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Integrated wavelet processing and spatial statistical testing of

fMRI data
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We introduce an integrated framework for detecting brain activity

from fMRI data, which is based on a spatial discrete wavelet

transform. Unlike the standard wavelet-based approach for fMRI

analysis, we apply the suitable statistical test procedure in the spatial

domain. For a desired significance level, this scheme has one remaining

degree of freedom, characterizing the wavelet processing, which is

optimized according to the principle of minimal approximation error.

This allows us to determine the threshold values in a way that does not

depend on data. While developing our framework, we make only

conservative assumptions. Consequently, the detection of activation is

based on strong evidence. We have implemented this framework as a

toolbox (WSPM) for the SPM2 software, taking advantage of multiple

options and functions of SPM such as the setup of the linear model and

the use of the hemodynamic response function. We show by

experimental results that our method is able to detect activation

patterns; the results are comparable to those obtained by SPM even

though statistical assumptions are more conservative.
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Introduction

Functional magnetic resonance imaging (fMRI) has become a

key modality to perform non-invasive studies of brain. Its working

principle is based on interaction between neuronal activity and

physiology, such as blood oxygenation and blood flow. Through a

variation of the magnetic field uniformity, these interactions induce

a weak and noisy T2*-contrast signal (Ogawa et al., 1993).

The most widely deployed and recognized method and

associated software package for performing the analysis of fMRI

data is Statistical Parametric Mapping (SPM) (Frackowiak et al.,
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1997; Friston et al., 1995). SPM is a parametric hypothesis-driven

approach: it performs a statistical test on the fitted parameters of a

linear model (LM) and detects activation at the spatial locations

where the non-activation hypothesis is rejected. One of SPM’s

main characteristics is the application of a fixed Gaussian prefilter.

The rationale of the Gaussian prefilter is twofold. First, it improves

the signal-to-noise ratio (SNR) as indicated by the matched-filter

theorem (Worsley et al., 1996). Second, it controls the spatial

smoothness of the data which is used to correct for multiple testing

by advanced methods based on continuous Gaussian random fields

and Euler characteristics (Poline et al., 1997). However, Gaussian-

shaped activation patterns are observed rather rarely in practice.

While researchers have also proposed the use of more general

filters (Kruggel et al., 1999; Shafie et al., 2003), the use of fixed

Gaussian smoothing is still the most-commonly applied method for

fMRI analysis.

As an alternative approach, some researchers have advocated

the use of a spatial wavelet transform instead of Gaussian

prefiltering (Ruttimann et al., 1998; Turkheimer et al., 2000). This

method exploits the sparsity of the data representation in the

wavelet domain to improve the detection sensitivity. In particular,

the cluster of voxels that makes up an activated region tends to be

spatially correlated and can be efficiently encoded using only a few

wavelet coefficients. Such a sparse representation increases the

SNR, since the noise remains evenly distributed in the wavelet

domain. Therefore, a coefficient-wise statistical t test provides a

much higher sensitivity than a voxel-wise approach in the spatial

domain, even when multiple testing is compensated by a

conservative Bonferroni correction. After the detection phase in

the wavelet domain, an inverse wavelet transform is applied to

reconstruct an activation map from the coefficients that are

designated as significant. While this reconstructed map is very

useful for visualization purposes, it does not have a direct statistical

interpretation, that is, the t values are computed in the wavelet

domain and there is no straightforward way to map the statistics to

the spatial domain. Some proposed solutions include the applica-

tion of an ad-hoc threshold to the reconstructed map (e.g., a

percentage of the maximal signal level); re-testing in the spatial

domain (without taking into account the effect of the initial test in
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the wavelet domain) (Fu et al., 1998); recursively reconstructing

the activity map by controlling the false discovery rate (Bullmore

et al., 2003; Genovese et al., 2002). Wavelets have also been

applied to fMRI analysis as a pure spatial denoising preprocessing

step (Hilton et al., 1996; Wink and Roerdink, 2004). Another

important issue is to deal with the temporal correlation of fMRI

data (Woolrich et al., 2001), for which wavelet-based methods

have also been proposed (Bullmore et al., 2001; Fadili and

Bullmore, 2001). The combination of the proposed method with

temporal treatments will be considered in future work.

The previous spatial wavelet-based approach faces a funda-

mental problem, that is, approximation and detection are performed

at once in the wavelet domain. Therefore, the detected parameter

map problematically remains in the wavelet domain, which

complicates the spatial interpretation. In this paper, we propose a

new framework that is based on two main principles:

(1) Clear separation of the approximation and detection proce-

dures: the approximation procedure is carried out in the

wavelet domain, while the statistical testing is done in the

spatial domain. The test procedure properly takes into

account the effect of the approximation step.

(2) Most faithful reconstruction: after statistical testing in the

spatial domain, only a limited number of voxels are detected.

Thus, we propose to optimize the wavelet processing so as to

minimize the difference between the detected and unpro-

cessed parameter map. Imposing this constraint allows us to

uniquely determine the optimal threshold values that charac-

terize the approximation and detection procedures, for a given

desired significance level. It turns out that this optimum does

not depend on the data.

The key to the proposed framework is that it is completely

integrated: even though wavelet-domain processing and spatial

statistical testing are separate, we take into account their mutual

influence. Moreover, the detection procedure of the framework

rests on conservative assumptions that comply with a worst-case

scenario. Therefore, the framework provides a strong type-I error

control, that is, the rejection of the hypothesis H0 for no activity is

evidence for an activated region since false positives are very well

controlled.

The new framework is quite general and can be applied to a

wide variety of wavelet-like transforms. In this paper, we restrict

ourselves to a proof-of-concept and we demonstrate its usefulness

by the way of experiments that involve the well-known B-spline

wavelet transform. Despite the conservative assumptions, we find

activation maps comparable to those of SPM. The proposed

framework has been integrated into SPM2 as a bWavelet toolboxQ,
allowing the user to have the usual SPM-based analysis and the

joint spatio-wavelet analysis side by side.

