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T
he measurement of brain activity in a noninvasive way is
an essential element in modern neurosciences.
Modalities such as electroencephalography (EEG) and
magnetoencephalography (MEG) recently gained inter-

est, but two classical techniques remain predominant. One of
them is positron emission tomography (PET), which is costly
and lacks temporal resolution but allows  the design of tracers
for specific tasks; the other main one is functional magnetic
resonance imaging (fMRI), which is more affordable than
PET from a technical, financial, and ethical point of view, but
which suffers from poor contrast and low signal-to-noise ratio
(SNR). For this reason, advanced methods have been devised
to perform the statistical analysis of fMRI data.

The blood-oxygen-level-dependent (BOLD) signal, discov-
ered by [1] in the 1990s and later elucidated in [2], has
allowed fMRI to evolve into a prominent tool to perform non-
invasive studies of the function of the brain. In T2*-weighted
magnetic resonance (MR) images, the BOLD signal exhibits a
weak and noisy contrast. The aim of fMRI data analysis is to
detect this signal in a time series of acquisitions. The purpose
of this article is to give a unifying overview of techniques that
deploy the wavelet transform to perform this analysis. 

The wavelet transform is a powerful tool [3], [4]. Unlike the
Fourier sinusoids, which provide a sharp frequency characteri-
zation of a given signal but are unable to identify transient
events, wavelets achieve a balance between localization in
space or time and localization in the frequency domain. This
balance is intrinsic to multiresolution, which allows the analy-
sis to deal with image features at any scale. As the discrete
wavelet transform (DWT) corresponds to a basis decomposi-
tion, it provides a nonredundant and unique representation of
the signal. These fundamental properties are key to the effi-
cient decomposition of the nonstationary processes typical of
fMRI experimental settings. Consequently, wavelets have
received a large recognition in biomedical signal and image
processing; several overviews are available [5]–[7], including
work that is tailored to fMRI [8]. 

The first application of wavelets in fMRI was pioneered by
Ruttimann et al. [9], [10]. After computing the wavelet trans-
form of each volume, the parameter for an on/off type activa-
tion is extracted, followed by a coefficient-wise statistical test
for this parameter. Such a procedure takes advantage of two

properties of the wavelet transform. First, wavelets allow us to
obtain a sparse representation of the activation map, in the
sense that only a few wavelet coefficients are needed to effi-
ciently encode the spatial activation patterns. Consequently,
the SNR of signal-carrying coefficients has increased with
respect to the original voxels, thus improving the potential
sensitivity of detecting activation patterns burried in large
noise. Second, the wavelet transform approximately acts as a
decorrelator. Therefore, the use of simple techniques to deal
with the multiple-testing problem, such as Bonferroni correc-
tion, is appropriate since the coefficients are nearly decorrelated.
The power of the statistical test in the wavelet domain has
been increased by proposing other error rates than the Type I
error (i.e., the number of false positives). Hilton et al. [11]
introduced recursive testing (change-point detection) in fMRI
analysis, which consists of altering the hypotheses of the test
procedure in the wavelet domain. Raz and Turetsky [12], [13]
applied the principle of false discovery rate (FDR). 

The wavelet transform has also been deployed along the
temporal dimension. At the same time, LaConte et al. [14] and
Alexander et al. [15] proposed a temporal denoising prepro-
cessing step. Serial correlations in fMRI data are common due
to head-motion artifacts, background neuronal processes, and
acquisitions effects. Bullmore et al. [16] pioneered bootstrap-
ping techniques in the wavelet domain to deal with the colored
noise structure of fMRI data. Bootstrapping techniques rely on
the whitening property of the wavelet transform to generate
surrogate data that are used to build an empirical statistical
measure under the null hypothesis [17]–[19]. Tscharner et al.
[20] proposed the use of the continuous wavelet transform in a
nonparametric detection scheme. Fadili and Bullmore [21]
exploited the whitening property of the discrete transform to
obtain a best linear unbiased estimate for the parameters of the
linear model (LM). Hossein-Zadeh et al. [22] deployed a
redundant wavelet transform for nonparametric detection,
while Meyer [23] proposed them as a tool to estimate semi-
parametric models in fMRI. Finally, Shimizu et al. [24] and
Maxim et al. [25] obtained spectral characteristics of fMRI
time series using the wavelet transform.

We give an overview here of techniques that deploy the
wavelet transform in the spatial domain. To this aim, we
consider the coefficient-wise statistical test procedure in
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the wavelet domain as the basic scheme. Most methods
have concentrated on relaxing the Bonferroni correction of
such a coefficient-wise test. For each of them, we clearly
specify the modifications applied, and we highlight some
interesting unifications. For example, FDR (based on an
alternative error rate) and recursive testing (based on modi-
fied hypotheses) seem unrelated at first sight, still, they can
be interpreted very similarly. Additionally, the statistical
test procedure based on the posterior probability density
function of the Bayesian framework can be, under relative-
ly mild assumptions, interpreted in an FDR-like way. All
these methods require a prespecified level α to determine
the significance of the test procedure. We point out the
weak Type I error control of these methods and note that it
could be used as the common ground to relate the various
prespecified levels. Finally, we include recent advances
such as a spatio-wavelet approach, which puts back the sta-
tistical test procedure in the spatial domain while maintain-
ing powerful wavelet processing.

The article is organized as follows. In the following section,
we introduce the basics of fMRI data analysis, together with a
purely spatial statistical test. We also briefly highlight the
main features of statistical parametric mapping (SPM), a stan-
dard method for fMRI analysis. The overview of wavelet-
based methods is presented, and finally, examples and
experimental results are given.

The Basics of fMRI Data Analysis
We introduce here basic elements for a parametric, hypothesis-
driven approach to the statistical analysis of fMRI. We first
describe a voxelwise testing procedure that does not exploit
the spatial correlation properties of the data. Next, we briefly
mention some features of SPM, a popular methodology with
an associated software package.

A Purely Spatial Approach
An fMRI dataset v[n; t] consists of a sequence of slices or vol-
umes, where n ∈ Z

3 and t = 1, . . . , N , are the three-dimen-
sional (3-D) spatial and temporal indices, respectively. For
each voxel, we also introduce a time-series vector of length N:
v[n] = [v[n; 1] . . . v[n;N ]]T . 

In a parametric approach, the temporal behavior of a voxel
can be explained by a LM that is then fitted to the data.
Specifically, if one wants to identify L regression variables,
one writes the model as 

v[n] = Xy[n] + e[n], for each n, (1)

where X is the N × L design matrix, y[n] is the L × 1 para-
meter vector, and e[n] is the residual error. In a simple block-
based paradigm, X could consist of just two columns: one for
the on-off stimulus, eventually convolved with the haemody-

namic response function (HRF), and one for the background
signal. The regression variables in (1) are easy to estimate if
we assume that the residual errors e[n] are (temporally) inde-
pendently and identically Gaussian-distributed. In such a case, 
the optimal unbiased estimate of y[n] is the least squares 
solution ȳ[n] = (XTX)−1XTv[n]. The residual error is then
ē[n] = v[n] − Xȳ[n]. Typically, one is only interested in a
subset of the fitted parameters, for example, the parameter for
the first column of the design matrix for the simple on/off
experiment. The contrast vector c extracts the parameter(s) of
interest into the two important measures

u[n] = cTȳ[n], (2)

s2[n] = ēT[n]ē[n]cT(XTX)−1c. (3)

Assuming that the model holds and that the noise is indepen-
dent identically distributed (i.i.d.), these are known to follow a
Gaussian and a χ2-distribution, respectively, and are indepen-
dent from one another.

