements the decomposition and
reconstruction operations in terms of the discrete sequences

and at the different scales . The
upper-left part of the filter bank computes from

, while the lower-left part yields the wavelet coef-
ficients . It is a perfect-reconstruction filter bank
(i.e., for all ) due to the biorthogonality
relation (4) and the definition of the filters and .
The only difference with Mallat’s fast wavelet transform [17]
is that the filters depend on the scale parameter .

D. Exponential B-Spline Multiresolutions

An example of nonstationary multiresolution spaces
can be constructed from exponential B-splines [8]. We will sum-
marize some of their basic properties here; a more extensive in-
troduction can be found in [7].

Given a complex parameter-vector , the corre-
sponding exponential B-spline is defined in the frequency-do-
main as

Here, the variables denote the components of , for
. In the time-domain, this yields a function

whose support is , as illustrated in Fig. 3
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Fig. 3. Exponential B-splines � (t) with parameter ~ = [ ], where  is
real. The classical second-order B-spline (the triangle function in dashed lines)
is obtained for  = 0.

for . It is also worth noting that exponential B-splines
tend to classical th-order B-splines as the parameter-vector

tends to .
One can check that exponential B-splines satisfy the scaling

relation

(5)

where

(6)

In the aforementioned framework, this corresponds to
and . We can thus consider the

embedded shift-invariant spaces defined by

It is shown in [7] that, at a fixed scale , the function
generates a Riesz-basis if and only if has no distinct purely
imaginary components and such that ,
for some . If this condition is satisfied at all scales , then
we can consider infinitely coarse spaces . Other-
wise we can only go up to some finite scale , which is actually
what is always done in practical applications of multiresolution
analysis (only a finite number of decomposition levels is con-
sidered).

The density of the exponential B-spline spaces in is
proven in [9].

E. Goals of the Present Paper

Our aim is to design nonstationary multiresolution spaces
that generalize the constructions of Daubechies [3], Cohen,
Daubechies and Feauveau [18] and Antonini, Barlaud, Mathieu
and Daubechies [19]. The first case corresponds to orthonormal
scaling functions, while the latter two correspond to a biorthog-
onal setting. In all three cases, the scaling functions are
compactly supported and real-valued; in addition, they have to
be able to reproduce a predefined set of exponential polyno-
mials.

We summarize these constraints on the scaling functions in
the biorthogonal case, which is more general; the orthonormal

case is obtained when enforcing . At all scales , we
ask that

1) and are real-valued;
2) ;
3) and are compactly supported;
4) and each reproduce a given set of ex-

ponential polynomials (which does not depend on the scale
).

Our approach is constructive: we will assume that the above
constraints are satisfied in order to derive necessary (and pos-
sibly sufficient) conditions for the scaling filters
and . We will then determine the shortest-pos-
sible filters that satisfy these conditions. Finally, we will derive
the corresponding scaling functions in the frequency domain by
iterating the scaling relation (3). For time-domain representa-
tions, we approximate the functions using numerical schemes
comparable to the ones studied in [10], [12].

III. REPRODUCTION OF EXPONENTIAL POLYNOMIALS

A. Preliminary Definitions

We now introduce two key notions for the present formula-
tion.

Definition 2 (Reproduction): A family of functions
reproduces a function if and only if there exists a sequence

such that the equality

holds almost everywhere.
Definition 3 (Fourier-Order): A compactly supported func-

tion is said to be of order if and only if its Fourier
transform satisfies

or, equivalently,

The present definition of order becomes equivalent to the
classical Strang–Fix conditions [20] if one adds the requirement
that . This latter condition is automatically satisfied if

is of order and generates a Riesz basis. However, one
of the crucial aspects in the forthcoming mathematical results
is that the function under consideration does not necessarily
generate a Riesz basis.

In what follows we will also denote by (respectively,
) the space of all polynomials of the variable with com-

plex (respectively, real) coefficients. will stand for the
polynomials of of degree less or equal to .