The paper is organized as follows: In Backgound, we briefly

review the standard wavelet-based method. Next, in Methods, we

introduce the new framework. Experimental results include a null

data set experiment, a software phantom study, and a block-based

experiment.
Background

We start this section with a brief review of the wavelet

transform. We then present the standard wavelet-based method for
fMRI analysis, extended with the linear model (LM) to easily setup

experiments and incorporate the effect of the hemodynamic

response function (HRF) (Friston et al., 1995; Mueller et al.,

2003; Van De Ville et al., 2003). The statistical inference is

performed by a coefficient-wise t test (Feilner et al., 2000;

Turkheimer et al., 2000).

The discrete wavelet transform

The discrete wavelet transform (DWT) is a popular tool for

multi-resolution analysis (Mallat (1989, 1998)). Its two-channel

filterbank implementation is well known and has found its way into

a wide range of applications. To provide the best insight, we first

formulate the transform in the continuous domain by decomposing

a function into a sum of shifted and scaled continuously defined

wavelets.

Let us consider a 1D continuously defined function v(x), which is

known by its sample values v[n], n a Z. We start by the

representation of this function in a shift-invariant signal space

V0 uð Þ ¼ spannaZ
u x� nð Þf g. For the decomposition to be numeri-

cally stable and unambiguous, the function u needs to generate a

Riesz basis. So we have

v xð Þ ¼
X

c0 k½ �u x� kð Þ; ð1Þ

k

where the coefficients c0[k] can be chosen such that v(n) =

v[n]. Performing one stage of the wavelet transform

consists of nothing else than splitting the signal space

V0 uð Þ into V1 uð Þ ¼ spann u x=2� nð Þf g, characterized by dilated

basis functions on a coarser grid, and its orthogonal complement

in V0;W1 wð Þ ¼ spann w x=2� nð Þf g, characterized by the wave-

let w. Consequently, the function of Eq. (1) can be decomposed

as

v xð Þ ¼
ffiffiffi
2

p X
k

c1 k½ �u x=2� kð Þ þ
ffiffiffi
2

p X
k

w1 k½ �w x=2� kð Þ; ð2Þ

where the coefficients c1[k] and w1[k] fully describe the orthogonal

projection of v(x) into the spaces V1 and W1, respectively.

Specifically, we obtain c1[k] as hv(d ), ũ(d/2�k)i, where ũ denotes

the dual function of u, that is, the unique function of V0 such that

hũ (d � k), u (d � l)i = dk� l. Similarly, the bdetail coefficients Q
w1[k] are obtained using the dual wavelet w̃(d /2� k). Fig. 1a shows

a flowchart of a one-level decomposition. Using the same principle,

the signal of Eq. (2) can be decomposed further, Jw times, as in

v xð Þ ¼ 2Jw=2
X
k

cJw k½ �u x=2Jw � k
� �

þ
XJw
j¼ l

2j=2
X
k

wj k½ �w x=2j � k
� �

: ð3Þ

We now introduce a shorthand notation for a wavelet

decomposition such as Eq. (3):

v xð Þ ¼
X
k

wkwk xð Þ ; ð4Þ

where wk and its index k runs over all scales of the decomposition,

while the functions wk corresponds to the associated scaled, shifted,

and dilated versions of the scaling function or of the wavelet.

In practice, the DWT is implemented efficiently through an

iterated filterbank, which directly operates on the discrete



Fig. 1. The discrete wavelet transform for one iteration. (a) The continuous-domain representation. (b) The filterbank representation.
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coefficients cj[k]. The filters are derived from the dual scaling

function and wavelet. For example, the scaling coefficients c1[k]

after one iteration can be found by filtering and subsampling with

the scaling filter h̃ at the analysis side:

c1 k½ � ¼ c04h̃h
� �

2k½ �: ð5Þ

Usually, we characterize the filters in the z domain; for

example, H̃(z) =
P

k h̃ [k]z�k. In Fig. 1b, we show the flowchart

of the filterbank representation for one iteration of the DWT.

The DWT is non-redundant, that is, the number of coefficients

is always equal to the initial number of samples. The wavelet

transform of piecewise smooth signals tends to be quite sparse, a

property that is very useful for many applications.

The decomposition above is easily extended to the multi-

dimensional case by using tensor-product basis functions, that is,

the 3D scaling function u(x) corresponds to u(x1) u(x2) u(x3).

Specifically, we have one scaling function and 7 wavelets, while

the overall subsampling ratio at each iteration is 8.

Standard wavelet-based statistical analysis of fMRI data

An fMRI data set is denoted as v(t)[n], n a Z
3
; t a Z , where

n and t = 1,. . .,Nt are the 3D-spatial and temporal indices,

respectively. The non-redundant spatial 3D DWT of a volume,

v(t)[n], yields the coefficients w(t)
k, where the index k addresses all

subbands and orientations. As in Eq. (4), we compactly denote the

wavelet decomposition asX

v tð Þ n½ � ¼

k

w
tð Þ
k wk nð Þ: ð6Þ

Now we introduce the time-series vector of length Nt for a

wavelet coefficient, that is, wk = [wk
(1) . . .wk

(N t) ]T. The temporal

behavior of the wavelet coefficient is described by a LM, which

represent the vector wk as
1

wk ¼ Xyk þ ek ; ð7Þ

where X is the Nt  L design matrix, and ek is the residual

error. The matrix X contains the desired signal models. For

example, in the case of a simple block-based experiment, X
1 Since the DWT is a spatial linear operator and the LM analysis a

temporal linear operator, it is equivalent to apply the LM to v(t)[n] or to its

wavelet coefficients wk
(t). The link between the respective parameters y[n]

and yk is simply the DWT.
contains two columns: one for the on-off stimulus and one for

the background. Usually, one convolves the stimulus with a

model for the HRF. Under the assumption of independently and

identically Gaussian distributed residual error ek, the optimal

unbiased estimate of yk is the least squares estimate given by ŷk =

(XTX)�1XTwk. The residual error of this estimate is obtained as

êk = wk � Xŷk. Next, the information of interest is extracted

from ŷk by a contrast vector c (e.g., c = [1 0]T for our simple

example). At this stage, we obtain two scalar values for the kth

wavelet coefficient:

gk ¼ cTŷyk ; ð8Þ

s2k ¼ êeTk êekc
T XTX
� ��1

c; ð9Þ

where gk and sk
2 follow a Gaussian and a v2 distribution,

respectively. The hypothesis to test is whether the coefficient k is

activated and thus has a non-zero mean:

H0 : lk ¼ 0; ð10Þ

H1 : lk p 0: ð11Þ

The t value for each wavelet coefficient can be found as

tk ¼
gkffiffiffiffiffiffiffiffiffi
s2k=J

q ; with J ¼ Nt � rank Xð Þ; ð12Þ

which can be tested against a threshold sw. This value sw is

determined by the desired significance level is a (e.g., 5%) for

a two-sided t test (since both positive and negative wavelet

coefficients can contribute to an increased signal in the spatial

domain). The significance level a needs to be corrected for

multiple hypothesis testing. One typically applies a conservative

Bonferroni correction, which reduces the significance level to

aB = a/Nc, where Nc is the number of statistical tests. The

value Nc can be chosen as the number of intracranial wavelet

coefficients, which corresponds closely to the number of

intracranial voxels.

The wavelet coefficients gk that survived the statistical test |tk| N

sw can be reconstructed as

r n½ � ¼
X
k

H jtk j � sw
� �

gkwk nð Þ; ð13Þ
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where H(t) is the Heaviside step function defined as

H tð Þ ¼ 0; when t b 0;
1; otherwise:

�
ð14Þ

In other words, the term H(|tk|�sw) in Eq. (13) acts as an

indicator function which is equal to 1 for |tk| z sw and 0 otherwise.

Depending on the support of the wavelet wk, which can be infinite,

the reconstructed volume r[n] will contain many non-zero voxels.

Often, an ad-hoc spatial threshold is applied to obtain an

bacceptableQ activation map. However, such a threshold does not

take into account the variability of the underlying voxels as

compared to the t value in the wavelet domain. It is therefore not

possible to associate a clear statistical meaning to the reconstructed

volume r[n]; this constitutes the main disadvantage of the wavelet-

based approach.

Fig. 2a shows schematically the standard wavelet procedure.

The desired significance level aB directly determines the threshold

value sw for the t test in the wavelet domain. The detection

procedure in the wavelet domain is statistically sound and

quantitative; unfortunately, the transposition of the results back

into the spatial domain is qualitative only.

The non-redundancy of the DWT is an important property for

the multiple testing correction. Indeed, a redundant transform

would require the use of a higher threshold value and would

therefore reduce the sensitivity of the approach.
Fig. 2. (a) The standard wavelet-based approach. The desired significance level

approach of the present paper is to reinterpret the wavelet threshold as a general al

spatial domain, taking into account the wavelet processing.
Method: integrated wavelet processing and spatial statistical

testing

Main idea

The major advantage of the wavelet-based method is its

apparent high sensitivity, even though the conservative Bonferroni

correction for multiple testing is used. The underlying reason is the

sparsity property of the wavelet transform. In other words, the

activation patterns exhibit a local correlation, which is compactly

encoded by the wavelet basis functions. Therefore, thresholding

the t values in the wavelet domain is an efficient way to improve

the SNR without removing any information. It follows that this

approach has the potential to detect activations with a high spatial

resolution.

Here, we also propose to rely on thresholding in the wavelet

domain. However, this procedure is considered as a pre-

processing step (parametrized by the wavelet threshold), and

the statistical test is ultimately performed in the spatial domain,

taking into account the processing that has been done before.

Fig. 2b summarizes this basic philosophy. The threshold sw is

still applied to the t values in the wavelet domain but is treated

as a general parameter of a nonlinear algorithm. The final

testing in the spatial domain is implemented via a threshold ss.
Intuitively, it is clear that there is an infinity of possible

combinations (sw, ss) that will establish the same desired

significance level aB. We introduce the principle of bminimal
aB is fed to the statistical inference stage in the wavelet domain. (b) The

gorithm parameter. After reconstruction, a statistical test is performed in the



Fig. 3. The truncated Gaussian law pn(n).
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approximation errorQ between the unprocessed data (after the

LM) and the final result. Our method does not require any

additional hypotheses. In particular, the wavelet coefficients do

not need to be decorrelated.

The proposed framework consists of two major parts. The

first one links the processing of the t values in the wavelet

domain, which is parameterized by a threshold sw, to the

statistical hypothesis testing in the spatial domain, characterized

by a threshold ss. Second, we develop the principle of

minimizing the approximation error between the data after LM

fitting and the result after applying both thresholds. It is this

second part of our framework that will provide the right way to

determine the optimal values of the wavelet and spatial

thresholds. These optimal thresholds can be computed off-line

and are data-independent; they are a function of the desired

significance level and the number of intracranial voxels.

Simplified case—True rk are known

To facilitate the exposition of our method, we first consider

the case where Nt is sufficiently large, so that the normalizing

term in (12), sk/
ffiffiffi
J

p
, is essentially equivalent to rk, the standard

deviation of gk. In this limiting case, the t values tk are equivalent

to z scores and are normally distributed. Therefore, we denote gk/

rk as zk.

Part I: effect of wavelet processing

We follow the standard procedure of Background up to the

calculation of the t value in the wavelet domain, which is this

time equivalent to a z score under the assumption rk = sk/
ffiffiffi
J

p
.

Similarly, we apply a threshold to the values gk to obtain

H(|zk|�sw) gk. However, we ignore the interpretation as a

statistical test. Our goal is to derive a spatially varying threshold

q[n] such that, under the null hypothesis, the desired

significance level aB is not exceeded by the probability of the

reconstruction of the processed wavelet coefficients that

contribute to the value of the voxel n:

P
X
k

H jzk j � swð Þgkwk nð Þ z q n½ �
#
V aB:

"
ð15Þ

For this purpose, we will make use of Theorem 1 in Appendix

A, which provides an upper probability bound for a convex sum of

random variables. Therefore, we take a closer look at the

reconstructed volume and manipulate it to obtain a convex sum

of random variables that follow the same probability density

function. Specifically, by introducing rk, which is the true standard

deviation of gk, we can rewrite the reconstructed map as

X
k

H jzk j � swð Þgkwk nð Þ

¼
X
k

H jzk j � swð Þ
z}|{
gk

zk

rk
sign wk nð Þð Þrk jwk nð Þj

¼ K n½ �
X
k

kkH jzk j � swð Þzk sign wk nð Þð Þ

¼ K n½ �
X
k

kknk ; ð16Þ
with K[n] =
P

kV rkV |wkV(n)|, kk = rk |wk(n)|/K[n], and where

we have introduced the random variables

nk ¼ H jzk j � swð Þzk sign wk nð Þð Þ: ð17Þ

It is important to notice that nk follows a normalized probability

density function independent of k because zk follows a normalized

Gaussian distribution, which is symmetric. Furthermore, we see

that the factors kk are positive such that
P

k kk = 1. Therefore,

K[n] can be considered as a normalization of the reconstructed

volume and the non-stationary threshold can be chosen as q[n] =

ssK[n].