At this point, hypothesis testing is performed to determine
whether or not the voxel n is activated, i.e., if the mean value
is zero or not:

H0 : E[u[n]] = 0,

H1 : E[u[n]] > 0. (4)

Testing the nonvalidity of the null hypothesis for a given sig-
nificance level α is achieved by thresholding a test statistic
built out of u[n] and s2[n]. Specifically, the value 

t[n] = u[n]√
s2[n]/J

, with J = N − rank(X), (5)

follows a normalized Student t distribution with J degrees of
freedom. The test procedure can then be summarized as
checking whether t[n] ≥ τ , with p = Prob[t ≥ τ ], where t is
a reference random variable that follows the Student t distribu-
tion. Notice that the test is one-sided since we are interested in
detecting activation (as opposed to deactivation). The detected
parameter map is 

d[n] = H(t[n] − τ)u[n], (6)

where H(t) is the Heaviside step function defined as

H(t) =
{

0, when t < 0,

1, otherwise.
(7)

In other words, the term H(t[n] − τ) in
(6) acts as a weight that is equal to 1 for
t[n] ≥ τ and 0 otherwise. To summa-
rize, we show a schematic overview of
the spatial approach in Figure 1. 

The significance level of a statistical
test corresponds to the Type I error rate,
i.e., the probability p of a false positive
detection. To carry out the analysis of
fMRI data, we have to repeat the sameFig. 1. A schematic overview of the purely spatial approach.
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test for many voxels, which increases the global Type I error
rate. In particular, for V tests, we expect to obtain pV false pos-
itives, which usually become too high since V is large.
Achieving a global Type I error rate that remains below a
desired significance level α requires that 

Prob

[∨
n

t[n] ≥ τ

]
≤ α, (8)

where the 
∨

-symbol denotes the disjunction operator. The
simplest way of keeping the Type I error rate below α is
by Bonferroni correction. We give an upper bound to the
probability as

Prob

[∨
n

t[n] ≥ τ

]
≤

∑
n

Prob[t ≥ τ ] = pV, (9)

where V is the number of voxels in the volume or, more pre-
cisely, the number of intracranial voxels. As a result, utiliz-
ing the significance level p = α/V for the individual tests
guarantees the desired global level. Unfortunately, while the
Bonferroni correction maintains a strong Type I error con-
trol, it also highly reduces the sensitivity. The main reason
for the suboptimality of Bonferroni correction lies in the
fact that it does not take into account the spatial correlation
between voxels [26].

Statistical Parametric Mapping
We now briefly mention the SPM approach [27], [28], which is
probably the most popular parametric hypothesis-driven
method for the analysis of fMRI data. To control the multiple-
hypothesis testing problem, SPM considers the data as a lattice
representation of a continuous Gaussian random field. For this
to be valid, SPM needs a smoothing preprocessing step [29],
[30]. Specifically, the volumes v[n; t] are filtered by a
Gaussian, characterized by its full-width-at-half-maximum
(FWHM), to obtain the volumes vg[n; t]. The hypotheses of
the statistical test of SPM are 

H0 : E[ug[n]] = 0,

H1 : E[ug[n]] > 0, (10)

where ug[n] is the parameter map derived by the LM from the
smoothed data. Correction for multiple testing is done based
on an approximation of (8), which takes into account the local
expected Euler characteristic. 

SPM is implemented as a software package for MATLAB.
This package has evolved a lot over the years. In its current ver-
sion (SPM2), it allows the development of third-party add-ons as
toolboxes. The main advantage of such an open software archi-
tecture is clearly the possibility of extending the already wide
functionality of SPM and to tailor it to specific applications.

Wavelets in fMRI—Surfing the Brain

A Primer to the Wavelet Transform
The DWT of a one-dimensional signal v(x)—typically repre-
sented by its samples v[n], n ∈ Z—is a decomposition into a
sum of basis functions. These functions are shifted and dilated

versions of a (bandpass) wavelet function ψ(x) and shifted
versions of a (low-pass) scaling function ϕ(x) .
Mathematically, we write 

v(x) =2Jw/2
∑

k

cJw[k]ϕ(x/2Jw − k)

+
Jw∑

j= 1

2 j/2
∑

k

wj[k]ψ(x/2 j − k) (11)

for a decomposition of Jw iterations. The low-pass coefficients
and detail (wavelet) coefficients are given by

cJw[k] = 〈v(·),2−Jw/2ϕ̃(·/2Jw − k)〉, (12)

wj[k] = 〈v(·),2− j/2ψ̃(·/2 j − k)〉, (13)

respectively [3], [4]. The functions ϕ̃ and ψ̃ are related to ϕ
and ψ .

In practice, the calculation of the coefficients is performed
by a fast iterated filterbank algorithm. Specifically, at the jth
iteration, the scaling coefficients cj[k] and the wavelet coeffi-
cients wj[k] are obtained by digital filtering and subsampling
with an analysis scaling filter h̃ and with an analysis wavelet
filter g̃, respectively:

cj[k] = (cj−1 ∗ h̃T)[2k], (14)

wj[k] = (cj−1 ∗ g̃T)[2k]. (15)

The wavelet coefficients (eventually after modification) can
then be used to reconstruct the signal using the inverse
scheme. The coefficients at the jth iteration are recovered by 

cj[k] = (cj+1 ↑ 2 ∗ h)[k] + (wj+1 ↑ 2 ∗ g)[k], (16)

where h and g are synthesis scaling and wavelet filters, respec-
tively, and where ↑ 2 corresponds to an upsampling operation
by a factor 2. The reconstruction is repeated until the finest
level is reached, where the c0[k] represent v(x) by integer-
shifts of ϕ(x).

The wavelet transform can be extended to multiple dimen-
sions in a straightforward way using the tensor product. In two
dimensions, for example, this construction leads to one scaling
function ϕ(x1)ϕ(x2) and three wavelets ϕ(x1)ψ(x2) ,
ψ(x1)ϕ(x2), ψ(x1)ψ(x2). It leads to one scaling function and
seven wavelets in 3-D.

In the remainder of this article, we write the multidimen-
sional version of the decomposition (11) as 

v(n) =
∑

k

vw[k]ψk(n), (17)

where the coefficients vw[k] run over all scales and orienta-
tions of the decomposition (including the low-pass), while the
functions ψk correspond to the associated scaled, shifted, and
dilated version of the scaling function or of the wavelet,
including the normalization factor. The subscript w is used
consistently to denote the wavelet coefficients, while the
indexes n and k are used in the spatial domain and in the
wavelet domain, respectively.
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Wavelet Processing as Denoising
Wavelets were primarily applied in medical imaging for
denoising, a technique that was pioneered by Weaver et al.
[31] in the context of MRI. In a general denoising approach,
the LM of (1) is replaced by a nonparametric regression where
the data is modeled as the superposition of an unknown signal
and a noise component:

v[n; t] = y[n; t] + e[n; t]. (18)

The spatial wavelet transform of each of the volumes v[n; t]
provides us with the wavelet coefficients vw[k; t], on which
we can then apply a hard or soft thresholding rule. The
denoised volumes are reconstructed from the modified
wavelet coefficients v̂w [k; t ], as indicated in Figure 2.

The well-known technique of wavelet shrinkage has been
systematized by Donoho and Johnstone [32], [33] and has
been applied to fMRI data as a preprocessing step [34]–[36].
In a recent study by Wink and Roerdink [37], an extensive
comparison of various threshold-selection schemes suggests
that the denoised volumes show higher SNRs and that they
retain activation patterns well. Another promising indication
was made by Aston et al. [38], who shows that the residual in
the spatial domain, after wavelet shrinkage, would decrease
significantly. Nevertheless, suitable statistical treatments of
the denoised volumes, such as performing a test, are made dif-
ficult by the nonlinear operation in the wavelet domain.

Wavelet Processing and Nonparametric Methods
The denoising strategies make relatively mild statistical assump-
tions. Several alternative methods have been proposed to take
into account the specificity of the fMRI spatio-temporal data.
Among the nonparametric methods, we like to briefly mention
the few that deploy the transform in the spatial domain.

Long et al. [39] proposed to optimize a spatio-temporal like-
lihood function, with a spatially varying threshold in the
wavelet domain as a regularization for the activation map.
Breakspear et al. [40] applied nonparametric tests based on

bootstrapping methods in the spatial and spatio-temporal
domain. The wavelet transform has a great advantage since it
allows the application of bootstrapping on a spatially con-
strained region, thus having a great potential to investigate
functional connectivity in the brain. In a recent work,
Whitcher [41] applied a wavelet bootstrap based on random
processes of the Matern class.