B. Relation With Exponential Vanishing Moments

Before dealing with the connections between the above
notions, we make a straightforward observation in the context
of dual multiresolution spaces , generated
by compactly supported scaling functions: imposing that the
scaling functions must reproduce a given set of exponential
polynomials implies exponential vanishing moments for the
(dual) wavelets.
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Indeed, let us consider an exponential parameter and
a polynomial . Assume that we can write

using some coefficient sequence . and are compactly
supported, hence

for some integers ; the inner-products on the right-
hand side (RHS) are all zero because the functions and
(and all their integer shifts) are orthogonal.

C. Generalized Strang–Fix Conditions

Next we state and prove a generalized version of the
Strang–Fix conditions for the reproduction of exponential
polynomials.

Property 2 (Generalized Strang–Fix Conditions): Assume
that is compactly supported and define

. If the family reproduces the exponen-
tial polynomials , where , then is
of Fourier-order . The converse is true if .

Proof:
• Direct part: For any polynomial , there

exist coefficients such that

almost everywhere. Since is compactly supported, for all
and almost all —and in particular for almost all
—we can write

Introducing the new index yields

We observe that switching and does not change the
left-hand side (LHS) expression. Therefore

We denote by the LHS when . For
, one can then compute

in two different ways. After exchanging the and
symbols and using the binomial identity, this yields

Integrating this equation over gives

almost everywhere, where is a
constant. Both sides are 1-periodic -functions.
Equivalently, their Fourier-series coefficients satisfy

for . This demonstrates the Fourier-order property
of Definition 3.

• Converse part: We use the same equivalence for the con-
verse part of the proof. For

The last expression is exactly a polynomial of degree ,
since . We conclude that the family

can reproduce a basis of .

D. Characterization of the Roots of the Scaling Filters

We now arrive at a central result of this paper, which gives
necessary and sufficient conditions on the scaling filters for the
reproduction of exponential polynomials. At this point, we have
to introduce two hypotheses on the scaling functions.

• H1 (Bounded asymptotic support): for , the sup-
ports of the functions are included in some bounded
interval .

• H2 (Asymptotic Riesz condition): for , the Riesz
bounds of the functions are in some in-
terval such that .

Theorem 1: Let be real-valued compactly sup-
ported functions in that satisfy H1 and H2 and generate
nonstationary multiresolution spaces as in Definition 1. Also as-
sume that, for all , the filters have finite length
and that their z-transforms do not have pairs of opposite roots.
Then the following statements are equivalent:

1) for all , the functions reproduce the ex-
ponential polynomials , where ;

2) for all , the filter has a zero of order at
.

The proof is given in the Appendix.
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Fig. 4. Illustration of Theorem 1. For the exponential polynomials to lie in the linear span of the functions (' ) at all scales j , the scaling filters H (z)
must have roots located along a logarithmic spiral converging towards �1 in the complex plane.

Fig. 4 illustrates this theorem. In particular, in the stationary
case (that is, when ), one retrieves the classical result that
polynomials of degree are reproduced if and only if the
scaling filter has an th-order root at .

We can use this result to characterize scaling functions and
filters that reproduce exponential polynomials with different pa-
rameters. To this end we let be a vector
in and we denote the multiplicity of element , for

. We will define the exponential polynomials of
parameter as the functions of the form

where is a polynomial of degree less than .
Under the conditions of Theorem 1, for these exponential poly-
nomials to be reproduced, it is necessary and sufficient that, for
all be divisible by , as defined by
(6). The shortest scaling functions that satisfy this condition are
the exponential B-splines , whose refinement fil-
ters are precisely [up to the multiplicative con-
stant , cf. (5)].

It is important to notice that the theorem assumes that, for
all has no roots of opposite sign. This condition arises
naturally when imposing the biorthogonality constraint of
Section II-C, (4), or the interpolation constraint of the next
section (9). In terms of the vector , it means that it cannot
comprise elements and such that
for some and some . In what follows, we will
refer to this constraint as H0.