Using Eqs. (16) and (17), we can then simplify Eq. (15) as

P
X
k

H jzk j � swð Þgkwk nð Þ z q n½ �
#
¼ P

X
k

kk nk � ssð Þ z 0

#
:

""

ð18Þ

Since the sum on the right-hand side of Eq. (18) satisfies the

conditions of Theorem 1, we obtain the following probability

bound for the convex sum:

P
X
k

kk nk � ssð Þ z 0

#
V min

a N 0
E 1þ a n � ssð Þð Þþ
� �

;

"
ð19Þ

where the notation (x)+ stands for max(0, x). Going back to Eq.

(17), we see that n follows a truncated normalized Gaussian

distribution with a Dirac peak at the origin, as illustrated in Fig. 3.

The effect of the threshold is to map all small coefficients to zero,

while the sign function has no influence on a symmetric

distribution.

Usually, the value of a that provides the sharpest probability

estimate (i.e., which minimizes the right-hand side of Eq. (19)) is

a* = 1/ss. The probability can then be bounded as

P

P
k

H jzk j � swð Þgkwk nð ÞP
k

rk jwk nð Þj z ss

2
4

3
5 V

E nð Þþ
� �
ss

;

which finally provides the conservative spatial threshold

ss ¼
E nð Þþ
� �
aB

ð20Þ

given the significance level aB.



Fig. 5. Principle of minimizing the worst-case approximation error between the de

respectively.

Fig. 4. Simplified case where rk is assumed to be known. (a) Probability

surface. Equiprobable contour lines are in white. The circular dots mark the

optimal threshold values. (b) The optimal threshold values sw (full line) and

ss (dotted line).
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The expectation value of the right-hand side can be computed

as a function of the wavelet threshold sw, independently from the

data. Fig. 4a shows the surface described by the triplet (ss, sw, aB).

The main importance of the bound of Eq. (19) is that it allows

us to derive sharp threshold values, in particular for short-tailed

distributions such as the Gaussian. For an illustrative example, we

refer to Appendix B.

Part II: minimizing the approximation error

Now, we consider the second approximation aspect of our

framework. Eq. (20) does not present a complete solution to our

problem. Indeed, infinitely many combinations of sw and ss
achieve the same desired significance level aB. These solutions

differ, however, by the quality of approximation of the wavelet

processing: the better the approximation—that is, the smaller the

wavelet threshold sw—the larger the spatial threshold ss; on the

contrary, if the approximation is poor (i.e., large wavelet thresh-

old), the few spatial detections cannot reasonably be localized and

identified on the unprocessed volume.

We resolve this issue by searching for the solution that

minimizes the worst case approximation error between the

unprocessed and detected parameter map. In other words, we want

the final result to be as close as possible to the original data. We

will see how this provides a simple but elegant way to determine

optimal threshold values.

The basic problem is outlined in Fig. 5. Top left, we have the

wavelet coefficients gk, obtained after fitting the LM. From these

data, we can obtain the three following reconstructions in the

spatial domain:

(1) The reconstruction of the raw wavelet coefficients without

any processing:

u n½ � ¼
X
k

gkwk nð Þ: ð21Þ

Notice that the same u[n] would be obtained by fitting the LM

directly in the spatial domain.
tected and the unprocessed parameter map, represented by rV[n] and u[n],
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(2) The reconstruction after thresholding the wavelet coefficients

according to their t values in the wavelet domain:

r n½ � ¼
X
k

H zk � swð Þgkwk nð Þ: ð22Þ

(3) The final result after statistical testing of r[n] in the spatial

domain:

rV n½ � ¼ H r n½ � � ssK n½ �ð Þr n½ �: ð23Þ

Our guiding principle is to minimize the difference between the

non-processed reconstruction u[n] and the final result rV[n]. To
this end, we express the different between u[n] and rV[n] as,

ju n½ � � rV n½ �j ¼ ju n½ � � r n½ � þ r n½ � � rV n½ �j

V ju n½ � � r n½ �j þ jr n½ � � rV n½ �j;

where the first term can be bounded by

ju n½ � � r n½ �j ¼
����� X

k

1� H jzk j � swð Þð Þgkwk nð Þ
�����

V sw
X
k

rk jwk nð Þj ¼ swK n½ �;

and the second one by

jr n½ � � rV n½ �j ¼ 1� H r n½ � � ssK n½ �ð Þð Þjr n½ �j V ssK n½ �:

So we obtain

ju n½ � � rV n½ �j V sw þ ssð ÞK n½ �; ð24Þ

which is valid point wise for each voxel n, and therefore also

conservative, in the sense that it holds for a worst-case scenario. It

also important to observe that this is a sharp worst-case bound

since it can be attained by some configuration of realizations of gk.

Consequently, the optimal values for the thresholds sw and ss are
obtained by simply minimizing their sum:

sw; ssð Þ ¼ argmin
sw;ss

sw þ ss; subject to ss ¼
E nð Þþ
� �
aB

�
:

�
ð25Þ

We now apply this optimization to the results obtained from

Part I: Effect of wavelet processing. First, we derive the relation-

ship between sw and ss by using Eq. (20), which yields

ss ¼
1

aB

1ffiffiffiffiffiffi
2p

p exp � s2w
2

�
:

�
ð26Þ

Furthermore, we can show that the minimization of the sum sw +

ss leads us to the optimal values

ss ¼ 1=sw; sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W�1 � 2pa2Bð Þ

q
; ð27Þ

where W�1(d ) is the -1-branch of the Lambert W-function (also

called Omega function) that is, the inverse of the function f(W) =W

exp(W). This function can be evaluated numerically (Corless et al.,

1996). For a detailed derivation of Eqs. (26) and (27), we refer to

Appendix C.