In the remaining of this article, we primarily focus on para-
metric hypothesis-driven approaches. 

Wavelet Processing as Probabilistic Shrinkage
We consider the LM (1) and translate it into the wavelet
domain: 

vw[k] = Xyw[k] + ew[k], for each k, (19)

where the vector vw[k] is formed out of the wavelet coeffi-
cients vw[k; t]. Under the Gaussian i.i.d. assumption for the
noise, the estimates of the parameters can be determined as
ȳwk = (XTX)−1XTvw[k] and the residual error as
ēw[k] = vw[k] − Xȳw[k]. Consequently, for the parameter of
interest, we obtain 

uw[k] = cTȳw[k], (20)

s2
w[k] = ēT

w[k]ēw[k]cT(XTX)−1c. (21)

We now have all the elements to explain the various methods
of probabilistic shrinkage. 

Coefficient-Wise Testing
The translation of hypothesis testing of the parameter map into
the wavelet domain was first proposed by Ruttimann et al. [9],
[10] and was later followed and extended by other researchers
[42]–[45]. The original hypotheses (4) are modified into

H0 : E[uw[k]] = 0,

H1 : E[uw[k]] �= 0. (22)

Similar to the spatial-domain voxelwise
test, we can construct a test statistic for
each wavelet coefficient, 

tw[k] = uw[k]

sw[k]/
√

J
, (23)

which follows a Student t distribution
with J degrees of freedom. The test pro-
cedure itself needs to be modified into a
two-sided test since all wavelet coeffi-
cients could contribute to positive values
of the parameter map, even when these
coefficients are negative. Therefore, we
test |tw[k]| > τ , with p = Prob[|t| ≥ τ ].
The wavelet coefficients uw[k] for
which the t-values survive the test are
included in the reconstruction of a
parameter map û[n]. See Figure 3.

Hypothesis testing in the wavelet
domain still suffers from the multiple-

Fig. 2. A schematic overview of a wavelet-based denoising approach.
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Fig. 3. A schematic overview of the probabilistic shrinkage approaches.
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testing problem. Once more, we can use Bonferroni correction
to have pV = α, where α is the desired global significance
level and where V corresponds to the number of intracranial
voxels. (The latter is approximately equal to the number of
intracranial wavelet coefficients.) Because of the decorrelating
properties of the wavelet transform, the application of the
Bonferroni correction in the wavelet domain should be more
optimal than in the spatial domain. The total number of tests
can also be further reduced by performing an omnibus test
first at each decomposition level [10]. 

False Discovery Rate
Although controlling the global Type I error rate has an easy
interpretation (i.e., we have a chance α of finding a false posi-
tive in the whole volume), it is sometimes considered too con-
servative. Therefore, alternative error rates have been proposed
to increase the power of detecting true positives. The FDR, or
the expected proportion of false positives to total positives, was
proposed by Benjamini, Abramovich, and Hochberg [46]–[48],
and afterwards applied to neuroimaging by Raz and others
[12], [13], [49], [50]. Mathematically, FDR is defined as

FDR = E
[

DF

D

]
, (24)

where DF is the number of false positives and where D is the
total number of positives. For D = 0, the FDR is defined as 0.
Keeping the FDR at a desired fraction α corresponds to allow-
ing, on average, for αD false positives. 

The FDR principle can be translated into a practical 
algorithm as follows: first, we sort the t-values tw[k] of 
the wavelet coefficients as |t(1)| ≥ |t(2)| ≥ · · · ≥ |t(V)| .
Consequently, the corresponding p-values
p(i) = Prob[|t| ≥ |t(i)|] are increasing. Then, the FDR corre-
sponding to D = i total positives can be rewritten as

E
[

DF

D

∣∣∣∣∣D = i

]
= E[DF|D = i]

i
= V

i
prob[|t| ≥ |t(i)|]. (25)

Therefore, keeping FDR ≤ α requires that 

Prob[|t| ≥ |t(i)|] ≤ α
i

V
. (26)

This insight leads to the so-called step-up procedure for con-
trolling the FDR.

➤ The wavelet coefficients are sorted according to increas-
ing p-values. 

➤ The index i is determined by the largest p-value p(i) for
which p(i) ≤ αi/V. 

➤ The wavelet coefficients u(1), . . . , u(i) are retained for
the reconstruction of a parameter map û[n]. 

The FDR approach assumes (at least) positively dependent
test statistics [51]. Further on, it is important to recognize that
FDR only offers a weak Type I error control; i.e., the effective
Type I error rate is equal to α only for the omnibus null-
hypothesis test.

Recursive Hypothesis Testing or Change-Point Detection
Ogden et al. [11], [52] proposed the idea of recursive testing

(change-point detection) to retain the maximal number of
wavelet coefficients with strong evidence, while testing the
null hypothesis on the remaining coefficients. This technique,
which could be implemented as a recursive method, has also
been extended to hypothesis testing in the context of fMRI by
Fadili and Bullmore [50]. Here, we show that recursive testing
can be implemented in a way very similar to FDR. 

The starting point consists of adjusting the hypotheses by
introducing a set of indices S such that

H0 : E[uw[k]] = 0, k ∈ S,

H1 : E[uw[k]] �= 0, k ∈ S, and

E[uw[k]] = 0, k /∈ S. (27)

Expressing the Type I error rate under the null hypothesis,
assuming independent test statistics, results into

Prob

[∨
k∈S

|tw[k]| > τ

]
= 1 − Prob

[∧
k∈S

|tw[k]| ≤ τ

]
(28)

= 1 − Prob

[
max

k
|tw[k]| ≤ τ

]

(29)

≤ 1 − Prob[|t| ≤ τ ]#S (30)

= 1 − (1 − p)#S, (31)

where #S is the cardinal of the set S. Imposing a global signifi-
cance level α thus results into

p ≤ 1 − (1 − α)1/#S. (32)

Therefore, recursive testing can be translated into a procedure
that is very similar to FDR:

➤ The wavelet coefficients are sorted according to increas-
ing p-values.

➤ The index i is determined by the largest p(i) for which
p(i) ≤ 1 − (1 − α)1/(V−i) .

➤ The wavelet coefficients u(1), . . . , u(i) are retained and
used for the reconstruction of û[n]. 

Once again, recursive testing provides only a weak Type I
error control with a significance level α. The method can be
implemented in a subband-by-subband way, but in that case,
one should divide α by the number of subbands in order to
keep the same weak Type I error control. 

The underlying ideas of FDR and recursive testing are still
subjects of active research. Shen et al. [53] recently proposed
enhanced FDR as a combination of both principles (i.e., alter-
native error rate with modified hypotheses). Some promising
preliminary results for synthetic fMRI datasets were published
by Pavlicová et al. [54].

Bayesian Framework
The Bayesian framework has been applied to further refine
the statistics in the wavelet domain by Vidakovic and
Abramovich [55], [56]. Fadili and Bullmore [50], [57] fur-
ther developed this framework in the context of fMRI. The
basic ingredient of the Bayesian approach is the prior proba-
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bility density function of the wavelet coefficients, which
consists of the mixture model

fuw[k](u) = mϑ(k) fH1(u;ϑ(k))+ (1 − mϑ(k)) fH0(u), (33)

where ϑ(k) returns the scale and orientation of the wavelet
coefficient with index k, where mϑ(k) is the probability mass
of having an active coefficient at scale and orientation ϑ(k),
and where fH1 and fH0 are the probability density functions
under the alternative and null hypothesis, respectively.
Traditionally, the ratio test between the posterior probability
of having the alternative versus the null hypothesis has been
proposed.