IV. CONSTRUCTION OF GENERALIZED

MULTIRESOLUTION BASES

A. Generalized Deslauriers–Dubuc Interpolation Functions

As an application of the previous theorem, it is of interest to
first consider the case where the scaling functions are
continuous and interpolating; i.e., for any and for any

,

(7)

In this case, an exponential polynomial
, can be easily written under the form

(8)

where the RHS coefficients are simply the samples of
the exponential polynomial at the locations .

The interpolation property (7) imposes the following con-
straint on the scaling filters [16]:

(9)

In addition, from Theorem 1, must be of the form
. We will thus look for the shortest-pos-

sible filters that satisfy

(10)

Equation (10) was studied by Dyn et al. in the context of non-
stationary subdivision schemes [13]. In particular, they showed
that, if satisfies condition H0, then there is a unique so-called
minimal-rank solution at all scales (see also
[15] for a more general analysis).

This result will be useful for the design of the orthonormal
and biorthogonal structures in Sections IV-B and C. In
order to provide some self-containedness while keeping
the presentation simple, we will prove it in the case where

is symmetric. The symmetry condi-
tion allows us to choose such that, if 0 is
an element of , then it has even multiplicity. Moreover we are
looking for real filters, therefore, we can choose such that, if

is an element of , then so are and , with the same
multiplicity. In particular, this implies that is even. We can
then perform the standard change of variable
and construct polynomials such that

(11)

We are now ready to apply the following classical result.
Theorem 2 (Bézout): Given , there exists a

polynomial such that

(12)

if and only if has neither zero as a root, nor a pair of oppo-
site roots. In this case there exists a unique polynomial

satisfying (12) and such that .
The set of all polynomials that satisfy (12) is

(13)

There are several possible ways to obtain in prac-
tice, e.g., via the resolution of a linear system (matrix inversion)
or the extended Euclid algorithm. Another approach consists
in rewriting (12) as in Fig. 5, by dividing it by .

can then be computed from a simple fraction decom-
position of , followed by a separation of the
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Fig. 5. How to obtain D (Z), the lowest degree Bézout solution to (12).

simple fractions in two groups: one whose poles are the roots of
and the other whose poles are the roots of . Be-

cause and cannot have the same roots, is
obtained by multiplying the second group by . Clearly,

and we know that such a solution
of (12) is unique. The method is summarized in Fig. 5, where the
roots of are denoted , with respective multi-
plicities . The symmetry of the decomposition is re-
flected by the simple fraction coefficients and .

At each scale , we will denote the lowest-degree
Bézout solution corresponding to in (12);
this is the polynomial we use to derive through
(11). Fig. 6(a) shows , the resulting scaling function at
scale 0, for of the form . It generalizes
the Deslauriers–Dubuc interpolation function [14], [21] of the
corresponding order , which is obtained when .
While the Deslauriers–Dubuc scaling function can reproduce
polynomials up to degree 3, our scaling function reproduces

for [Fig. 6(b)].

B. Generalized Daubechies Wavelets

We now return to our original problem as stated in
Section II-E. Here, we denote by the ( -dimen-
sional) parameter-vector of the exponential polynomials to be
reproduced. Since we are looking for real-valued filters, if is
a component of , then so must , with the same multiplicity.

From Property 1 and Theorem 1, we get to the following de-
sign problem in terms of the scaling filters: we have to find the
shortest-possible filters such that

(14)

This problem can be related to the one presented in the previous
section by introducing the vector , which has
length (here “ ” denotes concatenation). Indeed, at a
fixed scale , solving (14) is equivalent to the following:

1) solving for the Bézout equation
, where

is a symmetric Laurent polynomial with real coefficients
and is a positive constant;

2) performing the spectral factorization

(15)

Note that, for the first step to be solvable at all scales, must
satisfy condition H0 (which is another way to state that

Fig. 6. (a) Interpolation functions at scale j = 0 for ~ = [ � �].
(b) Reproduction of the exponential polynomial te (dashed line) for  =
1=2; the thick continuous line represents the sum in (8) truncated to k = 0 . . . 6,
while its individual terms are shown as thin lines.

and do not have common roots). The following result
[22] states under which conditions the second step is possible.