On the probability surface of Fig. 4a, the circular dots mark the

optimal threshold values for the covered range of aB. In Fig. 4b, we
show the optimal threshold values directly as a function of aB. As a
typical example, we could consider a = 5% and Nc = 104 (number

of intracranial voxels), resulting in aB = 5  10�6. Notice that the

surface of Fig. 4a can also be used to determine P values, that is,

for a fixed threshold sw, the value of ss can be chosen equal to

r[n]/K[n], resulting into a P value Nc  aB(ss, sw).

General case—true rk are unknown

In the general case, the true rk are unknown and their estimation

by sk/
ffiffiffi
J

p
should be taken into consideration for the testing

procedure. Consequently, the number of volumes Nt and the related

degrees of freedom J will influence the threshold values.

The strategy of our approach is very similar to the previous case

where the rk are known. However, this time the spatially varying

threshold becomes

q n½ � ¼ ss
X
k

skffiffiffi
J

p jwk nð Þj; ð28Þ

where sk/
ffiffiffi
J

p
is the estimate for rk, meaning that we can no longer

reduce t values to z scores in the inequality inside the probability of

Eq. (15). We write

X
k

H jtk j � swð Þgkwk nð Þ � q nð Þz 0

Z
X
k

H jtk j � swð Þgkwk nð Þ � ss
skffiffiffi
J

p jwk nð Þjz 0

Z
X
k

rk jwk nð Þj H jtk j � swð Þ gk
rk

sign wk nð Þð Þ � ss
sk=

ffiffiffi
J

p

rk

� �
z 0

Z
X
k

kk H jtk j � swð Þ gk
rk

sign wk nð Þð Þ � ss
sk=

ffiffiffi
J

p

rk

� �
z 0

Z
X
k

kk nk � ss&kð Þz 0; ð29Þ

where kk = rk |wk(n)| /
P

l rl|wl(n)|, and where we have introduced

the random variables

nk ¼ H jtk j � swð Þ gk
rk

sign wk nð Þð Þ ð30Þ

&k ¼
sk=

ffiffiffi
J

p

rk

: ð31Þ

Once again, it is important to notice that all nk and 1k follow the

same probability density distributions n and 1, respectively. These
are defined as some reference random variables

n ¼ H

��� gV

sV=
ffiffiffi
J

p
���� sw

� �
gV; ð32Þ

& ¼ sV=
ffiffiffi
J

p
; ð33Þ

where g V follows a normalized Gaussian distribution, and where

sV2 follows a normalized v2 distribution with J degrees of freedom,

and is statistically independent of g V.
Then, the probability of Eq. (29) can be bounded again using

Theorem 1:

P

P
k H jtk j � swð Þgkwk nð ÞP

k sk=
ffiffiffi
J

p
jwk nð Þj

z ss

" #
¼ P

X
k

kk nk � ss 1 kð Þ
"

z 0

#

V min
a N 0

E 1þ a n � ss&ð Þð Þþ
� �

; ð34Þ
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which finally provides the following (conservative) relation

between the spatial and the wavelet threshold

min
a N 0

E 1þ a n � ss1ð Þð Þþ
� �

¼ aB ð35Þ

given the significance level, aB.
Fig. 6. General case taking into account the estimate of rk. (a) Probability

map. The white contour lines are equiprobable. The circular dots mark the

optimal threshold values. (b) Optimal threshold values for Nt = 50. (c)

Optimal threshold values for Nt = 150.
In general, the exact computation of the bound Eq. (34) is

quite involved. A sharp upper value is given in Appendix D; it is

also used to determine the optimal value a* by a numerical

optimization procedure. Fig. 6a shows the probability surface that

we finally obtain. Again, the optimal threshold values sw and ss
can be found by minimizing their sum. The result of the complete

optimization is provided in Figs. 6b and c, where we show the

optimal threshold values as function of the desired significance

level for Nt = 50 and N t = 150, respectively. Notice how, for the

second case, the threshold values approach the idealized case

where the true jk are known. The calculation of the optimal

thresholds could be done offline since their values are data-

independent. The computation of one pair (ss, sw), including the

optimization of a, based on the degrees of freedom J and the

significance level aB, takes a few seconds in MATLABk.

Summary of the proposed approach

Having discussed the different modules in Figs. 2b and 5,

we now briefly summarize the main computational steps of the

proposed approach.

(1) The threshold values sw and ss are determined as a function

of the desired significance level a/Nc and the degrees of

freedom J.

(2) The spatial DWT is computed for each volume v(t)[n] of the

time-series, resulting in the coefficients w(t)
k.

(3) For each time-series of wavelet coefficient w(t)
k, the LM is

applied and the parameter of interest is extracted. This way,

we obtain the parameter’s estimate gk and its estimated

standard deviation sk
2.

(4) After wavelet processing (i.e., applying the threshold sw to

the gk’s), we use the inverse DWT to reconstruct the volume

r[n].

(5) The values sk/
ffiffiffi
J

p
are reconstructed by a modified inverse

DWT algorithm, which corresponds to putting the absolute

value of the wavelet. We obtain the volume K[n].

(6) The detected parameter map is obtained by applying the

threshold ss to r[n]/K[n].