An alternative approach, which is more closely related to
the p-value interpretation of the previously presented methods,
consists of applying a threshold for the posterior probability of
the null hypothesis [50], [58], [59]. Specifically, we rewrite
the posterior probability of the null hypothesis when
|tw[k]| ≥ τ , using Bayes’ rule, as

Prob
[
H0

∣∣|tw[k]| ≥ τ
] = Prob[H0]Prob[|tw[k]| ≥ τ |H0]

Prob[|tw[k]| ≥ τ ]

= (1 − mϑ(k)) fH0(tw[k] ≥ τ)

f(tw[k] ≥ τ)
. (34)

The threshold τ is then chosen such that this probability is

below a desired value α. In practice, the Bayesian framework
requires us to estimate the hyperparameters by an expectation-
maximization algorithm [60].

Storey [59], [61] has shown that the posterior probability of
the Bayesian framework is—assuming independent test statis-
tics tw[k]—equivalent to the positive FDR, defined as 

pFDR = FDR

Prob[D > 0]
= E

[
DF

D

∣∣∣D > 0

]

≡ Prob
[
H0

∣∣|tw[k]| ≥ τ
]
. (35)

Curiously, the Bayesian framework becomes equivalent to
the FDR strategy when assuming Prob[H0] = 1. Indeed,
assuming that the p-value p(i) corresponds to a threshold τ(i),
we can rewrite (34) using p(i) = Prob [|t(i) ≥ τ(i)|H0] and
Prob [|t| ≥ τ(i)] = i/V as Vp(i)/ i. This asymptotic behavior
provides us with a useful insight into the interpretation of α
for the Bayesian framework: it shows that controlling the pos-
terior probability of the null hypothesis roughly corresponds to
controlling the positive FDR.

In Figure 4, we show the maximum p-value included in
the detected parameter map as a function of the total num-
ber of detections D. All methods obtain at least a weak
Type I error rate of α. Bonferroni correction is clearly most
conservative, followed by the recursive testing method and
FDR. From this point of view, the Bayesian approach
should be comparable to FDR.

Spatio-Wavelet Approach: Combining
Wavelet Processing with Spatial Testing
Probabilistic shrinkage techniques concentrate on improv-
ing the sensitivity of detecting wavelet coefficients, which
is a proper aim given the hypotheses (22). These wavelet-
based approaches perform at the same time approximation
(i.e., improving the SNR of the parameter map as an effect
of wavelet shrinkage) and detection (i.e., deciding whether
the null hypothesis has been violated for a wavelet coeffi-
cient). However, these approaches have difficulties to map
the statistics back into the spatial domain. In other words,
how can we determine whether a particular voxel of the
reconstructed parameter map û[n] is activated? Some pro-
posed solutions include the application of an ad-hoc thresh-
old (e.g., a percentage of the maximal signal level or of the
estimated noise level [10]) or retesting in the spatial
domain without taking into account the effect of the initial
test in the wavelet domain [62]). 

The spatio-wavelet approach that we recently proposed
[63], still relies on the good properties of the wavelet trans-
form to process the parameter map in the wavelet domain

but removes the statistical interpreta-
tion; i.e., there is no statistical hypoth-
esis test involved (see Figure 5). (This
approach has been implemented as a
toolbox for SPM, called WSPM:
Wavelet-based SPM, and is available
at http:// bigwww.epfl.ch/wspm.)
Therefore, in some sense, the spatio-
wavelet approach is comparable to
wavelet processing as a denoising
step. However, a statistical detection

Fig. 4. The maximum p-value as a function of the total num-
ber of detections D. The p-values are shown in logarithmic
scale. The curves correspond to α = 5% and V = 1,000.
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Fig. 5. A schematic overview of the spatio-wavelet approach.
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procedure is proposed in the spatial domain that takes into
account the effect of the wavelet processing. In its current
form, the spatio-wavelet framework uses Bonferroni cor-
rection for multiple hypothesis testing, thus ensuring a
strong Type I error control. We now explain the two steps
of the spatio-wavelet approach (i.e., wavelet processing
and detection in the spatial domain).

Wavelet Processing
Many results (e.g., Desco et al. [44]) indicate that a simple
coefficient-wise t-test in the wavelet domain, even with
Bonferroni correction, seems to achieve sufficient sensitivity.
Therefore, we get inspiration from a scheme where the
approximation step is as follows: the wavelet coefficients
uw[k] that survive the thresholding |tw[k]| ≥ τw are kept and
reconstructed as 

û[n] =
∑

k

H(|tw[k]| − τw)uw[k]︸ ︷︷ ︸
ûw[k]

ψk(n). (36)

While the initial parameter map u[n] can be considered as
the best linear estimate (it is even the best one among all
estimators under the Gaussian assumption), the approxi-
mated map û[n] is expected to be improved by the nonlin-
ear thresholding operation in the wavelet domain, which
exploits the spatial correlation. Since the approximation
step has now lost its statistical interpretation, the threshold
value τw becomes a parameter of the framework, to be
determined later.

Detection in the Spatial Domain
In a second phase, we want to test whether a particular voxel
of the reconstructed parameter map can be considered as acti-
vated or not. Therefore, we propose the hypotheses

H0 : E[û[n]] = 0,

H1 : E[û[n]] > 0, (37)

which are expressed in the spatial domain. The test procedure
relies on a theorem [63] that states that 

Prob [û[n] ≥ τs�[n]] ≤ ϒ(τw , τs ), (38)

where �[n] is a special reconstruction of the standard devia-
tions sw[k] that makes use of the absolute-valued wavelets,
given by 

�[n] =
∑

k

sw[k]√
J

|ψk(n)|. (39)

The function ϒ(τw, τs) is data independent and is a function
of the parameters τw and τs. It is given by

ϒ(τw, τs) = min
a> 0

E[(1 + a(ξ − τsς))+], (40)

where ξ and ς are the reference random variables

ξ = H

(∣∣∣∣∣
u

s/
√

J

∣∣∣∣∣ − τw

)
u, (41)

ς = s/
√

J. (42)

There, u follows a normalized Gaussian distribution, and
s follows a normalized χ2-distribution with J degrees of
freedom and is statistically independent of u. The deriva-
tion of (40) requires no assumptions on the spatial corre-
lation of the data.

Let us assume for a moment that τw and τs are given; then,
ϒ(τw, τs) gives us a probability p. If we find that
û[n] ≥ τs�[n], where û has been processed in the wavelet
domain based on the threshold τw, then we classify the voxel
n of the parameter map as activated with a Type I error prob-
ability (considering only this single test) of p. The global
Type I error rate corresponds, due to multiple testing, to pV. 

Finally, we denote the detected parameter map as

d[n] = H(û[n] − τs�[n])û[n]. (43)

Parameter Selection
In practice, we want to pick a desired significance level α that
corresponds to the global Type I error rate. However, there is
an infinity of combinations (τw, τs) that provide the same
probability ϒ(τw, τs) = α/V. The proposed solution in [63]
consists of preferring the most faithful detected parameter
map with respect to the unprocessed one. In a mathematical
way, we want to minimize the worst-case error between the
unprocessed parameter map u[n] and the detected one d[n]. A
sharp (i.e., attainable) bound for this error can be found as 

|u[n] − d[n]| ≤ (τw + τs)�[n]. (44)

So, we should look for the parameters

(τw, τs) = arg min
τw,τs

{
τw + τs, subject to ϒ(τw, τs) = α

V

}
. (45)

In the case where we assume sw[k]/
√

J to be the true standard
deviation σw[k], the optimal values (τw, τs) correspond to 

Wavelets achieve a balance between

localization in space or time and localization

in the frequency domain.
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τw =
√

−W−1

(
−2π

α2

V 2

)
, (46)

τs = 1

τw
, (47)

where W−1(·) is the (−1)-branch of the Lambert W-function;
it is the inverse of the function f(W) = W exp(W). In the gen-
eral case, the calculation of (40), with its optimization on a,
needs to be done by a numerical procedure. 

Compensating for Temporal Correlation
In practice, taking into account the temporal correlation of
fMRI data plays an important role [64]–[66]. Since the pre-
sented techniques deploy the wavelet transform in the spatial
domain, we can easily incorporate a stationary model to deal

with serial correlations in the wavelet domain. We used the
autoregressive model of SPM, for which the parameters are
estimated by a restricted maximum-likelihood method [66],
which is then incorporated into the estimation of the LM to
prewhiten the data. The equivalent degrees of freedom are
estimated by the Satterthwaite approximation [64].