Lemma 1 (Fejér–Riesz): Given a polynomial ,
there exists a Laurent polynomial with real coefficients
such that

if and only if for .
Here where is a positive constant.

It is known that in the stationary case , the
lowest degree solution of (12) is a polynomial that is positive
over (see e.g., [23] for a more detailed analysis of
the roots of this type of polynomials). However, in our case, de-
pending on the choice of the parameter-vector , it may happen
that the shortest Bézout solution is not positive over

. We then have to look for higher-degree solutions in the
set given by (13). We can show that, for a degree large enough,
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Fig. 7. Orthonormal scaling functions (a) and wavelets (b) at scale j = 0, corresponding to ~� = [i! � i! ], for ! = 0; �=32; 2�=32; . . . ; 20�=32. The
classical Daubechies functions are the leftmost ones and are obtained for ! = 0.

Fig. 8. Moduli of the Fourier transforms of the orthonormal scaling functions
(a) and wavelets (b) at scale j = 0, corresponding to ~� = [i! � i! ].
The classical Daubechies functions are obtained for ! = 0 and are shown as
dashed lines; their generalized counterparts are shown as continuous lines, for
! = 5�=9.

there always exists a positive solution. This allows us to gener-
alize Daubechies’s idea to look for a polynomial with
lowest-possible degree (which might not be unique, though).

Property 3: If does neither have zero as a
root, nor a pair of opposite roots, then there exists a polynomial

such that

Fig. 9. Reproduction of cos(�t=3) by the generalized orthonormal scaling
function corresponding to ~� = [i�=3 � i�=3]. Only eight terms in the sum
are shown.

The proof, which is given in the Appendix, is simple and con-
structive: it uses entities related to exponential B-splines. Note
that in the spectral factorization step (15), the roots of are
always chosen inside the unit circle.

Fig. 7 shows plots of the resulting scaling functions and
wavelets (with of the form , where is a
real frequency parameter). It also compares them with their
classical counterparts (which are obtained for ). It
is seen that the scaling functions and wavelets tend toward
the standard second-order Daubechies functions as the vector

tends to zero. Section IV-D will provide a more detailed
proof of convergence. In the frequency-domain (Fig. 8), the
second-order zeros at for of the standard
Daubechies scaling functions are replaced by pairs of simple
zeros at . This is to satisfy the generalized
Strang–Fix conditions, which guarantee that can be
reproduced, and thus as well (see Fig. 9).

C. Biorthogonal Spectral Factorization Wavelets

In the biorthogonal case, the scaling filters must satisfy (4)
and be of the form
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Here, the exponential polynomials to be reproduced are defined
by the complex vectors and , of length and , respec-
tively. A priori, the parameters for the analysis side and for the
synthesis side can be freely chosen, provided the concatenated
vector fulfills condition H0. Otherwise, the LHS
of (4) would have a root in the complex plane, rendering the
biorthogonality constraint impossible to satisfy. Also, to obtain
real filters, one must make sure that, if is an element of (re-
spectively, ), then the same must be true for , with the same
multiplicity.

Furthermore, to keep the presentation simple, we will con-
sider the case2 where satisfies the symmetry conditions of
Section IV-A. That is, if 0 is an element of , then it must have
even multiplicity, and, if is an element of , then so are
and , with the same multiplicity. Similarly to what was done
in the previous section, we can then determine and
in two steps:

1) solving for the Bézout equation
, where

with ;
2) performing the spectral factorization

(16)

We point out that , which relaxes the positivity
constraint on , and thus we can always use the lowest-
degree Bézout solution . However, as in the classical
theory, not all potential factorizations of the type (16) lead to
regular functions.