Implementation: a new toolbox for SPM

Our new approach has been implemented as a bWavelet

toolboxQ, called WSPM, for SPM2. In this way, the user can

setup his experiments as usual using SPM’s extensive features

for preprocessing (e.g., registration) and LM specification,

including the HRF modelling. Next to the standard analysis

performed by SPM, the toolbox allows to use our joint spatio-

wavelet statistical testing. Its results are added as new

bcontrastsQ to the SPM structure related to the experiment,

and they can be explored using SPM’s extensive visualization

features.
Experimental results

The aim of this section is to provide a proof-of-concept of

the proposed framework, rather than a full coverage and fine-

tuning of each possible parameter offered by the method and its

wavelet transform. Therefore, unless mentioned otherwise, the



Fig. 7. Detection results for synthetic null data sets. The curves show the

observed versus expected FPF as an average over 200 experiments. Each

experiment corresponds to a time-series of Nt = 120 volumes (64 64 22

voxels). The design matrix contained a dummy on-off activation with 5

volumes per epoch.
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results of wavelet-based approach are obtained using the

orthogonal B-spline wavelets of degree 1 with Jw = 1 iteration

in 3D. Essentially, we want to show that we are able to detect

activation patterns similar to SPM, while making rather

conservative assumptions. Further exploration of the parameter

space will be presented in a future paper.
Fig. 8. The software phantom was constructed using the initial 3D activation regio

intracranial mask of (b). The initial activation regions contain 1, 3, 7, and 25 voxels

filter with FWHM = 2 voxels, resulting in the activation map shown in (c); right: cl

show the central slice of the volume.
Type I error control in null data set experiments

Explicit testing of formal type I error control can be studied

by null data set experiments, for example, as in Fadili and

Bullmore (2001). For a given significance level—corresponding

to the expected false positives fraction (FPF)—the observed FPF

is evaluated. Usually, these experiments are carried out for very

low significance levels (e.g., a high value aB = 0.1), to determine

an estimate of the error control rate from only a few null data

sets.

However, the integrated framework requires the use of high

significance levels. First, the tightness of the detection bound Eq.

(34), gets better as aB decreases. Second, the calculation of the

thresholds sw and ss, based on the bound derived in Appendix D, is
also sharper for small aB. Due to these effects, the results for very

high values of aB are not very instructive since the thresholds are

overestimated. Therefore, we conducted a type I error control

experiment for synthetic null data sets, which allows us to

regenerate easily new data sets and consequently to operate at

the (usual) high significance levels.

The synthetic null data sets are generated for a time-series of

N t = 120 volumes of 64  64  22 voxels. The voxels contain

Gaussian white noise and the design matrix contained a dummy

on-off activation with 5 volumes per epoch. The range of the

significance level was chosen aB = 10�6,. . ., 10�3. The average of

the observed FPF curve over 200 experiments is shown in Fig. 7.

As expected, the spatial t test is exactly calibrated by the type I

error. Clearly, the new wavelet approach has a more conservative

behavior for these null data sets. This can be explained by the

nonlinear nature of the wavelet thresholding procedure, which
ns of (a), which where embedded with three different signal levels into the

, respectively. Next, these activation regions where smoothed by a Gaussian

uster 1, bottom: cluster 2, top: cluster 3, left: cluster 4. Subfigures (b) and (c)



Fig. 9. Activation patterns obtained by the various methods for the central

slice of the software phantom.
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suppresses the null-signal extremely well. As we will show in the

next sections, this conservative behavior for null data sets does not

prevent our method from detecting correctly activation regions.

Software phantom study

Following Desco et al. (2001), we have performed 3D software

phantom studies. The clusters shown in Fig. 8a served as seeds for

activation regions. Each of these activation patterns was embedded

at different signal levels (4%, 2% and 1% higher than the

background) inside an intracranial mask of a 64 64  22 volume.

To obtain more realistic activations, the initial activation map was

smoothed by a Gaussian filter (FWHM= 2 voxels). The central slice

of both the mask and the 12 activation regions, is shown in Figs. 8b

and c, respectively. The activation map was then transformed into a

time-series of 80 volumes according to a block-paradigm of four
Table 1

Overview of the number of voxels detected for each activation cluster, correspon

Method Cluster 2

4% 2% 1%

SPM (FWHM = 1 voxel) 2 non-detected non-detected

SPM (FWHM = 1.5 voxels) 6

SPM (FWHM = 2 voxels) 15

Spatial t test 0

Wavelet (orthogonal) 7

Wavelet (dual) 1
cycles with 10 volumes per epoch, taking into account the HRF used

by SPM (assuming TR = 3s). Each volume was corrupted by

Gaussian white noise of 2% of the background level.

The design matrix used to detect activation incorporated the

exact knowledge of the temporal course of activated voxels. The

desired significance level was chosen to be a = 5%. The Bonferroni-

corrected significance level aB = a/Nc was corrected by the number

of intracranial voxels Nc = 16087. The detected activation patterns

for the various methods are shown in Fig. 9, and the number of

detected voxels per cluster are summarized in Table 1. For detected

voxels, the colors (red-yellow-white) are attributed according to the

statistical parameter map, that is, the estimated t values for SPM and

the spatial t test, the normalized value r[n]/K[n] for the wavelet

approach. None of the methods detected the single voxel activation

of cluster 1. A comparison of SPM’s results using various levels of

smoothing, shows that increasing the width of the Gaussian filter

improves the number of detected clusters, but also degrades their

localization. The voxel-wise t test with Bonferroni correction only

detects a few voxels. The proposed wavelet approach using the

orthogonal B-spline wavelets closely resembles the result obtained

by SPM with FWHM = 1.5 voxels, but misses the second activation

region of cluster 3. As suggested in Van De Ville et al. (2003), the

DWT using the dual B-spline wavelet has a bpureQ B-spline at the
analysis side, which corresponds more closely to a SPM-like

Gaussian prefiltering. Interestingly, the results using the dual B-

spline wavelet with the same parameters as the orthogonal one

(degree 1, 1 iteration), do detect the second activation region of

cluster 3, and at the same time renders more concentrated activation

patterns. This example shows that the choice of the wavelet basis

influences the results. An extensive comparison will be shown in a

future paper.