Examples
As mentioned previously, the wavelet transform can be
applied in multiple dimensions. However, while fMRI data
consist of a series of 3-D volumes, the transform is mostly
applied in two-dimensional (2-D) slice-by-slice to avoid arti-
facts due to the slice timing effect in the MRI acquisition.

Here, we use the B-spline wavelet transform [67], which
can be tuned by the polynomial degree of the scaling func-
tion (related to the number of vanishing moments of the
wavelet). They also constitute a complete family of semi-
orthogonal wavelets, among which the most popular flavors
are orthogonal, B-spline (pure B-spline at the synthesis side),
and dual B-spline (pure B-spline at the analysis side). The
orthogonal transform of degree 1, with two iterations, is
denoted as ortho 1/2.

Software Phantom Study
To illustrate some of the differences between the various
approaches, including the influence of the choice of the
wavelet transform, we perform a software phantom study
with known activation clusters. First, we retain from a real
dataset a 3-D intracranial mask (64 × 64 × 22), for which a

Fig. 6. (a) The software phantom was constructed using the
intracranial mask in which activation clusters were embed-
ded. (b) 2-D seed activations were smoothed by a Gaussian
filter (FWHM = 1.5 voxel for the upper activations, FWHM = 3
voxel for the lower ones). (c) The parameter map served to
generate 80 volumes for which the activated regions fol-
lowed the time course of Figure 7. (d) An example of a gen-
erated slice, corrupted with additive white Gaussian noise.

Fig. 7. A time course for the activated voxels of the software
phantom (repetition time TR = 3 s, block design with four
cycles of ten volumes per epoch, HRF included).

Only a few wavelet coefficients are

needed to efficiently encode the

spatial activation patterns.
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slice is shown in Figure 6(a). This
mask serves as a reference back-
ground intensity level of 100%.
Following Desco et al. [44], we now
build a parameter map by first putting
six activation seeds, shown in Figure
6(b). The signal levels of these seed
activations are (from left to right)
8%, 4%, and 4% for the top ones, and
6%, 6%, and 4%, for the bottom
ones. To obtain more realistic activa-
tions, the seed parameter map is
smoothed by a Gaussian filter. We
chose two different filters: the top
half was smoothed by a filter with
FWHM = 1.5 voxel, while the bot-
tom half was smoothed with FWHM
= 3 voxel.  This parameter map,
shown in Figure 6(c), is then used to
produce a time course of 80 volumes,
according to a block paradigm of four
cycles with ten volumes per epoch,
including the HRF as used by SPM
(repetition time TR = 3 s), see Figure
7. Each of the volumes is corrupted
by additive Gaussian white noise of
standard deviation 4%. As an exam-
ple, the slice containing activation
from Scan 15 is shown in Figure 6(d). 

We select the desired global signifi-
cance level to be α = 5%. For the
approaches with an error rate different
from the Type I error control, α corre-
sponds to the weak Type I error rate.
The number of tests taken into account
is the number of intracranial voxels
(15,923 out of 90,112). The evaluated
methods are as follows:
➤ spatial t-test
➤ coefficient-wise t-test 
➤ FDR 
➤ recursive testing applied in a sub-

band-by-subband way 
➤ spatio-wavelet method.
Also, each orientation is considered
separately. Therefore, the prespecified
level for the recursive testing strategy
inside each subband and orientation is
α/(3 Jw + 1).

Let us first  take a look at the
results of the simple spatial t-test.
The parameter map shown in Figure
8(a) corresponds to the voxel-by-
voxel least squares solution u[n] of
the LM with the true design matrix.
The residual s[n]/

√
J of the corre-

sponding parameter is shown in
Figure 8(b), while the test statistic
t[n] is depicted in Figure 8(c).
Finally, the detected parameter map
d[n] (i.e., voxels that survive the
Bonferroni-corrected threshold

Fig. 8. Results for the software phantom study using the spatial t-test: (a) the estimat-
ed parameter map u[n] from the LM; (b) the residual s[n]/

√
J of the parameter; (c)

the test statistic t(n); and (d) the detected parameter map d(n).
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Fig. 9. The resulting parameter map for the software phantom study using wavelet-
based methods (orthogonal B-spline wavelet transform, degree 1, two iterations): (a)
coefficient-wise t-test; (b) FDR; (c) recursive testing; and (d) spatio-wavelet approach.
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t[n] > 4.84) is shown in Figure 8(d). Clearly, the sensitivity
of the spatial t-test with Bonferroni correction for multiple
testing is very low. 

We compare the various methods from an SNR point of
view. The SNR of the obtained parameter map can be comput-
ed since we know the true activations; see Figure 6(c). For
techniques with spatial-domain processing, we consider the
detected parameter maps as the final result. Specifically, for the
spatial t-test, we consider (6), while for the spatio-wavelet
method we have (43). For purely wavelet-based techniques, we
take the reconstruction from the retained wavelet coefficients.

We show the results for the orthogonal B-spline transform,
degree 1, two iterations, in Figure 9. In Table 1, we also list
the corresponding threshold values. While the coefficient-
wise t-test simply applies to the wavelet domain the same
threshold as the spatial t-test, FDR and recursive testing
lower this threshold in a data-dependent way. The threshold
in the wavelet domain for the spatio-wavelet approach turns
out to be the largest, but this method allows for a statistical
interpretation in the spatial domain afterwards. FDR and
recursive testing, in Figure 9(b) and (c), show activation for
the six clusters. The coefficient-wise t-test and the spatio-

wavelet approach, in Figure 9(a) and
(d), only respond to five clusters. We
observe that it does not pay to iterate
the transform more than two times.
Similar to [44], we find that applying
more than two iterations decreases the
SNR and the localization of the activa-
tion clusters. See for example Figure
10 and Table 2. The degree of the B-
spline wavelet transform determines
the smoothness of the wavelet and its
number of vanishing moments. We
compare degree 0 and 2 in Figure
10(b) and (c) for the FDR method. We
also include the result for the spatio-
wavelet approach for ortho 2/2. The
best SNR values are obtained for the
FDR and recursive testing methods.
Nevertheless, it should be noted that
these methods falsely detected for
some realizations of the experiment
activity elsewhere in the volume.

Another interesting result is the sta-
tistical parameter map in the spatial
domain, available for some of the tech-
niques, which determines whether a
specific voxel can be considered as
activated. In Figure 11, we show the
statistical parameter map for the spatial
t-test, the spatio-wavelet approach, and
SPM for two values of the FWHM.

Table 1. An overview of the threshold values for the
various methods  (ααα = 5%) in the software phantom study. 

Spatial Threshold Wavelet Threshold

Spatial t-test 4.84 —

Coefficient-wise t-test — 4.84

FDR* — 4.23 (12)

Recursive* — 3.82 (18)

Spatio-wavelet 0.19 5.25

Table 2. SNR values (in db) for the parameter map obtained by the various methods. 

Ortho 1/1 Ortho 1/2 Ortho 1/3 Ortho 0/2 Ortho 2/2

Coefficient-wise t-test 2.31 (5) 2.41 (5) 1.84 (3) 2.38 (5) 3.00 (5)

FDR 1.93 (5) 2.46 (6) 1.82 (5) 2.67 (5) 3.31 (6)

Recursive 1.93 (5) 1.93 (6) 1.16 (6) 2.90 (5) 3.71 (6)

Spatio-wavelet 2.77 (4) 2.36 (5) 1.54 (2) 1.90 (4) 2.74 (5)

The total number of detected activation clusters is listed in parentheses.

The methods indicated by * require a data-dependent threshold. For those, we
listed the results for the orthogonal B-spline wavelet transform (degree 1, two iter-
ations) and indicated the total number of retained wavelet coefficients in
parentheses.