1) Generalized Cohen–Daubechies–Feauveau Wavelets:
Cohen, Daubechies and Feauveau [18] specified biorthogonal
wavelet bases derived from compactly supported duals of
B-spline functions. We can generalize this by constructing
compactly supported duals of exponential B-splines. Accord-
ingly, we constrain the filters to be exponential B-spline
scaling filters (cf. Section II-D): . This
means that and

The resulting scaling functions are exponential B-splines
of parameter , that admit as their compactly supported
duals. The sum of their support lengths is minimal given the sets
of exponential polynomials that they have to reproduce (which
are specified by the parameters and ). Fig. 10 shows a small
sample of the wide variety of scaling functions and wavelets that
can be obtained (on the RHS) and allows for a comparison with
their classical counterparts (on the LHS). Notice that, contrary
to classical B-splines, exponential B-splines (and their duals) are
not necessarily symmetric. But the user always has the option to
make them symmetric by adequately choosing the parameters
and , as illustrated in Fig. 10(f). In the RHS examples, one can

2In the general case, one can deriveQ (z) and ~Q (z) from the work of Dyn
et al. [13].

Fig. 10. Examples of Cohen–Daubechies–Feauveau functions (left) and of their
generalized counterparts (right), for various combinations of ~� and ~~�. Each
group shows (from left to right and top to bottom) ' ; ~' ;  and ~ . (a) ~� =
[0]; ~~� = [0 0 0]. (b) ~� = [1]; ~~� = [�1 1 1]. (c) ~� = [0 0]; ~~� = [0 0 0 0].
(d) ~� = [�1 �1]; ~~� = [�1 �1 �1 1]. (e) ~� = [0 0]; ~~� = [0 0 0 0 0 0].
(f) ~� = [�i! i! ];! = 5�=9; ~~� = [�i! � i! � i! i! i! i! ].

observe that the exponential trends (b), (d) and the oscillatory
modes (f) influence the general shape of the functions.

This construction should be compared to the one proposed by
Khalidov and Unser in [9]. Here, the authors also obtain duals
of exponential B-splines, with the important difference that the
former lie in the linear span of the latter. For this reason, the
resulting functions are infinitely supported as soon as .

2) Generalized 9/7 Wavelets: The orthonormal setting de-
scribed in Section IV-B does not permit the construction of sym-
metric basis functions (except for the Haar functions). As illus-
trated above, this limitation does not exist in the biorthogonal
(nonorthonormal) setting. However, we can construct bases that
are both symmetric and “closer” to orthogonality than the ones
described in Section IV-C–1. As an example, we derive gener-
alized biorthogonal 9/7 wavelets [19]. These are symmetric and
their corresponding pairs of dual scaling functions have less dis-
parate support lengths. These features are especially desirable in
image processing applications [24].

The acronym “9/7” refers to the lengths of the dual scaling
filters . In our notation they are obtained from vectors
of dimension 4 each, together with a nontrivial factorization of
the polynomial in (16). The factorization is performed
with respect to the variable so as to ensure that and

are symmetric.
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Fig. 11. Biorthogonal scaling functions and wavelets at scale 0, corresponding
to a generalization of the 9/7 filters (see text). From left to right and top to
bottom:' ; ~' ;  and ~ . The functions obtained from the classical 9/7 filters
are represented using dashed lines.

For the sake of illustration, we take
. With that choice, there is a simple relation between

the stationary case (once again obtained for ) and the
case of an arbitrary parameter . Namely

where stands for the polynomial when .
Equivalently, this corresponds to the stationary case . It
follows that:

(17)

Here (and for the remainder of this paper), the notation
refers to the lowest-degree Bézout solution in the stationary
case. It is known that it is of degree 3 and has a pair of com-
plex-conjugate roots. Thus the same holds for and there
is only one nontrivial factorization leading to symmetric and
real-valued filters and . Note that we always normalize

and such that .
In Fig. 11, the functions obtained for are

shown and compared to the reference functions .
Fig. 12 compares the ratios of the Riesz bounds of general-
ized 9/7 scaling functions and the corresponding generalized
Cohen–Daubechies–Feauveau scaling functions, obtained
when using the same parameters as above, for different
values of . It is seen that the ratios of the 9/7 scaling func-
tions are always closer to 1, indicating that they are closer to
orthogonality than exponential B-spline scaling functions. It is
also seen that in both cases the ratios are relatively stable up to

.