Block-based experiment

Our example is an fMRI experiment with auditory stimulation

following a block-based paradigm (Rees and Friston, 1999). The

data were obtained on a 2T Siemens Magneton, 7s repetition

time, providing volumes of 64  64  64 isotropic voxels of 3 
3  3 mm. The number of volumes used for the data analysis is

Nt = 84. The setup of the design matrix has been done using

SPM and incorporates a model for the HRF. In Fig. 10, we show

the on-off stimulus function and the modeled activation response,

which is obtained by convolution with a HRF. The significance

level a has been fixed at 5%, which gives, after correction for

multiple testing by the number of intracranial voxels, aB = 7.1 
10�7. The activation patterns obtained by SPM for the slices

located around the auditory cortex are shown in Fig. 11. We used

the Gaussian prefilter for typical values recommended by SPM,
ding to the results of Fig. 9

Cluster 3 Cluster 4

4% 2% 1% 4% 2% 1%

4 0 non-detected 26 4 0

9 2 47 18 1

16 4 75 37 7

1 0 13 0 0

17 0 41 9 1

6 2 30 6 2



Fig. 10. Stimulus function (dotted line) and model for activation response

(full line).

Fig. 11. Activation patterns obtained by SPM for the slices around the

auditory cortex for SPM (FWHM = 4 mm and FWHM = 6 mm). The close-

ups contain the lower part of the activation.
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that is, the FWHM in the left and right column is equal to 4 and

6 mm, respectively. Clearly, for a higher FWHM, stronger

smoothing emphasizes large activation patterns. Specifically, the

number of detected voxels is 348 and 617, respectively. The

activated voxels are colored according to their t value above

SPM’s threshold.

For the desired significance level aB and Nt, the thresholds as

determined by our optimization are sw = 6.058 and ss = 0.234. To

visualize the detected voxels, we color them according to their ratio

with the right-hand side of Eq. (34) since this normalization can be

considered to be comparable to a t value.

In the left column of Fig. 12, we show the activation patterns

detected by our method. The total number of detected voxels is 408,

which is between the sensitivity reported using SPM with FWHM =

4 mm and FWHM = 6 mm. Given the strong type-I error control of

the method, this is a promising result. We also want to indicate the

influence of the wavelet coefficients in the highpass subbands on the

results. In the right column, we show the result of our approach if we

only consider the detected coefficients from the lowpass subband.

The activation patterns are more bconventionalQ (larger and more
Fig. 12. Activation patterns obtained by our wavelet-based approach for the

same slices as in Fig. 11 around the auditory cortex. Left: results using the

full wavelet decomposition; Right: results using only the low-pass subband.
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connected regions) since they originate from lowpass-filtered data.

The total number of detected voxels now increases to 460. We

observe that including the wavelet coefficients from the highpass

subbands contributes to the spatial resolution of the detection map

that is, activation patterns are refined, which indicates that those

highpass wavelet coefficients contain essential information and that

the true activation patterns are well localized.

The threshold values sw and ss have been selected optimally

according to the second principle of our framework. As an

experiment, we now lower the threshold sw at a fixed value 5.6,

and compute the remaining threshold ss so as to satisfy the

desired significance level aB. This way, we obtain ss = 1.75.

While this setting surely detects more wavelet coefficients, the

spatial statistical testing retains almost nothing: only a few

voxels are detected. This clearly shows that our way of

choosing the threshold values significantly differs from the

standard wavelet approach, which suggests to select sw
according to a two-sided t test for the coefficients as in Eq.

(12) to obtain the desired significance level. For this experiment,

such a procedure would lower sw to 5.20 while further augmenting

ss and finally detect no activation at all. These observations

confirm the conservative nature of our framework and also indicate

the optimality of the threshold selection and its criterion based on

the approximation quality of the reconstructed data.
Conclusions

We have presented an integrated framework for statistical

analysis of fMRI data using a joint spatio-wavelet approach.

The major disadvantage of the standard wavelet-based method is

that it does not yield a statistical interpretation in the spatial

domain. Therefore, our new framework addresses two important

issues: (1) the link between the wavelet and the spatial domain

to properly model the effect of processing wavelet coefficients;

(2) the optimal selection of the two threshold values character-

izing the processing in the wavelet domain and the statistical

testing in the spatial domain. The proposed framework makes

conservative assumptions; in particular, it applies a Bonferroni

correction for multiple testing, and therefore has a strong type-I

error control. As a proof-of-concept, we included experimental

results of a block-based fMRI experiment, which are quite

comparable to those of SPM. Future research is needed to

further explore the full potential of the new framework, for

example, the influence of parameters of the wavelet transform

such as the degree/order of wavelet, the number of iterations,

and the type of wavelet transform (orthogonal, semi-orthogonal).

The proposed framework incorporates only limited knowl-

edge about the data (i.e., the HRF). Recently published

methodologies propose to also take into account aspects of

neural dynamics (Friston et al., 2003). The extension of

wavelet-based methods in this direction remains a challenge

for future research.
Appendix A. Bound for a convex sum of random variables

Theorem 1. Consider the random variables xk, k = 1,. . ., N,
following the same probability law as a generic random

variable x, and the weighted sum
P

k = 1
N kkxk with kk z 0
and
P

k = 1
N kk = 1. Then the probability that this sum be positive

is bounded by

P
XN
k ¼ 1

kkxk z 0

#
V min

a N 0
E 1þ axð Þþ
� �

:

"
ðA:1Þ

Proof. Obviously, this upper bound should still be valid without

the min operand, provided that the parameter a is positive. Let f(x)

be the function (1 + ax)+, where a is a positive real parameter, and

where (x)+ is defined as max(0, x). We then have

E f
XN
k ¼ 1

kkxk

 !" #
¼

E f
XN
k ¼ 1

kkxk

 !����� X
N

k ¼ 1

kkxk z 0

" #
P
XN
k ¼ 1

kkxk z 0

" #

þ E f
XN
k ¼ 1

kkxk

 !����� X
N

k ¼ 1

kkxk b 0

" #
P
XN
k ¼ 1

kkxk b 0

" #

ðBayesTruleÞ

z E f
XN
k ¼ 1

kkxk

 !����� X
N

k ¼ 1

kkxk z 0

" #
P
XN
k ¼ 1

kkxk z 0

" #

ðsince f xð Þ z 0Þ

z P
XN
k ¼ 1

kkxk z 0

" #
: since inf

x z 0
f xð Þ ¼ 1

� �
ðA:2Þ

Moreover, the function f (x) is convex, which implies Jensen’s
inequality (Jensen, 1906):

f
XN
k ¼ 1

kkxk

!
V
XN
k ¼ 1

kk f xkð Þ:
 

ðA:3Þ

Combining Eqs. (A.2) and (A.3) results into

P
XN
k ¼ 1

kkxk z 0

" #
V
XN
k ¼ 1

kkE f xkð Þ½ � ¼
XN
k ¼ 1

kk

 !
E f xð Þ½ �

¼ E f xð Þ½ � ¼ E 1þ axð Þþ
� �

;

which is the bound of Eq. (A.1). Finally, the parameter a N 0 can be

optimized to make the right-hand side as small as possible.