Fig. 10. Resulting parameter map for the software phantom study using wavelet-
based methods: (a) FDR (ortho 1/3); (b) FDR (ortho 0/2); (c) FDR (ortho 2/2); and (d)
spatio-wavelet approach (ortho 2/2).
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The color maps are scaled according to the range
of their respective test statistic. We observe that
the results obtained by the spatio-wavelet
approach are comparable to those obtained by
SPM. Fadili and Bullmore [50] proposed the
use of an interesting alternative to evaluate the
quality of wavelet techniques in the spatial
domain, based on the receiver operating charac-
teristic for a binomial mixture model (which
needs to be estimated by an expectation maxi-
mization algorithm).

The choice of the wavelet function can also
be linked to the Gaussian smoothing and the
concept of resolution elements (resels) of SPM.
In [68], we proposed the use of the fractional B-
spline wavelet transform [69], [70], where we
put the pure B-spline at the analysis side of the
transform. The close resemblance of the B-
spline with the Gaussian function, together with
a reinterpretation of resels, provided us with an
optimal fractional degree between 1.16 and
1.86, depending on the number of iterations.
Also, 2-D wavelet transforms using the quin-
cunx subsampling scheme [71] with fractional
orders [72] appear to be interesting candidates
to be applied to fMRI data.

Block-Based Experiment
We also show results for an fMRI experiment
with auditory stimulation following a block-
based paradigm [73]. Data were acquired on a 2T
Siemens Magneton, 7 s repetition time,
64 × 64 × 64 volumes with voxels of physical
size 3 mm × 3 mm × 3 mm. The total number of
volumes was N = 84. The setup of the design
matrix with haemodynamic model was done with SPM. The
significance level was fixed again at 5%. For all methods, the
temporal correlation was taken into account by the weighted
least squares solution for the LM proposed by SPM.

For this example, we limited ourselves to the orthogonal B-
spline wavelet transform of degree 1.0, two iterations. In
Table 3, we listed the threshold values of the various methods.
Again, the FDR and recursive testing strategies allow for the
lowest threshold values. In Figure 12, we show the parameter
map (slice containing the auditory cortex) for the various
methods. FDR and recursive testing, in Figure 12(b) and (c),
are more sensitive than the coefficient-wise t-test and the spa-
tio-wavelet approach, in Figure 12(a) and (d). 

The statistical parameter maps are shown in Figure 13. The
grayscale background comes from one volume of the original
time series. The detected activations are shown in color again.

Fig. 11. The statistical parameter map for the software phantom study: (a)
voxel-wise spatial t-test, (b) spatio-wavelet approach, (c) SPM (FWHM = 1.5
voxel), and (d) SPM (FWHM = 3.0 voxel).

(a) (b)

(c) (d)

Table 3. An overview of the threshold values for the
various methods ((ααα = 5%) in the block-based experiment.

Spatial Threshold Wavelet Threshold

Spatial t-test 5.24 —

Coefficient-wise t-test — 5.24

FDR* — 4.00 (109)

Recursive* — 3.82 (111)

Spatio-wavelet 0.18 5.53

The methods indicated by * require a data-dependent threshold. For those, we
listed the results for the orthogonal b-spline wavelet transform (degree 1, two
iterations) and indicated the total number of retained wavelet coefficients in
parentheses.

In a parametric approach, the temporal

behavior of a voxel can be explained

by a linear model that is then fitted to the data.
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The results of the spatio-wavelet
approach can be compared against those
obtained by SPM with FWHM = 6 mm.
The sensitivity of the wavelet-based
approach seems, given the strong Type I
error control, a promising result for
future research. 

Conclusions
Many wavelet-based techniques have
been proposed for the analysis of fMRI
data. In this article, we gave an
overview with unification of the most
important techniques that deploy the
wavelet transform in the spatial domain.
We also included experimental results
to illustrate the potential of these tech-
niques. Applying the wavelet transform
has two main advantages. First, we
obtain a sparse representation of the
parameter map, which improves the
sensitivity for detecting signal burried
in heavy noise. Second, wavelets form a
basis, thus the transformation is nonre-
dundant by default. Nonredundancy is a
beneficial property to limit the number
of tests in the wavelet domain. 

Further improvements on wavelet-
based techniques can still be expected.
For example, recent multidimensional
but nonseparable wavelet transforms
[74] are potentially interesting to

process neuroimaging data. Another important
question is how to relax the shift-invariance of the
transform (e.g., by deploying the redundant trans-
form) without jeopardizing the statistical signifi-
cance [75]. Finally, an interesting future research
topic is functional connectivity, where wavelets
could be deployed jointly in the spatial and tem-
poral domain; e.g., for nonparametric tests using
bootstrapping in the wavelet domain [76].
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Fig. 12. Resulting parameter map for the block-based experiment using wavelet-
based methods (orthogonal B-spline wavelet transform, degree 1, two iterations): (a)
coefficient-wise t-test; (b) FDR; (c) recursive testing; and (d) spatio-wavelet
approach.
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Fig. 13. Statistical parameter map for the block-based experiment: (a)
spatio-wavelet approach and (b) SPM (FWHM = 6 mm).

(a) (b)

Wavelets were primarily applied in

medical imaging for denoising

in the context of MRI.



IEEE ENGINEERING IN MEDICINE AND BIOLOGY  MAGAZINE MARCH/APRIL 2006 77

Dimitri Van De Ville received the engi-
neering and Ph.D. degrees in computer sci-
ence from Ghent University, Belgium, in
July 1998 and January 2002, respectively.
While studying for the Ph.D., he was a
research assistant with the Fund for
Scientific Research, Flanders, Belgium, at
the Medical Image and Signal Processing

Group within the Department of Electronics and Information
Systems. He currently is with the Biomedical Imaging Group,
Ecole Polytechnique Fédérale de Lausanne (EPFL), and the
Center for Biomedical Imaging (CIBM). His current research
interests include spline and wavelet theory and biomedical sig-
nal and imaging applications such as fMRI and microscopy
imaging. Since 2002, he is editor of the Wavelet Digest, the
electronic newsletter of the wavelet community. Van De Ville
is associate editor of IEEE Signal Processing Letters. 

Thierry Blu received the Diplme d’ing-
nieur from Ecole Polytechnique, France, in
1986, and from Télécom Paris (ENST),
France, in 1988. In 1996, he obtained the
Ph.D. in electrical engineering from ENST
for a study on iterated rational filterbanks,
applied to wideband audio coding. He is
with the Biomedical Imaging Group at the

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland, on leave from France Télécom National Center
for Telecommunications Studies (CNET), Issyles-
Moulineaux, France. He is currently serving as an associate
editor for IEEE Transactions on Image Processing. His
research interests include (multi)wavelets, multiresolution
analysis, multirate filterbanks, approximation and sampling
theory, psychoacoustics, optics, and wave propagation.

Michael Unser received the M.S. (summa
cum laude) and Ph.D. degrees in electrical
engineering in 1981 and 1984, respectively,
from the Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland. From
1985–1997, he worked as a scientist with
the National Institutes of Health, Bethesda,
Maryland. He is now a professor and direc-

tor of the Biomedical Imaging Group at the EPFL. His main
research area is biomedical image processing. He has a strong
interest in sampling theories, multiresolution algorithms,
wavelets, and the use of splines for image processing. He is
the author of over 120 published journal papers in these areas.
He is the associate editor-in-chief of IEEE Transactions on
Medical Imaging and the editor-in-chief of the Wavelet Digest,
the electronic newsletter of the wavelet community. He has
acted as associate editor or member of the editorial board for
eight other international journals, including IEEE Signal
Processing Magazine, IEEE Transactions on Image
Processing (1992–1995), and IEEE Signal Processing Letters
(1994–1998). He serves as regular chair for SPIE’s conference
on wavelets, which has been held annually since 1993. He was
general cochair for the first IEEE International Symposium on
Biomedical Imaging (ISBI’2002), which was held 7–10 July
2002 in Washington, DC. He also chairs the newly created
technical committee of the IEEE-Signal Processing Society on
Bio Imaging and Signal Processing (BISP). He received the

1995 and 2003 Best Paper Awards and the 2000 Magazine
Award from the IEEE Signal Processing Society.