D. Convergence

In this last part, we prove that the scaling filters derived before
specify well-defined scaling functions in the continuous-time
domain.

In view of the scaling relation (3), it is natural to define the
scaling functions in the Fourier-domain as

Fig. 12. Ratios of the Riesz bounds B =B for Cohen-Daubechies-
Feauveau (top) and 9/7 (bottom) synthesis scaling functions at scale 0, as a func-
tion of ! (~~� = ~� = [i! i! � i! � i! ]).

(18)

A similar definition is used for the dual functions , and
the results below also apply to them.

In what follows, we will drop the index “ ” when referring to
entities that correspond to the stationary case (that is, to

, respectively, , respectively, ).
For example, in the context of Section IV-B, will denote a
classical orthonormal Daubechies scaling function (of order ).

Lemma 2: For sufficiently small, the design procedures
in Sections IV-A, B, C–1, and C–2 lead to filters that satisfy

, with where
is a constant. In the biorthogonal cases of Sections IV-C–1

and C–2, a similar relation holds for with respect to
.

Theorem 3: The infinite product in (18) converges for every
value of . Moreover, whenever the corresponding stationary
scaling function is in , the functions are in

and as .
The proofs of these results are given in the Appendix. This

defines a sequence of functions (and in the
biorthogonal case) which, by construction, satisfy the nonsta-
tionary scaling relation (3). Since there are standard procedures
to determine the -membership of [16], Theorem 3
tells us that the same procedures can be used to determine the

-membership of the functions .
In the context of Section IV-B (respectively, Section IV-C),

the compact support and the orthonormality (respectively,
biorthogonality) can be shown using the same techniques as
in [18], [3]. Also, hypothesis H1 (for Theorem 1) is satisfied
(at sufficiently small scales, and have the same support
as and respectively). In the context of Section IV-A, the
interpolation property follows from the fact that, at a given
scale, the autocorrelation of the orthonormal scaling function of
parameter corresponds to the generalized Deslauriers–Dubuc
interpolation function with .

As a consequence of Theorem 3, we also have the following
properties.
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Corollary 1:
1) Each function (respectively ) generates a Riesz-basis.

Moreover their Riesz-bounds fulfill condition H2.
2) is dense in .

Proof:
1) We detail the proof for the functions . The first

step consists in showing that the autocorrelation sequences
converge uniformly toward when :

Therefore, using the Cauchy–Schwarz inequality and the
fact that as

We point out that both autocorrelation sequences have a
finite number of nonzero coefficients (and the same support
for small enough). It follows that

and since generates a Riesz basis, the same must be true
for at sufficiently small scales . At higher scales, we
can use an inductive argument based on the (frequency-
domain) scaling relation for the autocorrelation sequences

Assuming that generates a Riesz basis means that
. In addition, only

has a finite number of roots, which do not comprise pairs
of opposite sign. Thus there exists constants
such that .

2) This is a consequence of the fact that the spaces are
dense in the stationary case and that
as .

V. CONCLUSION

In this paper, we have presented a novel family of wavelet
bases that generalize those introduced by Daubechies et al.
They are characterized by three essential properties: they are
orthonormal (respectively biorthogonal), compactly supported
and the scaling functions have the ability to reproduce a prede-
fined set of exponential polynomials.

The corresponding discrete wavelet transforms have two
attractive features. First, their algorithmic implementation is
straightforward: it just consists in applying Mallat’s fast wavelet
transform with scale-dependent filters. Second, the parameters
of the exponential polynomials offer new degrees of freedom

that have not been explored so far. There is good hope that these
can be tuned to the specificities of certain classes of signals.