The optimality of the choice f(x) = (1 + ax)+ over all

possible convex functions will be shown in another paper. 5
Appendix B. On the sharpness of the probability bound

By a simple example of a normalizedGaussian randomvariable x,

we can show that the boundEq. (A.1) can be advantageously used to
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obtain bsharpQ thresholds. According to Theorem 1, the probability

that a realization of x exceeds the threshold s is bounded by

P x z s½ � V min
a N 0

E 1þ a x� sð Þð Þþ
� �

: ðB:1Þ

The optimal value a* is found by setting the derivative of the

right-hand side to 0,

d

da
E 1þ a x� sð Þð Þþ
� �

uE x� sð ÞH 1þ a x� sð Þð Þ½ � ¼ 0; ðB:2Þ

which yields the optimal value a* c s, for large s.
It is instructive to rewrite the bound (B.1) as

P x z s½ � V E 1þ a4 x� sð Þð Þþ
� �

¼ E 1þ a4 x� sð Þð Þ 1þ a4 x� sð Þð Þ0þ
h i

¼ E 1þ a4 x� sð Þð Þ0þ
h i

; thanks to ðB:2Þ

¼ P xz s � 1

a4

�
:

�

We clearly see that the estimated threshold s becomes

sharper as 1/a* gets smaller, which is the case for large

threshold values since a* c s. This is particularly true for

short-tailed probability distributions such as the Gaussian

distribution.

Notice the difference with the optimal value a* = 1/ss in

Part I: Effect of wavelet processing, which corresponds to the

case of a truncated Gaussian random variables.
2 Note that MATLABk computes a normalized version of the

incomplete Gamma function, namely g(a, b)/G(a), and of the incomplete

Beta function, namely Bb(a0, a1)/B(a0, a1).
Appendix C. Optimal values of Ts and Tw in Part II:

Minimizing the approximation error

The relationship between ss and sw, given in Eq. (26), can be

derived by computing the expectation in Eq. (20):

ss¼
E nð Þþ
� �
aB

¼ 1

aB

Z þl

sw

xffiffiffiffiffiffi
2p

p exp � x2

2

�
dx¼ 1

aB

1ffiffiffiffiffiffi
2p

p exp � s2w
2

�
:

��

To minimize ss + sw, we first rewrite this sum using (26) as

1

aB

1ffiffiffiffiffiffi
2p

p exp � s2w
2

�
þ sw;

�

and set the derivative with respect to sw equal to zero

� sw
aB

1ffiffiffiffiffiffi
2p

p exp � s2w
2

�
þ 1 ¼ 0:

�

This finally yields

� s2wexp � s2w
� �

¼ � 2pa2B:

The term�sw
2 can be identified as the inverse of the function

f(W) = W exp(W) for f(W) b 0, which is known as the �1-branch
of the LambertW-function (also called Omega function) and can be

evaluated numerically (Corless et al., 1996). In this way, we obtain

the optimal threshold values

ss ¼ 1

sw
; sw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W�1 � 2pa2Bð Þ :

q

Appendix D. Calculation of the bound in General case—true

Sk are unknown

In this Appendix, we approximate the bound of Eq. (34) by a

larger upperbound. We recall the definition of the random variables

n ¼ H

��� gV

sV=
ffiffiffi
J

p
���� sw

� �
gV;

& ¼ sV=
ffiffiffi
J

p
;

where gV is distributed according to a normalized Gaussian, and

sV according to a v-distribution with J degrees of freedom. We

also introduce the variable t V = gV/(sV=
ffiffiffi
J

p
), which follows a t

distribution with J degrees of freedom. Now, we can split the

bound into three parts. We write

(D.1)

E 1þ a n � ss&ð Þð Þþ
� �

¼

E 1� ass&ð ÞþH � jtVj � swð Þ
� �

þ

E 1þ a gV� ss&ð Þð ÞþH tV� swð Þ
� �

þ ðD:2Þ

E 1þ a gV� ss&ð Þð ÞþH � tV� swð Þ
� �

; ðD:3Þ

where each part can be more easily calculated or bounded as

follows:

D:1ð Þ V E 1� ass&ð Þþ
� �

ðD:4Þ

D:2ð Þ ¼ E 1þ a gV� ss&ð Þð ÞH tV� swð Þ½ � ðD:5Þ

D:3ð Þ V E H � tV� swð Þ½ �: ðD:6Þ
Eq. (D.5) holds as long as ss b sw, which is a very reasonable

constraint for the thresholds we expect. The first term Eq. (D.4)

and the third one Eq. (D.6) can be calculated as

D:4ð Þ ¼
c J

2
; J
2 assð Þ2

�  
� ass

ffiffiffi
2
J

q
c Jþ1

2
; J

2 assð Þ2
�  

C J
2

� �
D:6ð Þ ¼ asw ;

where C að Þ ¼
R þl
0

x a�1exp�xð Þdx is the Gamma function, and

c a; bð Þ ¼
Z b

0

xa�1expð�xÞdx ðD:7Þ

is the related lower incomplete Gamma function2, and where asw is

the complementary cumulative t distribution
R þl

sw
pt (t V)dt V.
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Furthermore, by changing variables from ( g V, 1) to (t V, x =

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ tV2

p
), we can also compute the second term Eq. (D.5) as

D:5ð Þ ¼ asw þ
affiffiffiffiffiffi

2p
p

1þ s2w=J
� �J=2 � ass

2


ffiffiffiffiffiffi
J

2p

r
B 1

1 þ s2w=J

J þ 1

2
;
1

2

�
;

�

where Bb (a0, a1) =
R b
0
xa0 � 1 1� xð Þa1 � 1

dx is the incomplete

Beta function.2
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