Address for Correspondence: Dimitri Van De Ville,
Biomedical Imaging Group, Ecole Polytechnique Fédérale de
Lausanne, Biomedical Imaging Group, BM4.140, Station 17,
1015 Lausanne, Switzerland. Phone: +44 21 6935142. Fax:
+44 21 6933701. E-mail: dimitri.vandeville@epfl.ch.

References
[1] S. Ogawa and T.M. Lee, “Magnetic resonance imaging of blood vessels at high
fields: In vivo and in vitro measurements and image simulation,” Magn. Reson.
Med., vol. 16, no.1, pp. 9–18, 1990.
[2] N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann,
“Neurophysiological investigation of the basis of the fMRI signal,” Nature, 
vol. 412, no. 6843, pp. 150–157, 2001.
[3] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet
decomposition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no.7, pp.
674–693, 1989.
[4] I. Daubechies, “The wavelet transform, time-frequency localization and signal
analysis,” IEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 961–1005, 1990.
[5] M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,”
Proc. IEEE, vol. 84, no. 4, pp. 626–638, 1996.
[6] A. Laine, “Wavelets in temporal and spatial processing of biomedical images,”
Annu. Rev. Biomed. Eng., vol. 2, pp. 511–550, 2000.
[7] E. Bullmore, J. Fadili, M. Breakspear, R. Salvador, J. Suckling, and 
M. Brammer, “Wavelets and statistical analysis of functional magnetic resonance
images of the human brain,” Statistical Methods Med. Res. , vol. 12, 
no. 5, pp. 375–399, 2003.
[8] E. Bullmore, J. Fadili, V. Maxim, L. Sendur, B. Whitcher, J. Suckling, 
M. Brammer, and M. Breakspear, “Wavelets and functional magnetic resonance
imaging of the human brain,” NeuroImage, vol. 23, suppl. 1, pp. S234–S249, 2004.
[9] U.E. Ruttimann, N.F. Ramsey, D.W. Hommer, P. Thévenaz, L. Chulhee, and
M. Unser, “Analysis of functional magnetic resonance images by wavelet decom-
position,” in Proc. IEEE Int. Conf. Image Processing, Oct. 1995, vol. 1, pp.
633–636.
[10] U. Ruttimann, M. Unser, R. Rawlings, D. Rio, N. Ramsey, V. Mattay, D.
Hommer, J. Frank, and D. Weinberger, “Statistical analysis of functional MRI data
in the wavelet domain,” IEEE Trans. Med. Imag. , vol. 17, no. 2,
pp. 142–154, 1998.
[11] M. Hilton, T. Ogden, D. Hattery, G. Eden, and B. Jawerth, “Wavelets in biol-
ogy and medicine,” in Wavelet Denoising of Functional MRI Data. Boca Raton,
FL: CRC Press, 1996, pp. 93–114.
[12] J. Raz and B.I. Turetsky, “Wavelet ANOVA and fMRI,” in Proc. SPIE Conf.
Mathematical Imaging: Wavelet Applications Signal Image Processing VII, San
Diego, CA, 1999, vol. 3813, pp. 561–570.
[13] J. Raz, “FDR wavelet shrinkage estimators for inhomogeneous Poisson
processed images,” in Proc. SPIE Conf. Wavelets Applications Signal Image
Processing VIII, San Diego (CA), USA, 2000, to be published.
[14] S.M. LaConte, S.-C. Ngan, and X. Hu, “Wavelet transform-based Wiener fil-
tering of event-related fMRI data,” Magn. Reson. Med., vol. 44, no. 5,
pp. 746–757, 2000.
[15] M.E. Alexander, R. Baumgartner, C. Windischberger, E. Moser, and R.L.
Somorjai, “Wavelet domain de-noising of time-courses in MR image sequences,”
Magn. Reson. Imag., vol. 18, no. 9, pp. 1129–1134, 2000.
[16] E. Bullmore, C. Long, J. Suckling, J. Fadili, G. Calvert, F. Zelaya, 
T. Carpenter, and M. Brammer, “Colored noise and computational inference in
neurophysiological time series analysis: Resampling methods in time and wavelet
domains,” Hum. Brain Map., vol. 12, no. 2, pp. 61–78, 2001.
[17] E.T. Bullmore, J. Fadili, M. Breakspear, R. Salvador, J. Suckling, and M.J.
Brammer, “Wavelets and statistical analysis of functional magnetic resonance
images of the human brain,” Statistical Methods Med. Res., vol. 12, no. 5,
pp. 375–399, 2003.
[18] M. Breakspear, M.J. Brammer, and P.A. Robinson, “Construction of multi-
variate surrogate sets from nonlinear data using the wavelet transform,” Physica D,
vol. 182, no. 1, pp. 1–22, 2003.
[19] O. Friman and C.-F. Westin, “Resampling of fMRI time series,” NeuroImage,
vol. 25, no. 3, pp. 859–867, Apr. 2005. 
[20] V. von Tscharner and K.R. Thulborn, “Specified-resolution wavelet analysis
of activation patterns from BOLD contrast fMRI,” IEEE Trans. Med. Imag., vol.
20, no. 8, pp. 704–714, Aug. 2001. 
[21] M.J. Fadili and E. Bullmore, “Wavelet-generalised least squares: a new BLU
estimator of linear regression models with 1/f errors,” NeuroImage, vol. 15, no. 1,
pp. 217–232, 2002.
[22] G.-A. Hossein-Zadeh, H. Soltanian-Zadeh, and B.A. Ardekani,
“Multiresolution fMRI activation detection using translation invariant wavelet
transform and statistical analysis based on resampling,” IEEE Trans. Med. Imag.,
vol. 22, no. 3, pp. 302–314, Mar. 2003.
[23] F.G. Meyer, “Wavelet-based estimation of a semiparametric generalized lin-
ear model of fMRI time-series,” IEEE Trans. Med. Imag., vol. 22, no. 3, pp.
315–322, Mar. 2003.



78

[24] Y. Shimizu, M. Barth, C. Windischberger, E. Moser, and S. Thurner,
“Wavelet-based multifractal analysis of fMRI time series,” NeuroImage, vol. 22,
no. 3, pp. 1195–1202, July 2004.

[25] V. Maxim, L. Sendur, J. Fadili, J. Suckling, R. Gould, R. Howard, and E.
Bullmore, “Fractional Gaussian noise, functional MRI and Alzheimer’s disease,”
NeuroImage, vol. 25, no. 1, pp. 141–158, Mar. 2005.

[26] B.R. Logan and D.B. Rowe, “An evaluation of thresholding techniques in
fMRI analysis,” NeuroImage, vol. 22, no. 1, pp. 95–108, 2004.

[27] K.J. Friston, A.P. Holmes, K.J. Worsley, J.P. Poline, C.D. Frith, and R.S.J.
Frackowiak, “Statistical parametric maps in functional imaging: A general linear
approach,” Hum. Brain Map., vol. 2, no. 4, pp. 189–210, 1995.

[28] R. Frackowiak, K. Friston, C. Frith, R. Dolan, and J. Mazziotta, Human Brain
Function. New York: Academic, 1997.

[29] K. Worsley, S. Marrett, P. Neelin, and A. Evans, “Searching scale space for
activation in PET images,” Hum. Brain Map., vol. 4, no. 1, pp. 74–90, 1996.

[30] J. Poline, K. Worsley, A. Evans, and K. Friston, “Combining spatial extent
and peak intensity to test for activations in functional imaging,” NeuroImage, 
vol. 5, no. 2, pp. 83–96, 1997.

[31] J.B. Weaver, X. Yansun, D.M. Healy, and L.D. Cromwell, “Filtering noise
from images with wavelet transforms,” Magn. Reson. Med., vol. 21, no. 2, pp.
288–295, 1991.

[32] D.L. Donoho and I.M. Johnstone, “Ideal spatial adaptation via wavelet shrink-
age,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[33] D.L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inform.
Theory, vol. 41, no. 3, pp. 613–627, Mar. 1995.

[34] J.C. Wood and K.M. Johnson, “Wavelet packet denoising of magnetic reso-
nance images: Importance of Rician noise at low SNR,” Magn. Reson. Med., vol.
41, no. 3, pp. 631–636, 1999.