One could envisage applications in several fields, such as
speech and audio processing, or neurophysiology. Indeed, these
disciplines are concerned with signals that have strong harmonic
components or significant exponential trends. Other examples
include the raw time signals encountered in magnetic resonance
imaging, RF ultrasound imaging, and optical coherence tomog-
raphy. Such signals could be represented concisely using our
new class of wavelet transforms.

APPENDIX

A. List of the Main Notations

Note: wherever it is applicable, the notation for the dual en-
tities is obtained by adding a tilde “ ”. Fourier-transforms of
functions are denoted with a hat “ ” and z-transforms of dis-
crete filters are indicated by a capital letter.

• : complex root of .
• : scale parameter (finer scales as ).
• : parameters defining the exponential polynomials to

be reproduced.
• : scaling and wavelet function spaces at scale .
• : scaling and wavelet functions at scale .
• : scaling and wavelet filters at scale .
• : scaling and wavelet coefficients at scale .
• : lower and upper Riesz bounds at scale .
• : exponential B-spline of parameter .
• : exponential B-spline scaling filter (up to a mutli-

plicative constant).

B. Proof of Theorem 1

The main idea behind the proof is to use Lemma 3 (see
below) to exhibit a contradiction with hypothesis H2 if the
desired equivalence were not true. We will use the notation

.
Proof:

• As a consequence of Property 2, the functions
must be of order , i.e.

(19)

From the scaling relation (3), we know that

(20)

Choosing of the form in (19) then yields

(21)

In particular, at a given scale , this means that either
, or

(22)

• Now, in contradiction to the theorem, assume that
for some . We will

show by induction on toward that we can construct
a sequence , such that for all
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. We initialize the induction with . Assume
that property (22) holds at some scale . Then,
at scale , the scaling relation (20) yields

We know that either or
. It follows that, if we choose

to be either or , then .
• In combination with the Poisson formula, this yields (recall

that is compactly supported)

Dividing by and taking the scalar product with
, we obtain for all . Fol-

lowing Lemma 3 (see below), we should then have
as , but this contradicts the

Riesz-basis hypothesis H2, stating that
for (which holds everywhere since has a finite
number of nonzero coefficients).

• We have thus shown that (22) cannot hold, i.e., there exists
an such that . From (21), we get

which expresses that has an th-order zero at
(remember that is infinitely dif-

ferentiable since has finite support).

• Let us consider the neighborhood of for some
and some , where and is an odd

integer. Applying (20) times yields

Here the last factor, , has a zero
of order at . Thus .
Note that this is valid for any where is odd and

, i.e., for any .
• Now let us assume that for some .

Since has no pair of opposite roots, (20) implies that
for all . Together with the result from the

previous paragraph, the Poisson formula yields

and therefore for all . This again con-
tradicts hypothesis H2 and Lemma 3.

Lemma 3: Under the assumptions of Theorem 1

Proof: For ,

Thus, there exists a constant such that, for
; for all other

’s, and are zero (due to hypothesis H1). It fol-
lows that:

C. Proof of Property 3

The proof uses the scaling relation for the autocorrelation se-
quence of exponential B-splines:

where denotes discrete convolution and .
Taking the z-transform of this relation leads to (note that all se-
quences have finite support)

(23)

The autocorrelation sequences are real-valued and symmetric
for our choice of . Thus we can change the variable to

and introduce the polynomials ,
such that, for all

Observing that , (23) then yields

Notice that the denominator is strictly
positive and bounded for , because gener-
ates a Riesz basis (except in the ill-posed cases mentioned in
Section II-D—but these are prohibited by condition H0). The
same holds true for the numerators.

We have thus found a rational fraction that satisfies a Bézout-
like relation with and is strictly positive over .
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Now the idea is to approximate it with a polynomial from the
solution set given in (13). We let

which can be shown to be a rational fraction in the variable .
Thus, from Weierstrass’s theorem, we can approach it uniformly
on using polynomials of the form , where

. When the error between and will be small enough,
then will also be close enough to

(which is strictly positive), so that
for .

D. Proof of Lemma 2

This results from two observations.
• and have no roots on the unit circle. This is a

standard result (see, e.g., [23]).
• The filters (respectively, ) converge

uniformly and exponentially fast towards (respec-
tively, ). Indeed, at each scale , we can show that
the function which maps a vector to the lowest degree
Bézout solution of Section IV-A is well-defined
and continuously differentiable in the neighborhood of

. More specifically, let us denote by the vector
containing the coefficients of the polynomial at
scale . Then is obtained as the solution of a linear
system of equations of the form . Similarly, the
coefficients of , the lowest degree Bézout solution
in the stationary case, are obtained from a system of the
form . Because and is
invertible, it follows that and:

— In Section IV-A (generalized Deslauriers–Dubuc func-
tions), we used . Be-
cause has no roots on the unit circle, it follows
that , uniformly over .

— In Section IV-C–1 (generalized Cohen-Daubechies-
Feauveau functions),
and . Be-
cause has no roots on the unit circle, we get

, uniformly over .
— In Section IV-B (generalized orthonormal Daubechies

functions), the filters are obtained from
the (unique) minimum-phase factorization of

into . Because
has no roots on the unit circle, this mapping

is well-defined and continuously differentiable with
respect to , in the neighborhood of .
Since , we thus have

.
— In Section IV-C–2 (generalized 9/7 functions), the

filters and are obtained from a fac-
torization of into

. This mapping is again well-de-
fined and continuously differentiable in the neigh-
borhood of . From (17), moreover,

converges exponentially fast towards ,
which implies and

.
Because , we can write

, where is such that
(uniformly over ). The same applies to

and .

E. Proof of Theorem 3

We consider the orthonormal case as an example; for the other
cases, the argument stays the same but the notations must be
adapted.

• Pointwise convergence: For sufficiently small, using the
previous lemma, (18) can be written as three infinite prod-
ucts

— The first one converges toward , the Fourier
transform of an exponential B-spline of parameter .

— The second one converges to a function , since
is equal to for and the corre-

sponding filter has finite length (see also, [3, Lemma
3.1]).

— The infinite sum converges abso-
lutely because of the upper-bound .

For larger ’s, the functions are related to the previous
ones by a dyadic dilation and a finite number of supple-
mentary filter factors (see (18)).

• Convergence in : It is known [5] that the inverse
Fourier transform of is a tempered distribution . The
latter is related to the stationary scaling function by

where is a regular B-spline of order . In our case
and are compactly supported, as is . Because the th
derivative of corresponds to an th-order finite-differ-
ence filter, we can write under the form

Note that locally, the sum has only a finite number of
nonzero terms, since is compactly supported. Hence

(24)
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Here, is in . This is best understood in
the case where (i.e., ). Indeed, in the
frequency-domain, we then have

(25)

It follows that the Fourier transform of is bounded
and the bound does not depend on , for (in
the general case, we just have to multiply the bounds
of the corresponding first-order cases). We thus obtain

, where is a constant,
and we know that . In addition, both
and are compactly supported. Therefore, only
a finite number of terms in (24) contribute to
over its support, from which we infer that it is a function
of as well. For small enough, we conclude that

is in
because the last factor is bounded. Again, the func-

tions at larger scales are related to those at smaller scales
by a finite number of dilation and filtering operations;
because the filters are finitely supported, the functions
at larger scales are also in .

• Asymptotic behavior: The convergence toward the corre-
sponding stationary scaling function results from the fol-
lowing facts.
— When the parameter vector tends to zero,

converges to in . Indeed, we can write
that

(26)

The Fourier transform of converges
pointwise to zero. Moreover, using bounds of the type
(25), one can show that its modulus is dominated by a
square-integrable function, namely . The domi-
nated convergence theorem thus implies that

as . The desired con-
vergence result follows from the compact support (and
its independence from ) of the functions and

in (26).
— The factor tends to 1

uniformly as . Thus
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