[35] M.E. Alexander, R. Baumgartner, A.R. Summers, C. Windischberger, 
M. Klarhoefer, E. Moser, and R.L. Somorjai, “A wavelet-based method for
improving signal-to-noise ratio and contrast in MR images,” Magn. Reson. Imag.,
vol. 18, no. 2, pp. 169–180, 2000.

[36] S. Zaroubi and G. Goelman, “Complex denoising of MR data via wavelet
analysis: Application for functional MRI,” Magn. Reson. Imag., vol. 18, no. 1, pp.
59–58, 2000.

[37] A.M. Wink and J.B.T.M. Roerdink, “Denoising functional MR images: A
comparison of wavelet denoising and Gaussian smoothing,” IEEE Trans. Med.
Imag., vol. 23, no. 3, pp. 374–387, June 2004.

[38] J. Aston, R.N. Gunn, R. Hinz, and F. Turkheimer, “Wavelet variance compo-
nents in image space for spatio-temporal neuroimaging data,” NeuroImage, 
vol. 25, no. 1, pp. 159–168, Mar. 2005. 

[39] C. Long, E.N. Brown, D. Manoach, and V. Solo, “Spatiotemporal wavelet
analysis for functional MRI,” NeuroImage, vol. 23, no. 2, pp. 500–516, 2004. 

[40] M. Breakspear, M.J. Brammer, E.T. Bullmore, P. Das, and L.M. Williams,
“Spatiotemporal wavelet resampling for functional neuroimaging data,” Hum.
Brain Map., vol. 23, no. 1, pp. 1–25, 2004.

[41] B. Whitcher, “Wavelet-based bootstrapping of spatial patterns on a finite lat-
tice,” Computational Statist. Data Anal., to be published. 

[42] M. Brammer, “Multidimensional wavelet analysis of functional magnetic res-
onance images,” Hum. Brain Map., vol. 6, no. 5-6, pp. 378–382, 1998.

[43] F.E. Turkheimer, M. Brett, J.A.D. Aston, A.P. Leff, P.A. Sargent, R.J. Wise,
P.M. Grasby, and V.J. Cunningham, “Statistical modelling of positron emission
tomography images in wavelet space,” J. Cerebral Blood Flow Metabolism, vol.
20, no. 11, pp. 1610–1618, 2000.

[44] M. Desco, J. Hernandez, A. Santos, and M. Brammer, “Multiresolution analy-
sis in fMRI: Sensitivity and specificity in the detection of brain activation,” Hum.
Brain Map., vol. 14, no. 1, pp. 16–27, 2001.

[45] K. Mueller, G. Lohmann, S. Zysset, and Y. von Carmon, “Wavelet statistics
of functional MRI data and the general linear model,” J. Magn. Reson. Imag., vol.
57, no. 1, pp. 20–30, 2003.

[46] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing,” J. Royal Statist. Soc. B, pp.
289–300, 1995.

[47] F. Abramovich and Y. Benjamini, “Wavelets and statistics,” in Thresholding
of Wavelet Coefficients as Multiple Hypotheses Testing Procedure. New York: 
Springer-Verlag, 1995, pp. 5–14.

[48] F. Abramovich and Y. Benjamini, “Adaptive thresholding of wavelet coeffi-
cients,” Computational Statist. Data Anal., vol. 22, no. 4, pp. 351–361, 1996.

[49] C.R. Genovese, N.A. Lazar, and T. Nichols, “Thresholding of statistical maps
in functional neuroimaging using the false discovery rate,” NeuroImage, vol. 15,
no. 4, pp. 772–786, 2002.

[50] M.J. Fadili and E.T. Bullmore, “A comparative evaluation of wavelet-based

methods for multiple hypothesis testing of brain activation maps,” NeuroImage,
vol. 23, no. 3, pp. 1112–1128, 2004.

[51] Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in
multiple testing under dependency,” Ann. Statist., vol. 29, no. 4, pp. 1165–1188,
2001.

[52] R.T. Ogden and E. Parzen, “Change-point approach to data analytic wavelet
thresholding,” Statist. Comput., vol. 6, no. 2, pp. 93–99, 1996.

[53] X. Shen, H.-C. Huang, and N. Cressie, “Nonparametric hypothesis testing for
a spatial signal,” J. Amer. Statistical Assoc., vol. 97, no. 460, pp. 1122–1140, 2002.

[54] M. Pavlicová, N. Cressie, and T. Santner, “Using enhanced FDR for simulta-
neous thresholding of fMRI data,” Proc. Amer. Statist. Assoc., Biometrics Section,
pp. 2653–2658, 2002.

[55] B. Vidakovic, “Nonlinear wavelet shrinkage with Bayes rule and Bayes
factors,” J. Amer. Statist. Assoc., vol. 93, no. 441, pp. 173–179, 1998.

[56] F. Abramovich, T. Sapatinas, and B. Silverman, “Wavelet thresholding via a
Bayesian approach,” J. Royal Statistical Soc. B, vol. 60, pp. 725–749, 1998.

[57] J.M. Fadili and E.T. Bullmore, “Wavelet-based approaches for multiple
hypothesis testing in activation mapping of functional magnetic resonance images
of the human brain,” in Wavelets: Applications in Signal and Image Processing X,
M. Unser, A. Aldroubi, and A. F. Laine, Eds. Bellingham, WA: SPIE, 2003, vol.
5207, pp. 405–416.

[58] J. Berger, B. Boukai, and Y. Wang, “Unified frequentist and Bayesian testing
of a precise hypothesis,” Statistical Sci., vol. 12, no. 3, pp. 133–160, 1996.

[59] J.D. Storey, “A direct approach to false discovery rates,” J. Royal Statistical
Soc. B, vol. 64, no. 3, pp. 479–498, 2002.

[60] M.S. Crouse, R.D. Nowak, and R.G. Baraniuk, “Wavelet-based statistical sig-
nal processing using hidden Markov models,” IEEE Trans. Signal Processing, vol.
46, no. 4, pp. 886–902, Apr. 1998.

[61] J.D. Storey, “The positive false discovery rate: A Bayesian interpretation and
the Q-value,” Ann. Statist., vol. 31, no. 6, pp. 2013–2035, 2003.

[62] Z. Fu, Y. Hui, and Z.-P. Liang, “Joint spatiotemporal statistical analysis of
functional MRI data,” in Proc. ICIP, 1998, pp. 709–713.

[63] D. Van De Ville, T. Blu, and M. Unser, “Integrated wavelet processing and
spatial statistical testing of fMRI data,” NeuroImage , vol. 23, no. 4, 
pp. 1472–1485, Dec. 2004.

[64] K.J. Worsley and K.J. Friston, “Analysis of fMRI time-series revisited—
again,” NeuroImage, vol. 2, no. 3, pp. 173–181, 1995.

[65] K.J. Friston, O. Josephs, E. Zarahn, A.P. Holmes, and J.-B. Poline, “To
smooth or not to smooth? Bias and efficiency in fMRI time series analysis,”
NeuroImage, vol. 12, no. 2, pp. 196–208, 2000.

[66] K.J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ashburner,
“Classical and Bayesian inference in neuroimaging: Theory,” NeuroImage, vol. 16,
no. 2, pp. 465–483, 2002.

[67] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet
transforms,” Signal Process., vol. 30, no. 2, pp. 141–162, 1993.

[68] D. Van De Ville, T. Blu, and M. Unser, “Wavelets versus resels in the context
of fMRI: Establishing the link with SPM,” in Proc. SPIE’s Symp. Optical Science
Technology: Wavelets X, San Diego CA, U.S.A., Aug. 2003, vol. 5207, pp. 417-
425.

[69] M. Unser and T. Blu, “Fractional splines and wavelets,” SIAM Rev., vol. 42,
no. 1, pp. 43–67, 2000.

[70] T. Blu and M. Unser, “A complete family of scaling functions: The (α, τ )-
fractional splines,” in Proc. 28th IEEE Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP’03), Hong Kong, Apr. 2003, vol. 6, pp. 421-424.
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