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ABSTRACT
We propose the use of polyharmonic B-splines to build
non-separable two-dimensional wavelet bases. The cen-
tral idea is to base our design on the isotropic polyhar-
monic B-splines, a new type of polyharmonic B-splines
that do converge to a Gaussian as the order increases. We
opt for the quincunx subsampling scheme which allows us
to characterize the wavelet spaces with a single wavelet:
the isotropic-polyharmonic B-spline wavelet. Interestingly,
this wavelet converges to a combination of four Gabor
atoms, which are well separated in frequency domain. We
also briefly discuss our Fourier-based implementation and
present some experimental results.

1. INTRODUCTION

Multiresolution analysis and wavelets have proven to be a
very useful framework for image processing. The funda-
mental theory of the discrete wavelet transform can be for-
mulated in the continuous domain using embedded signal
spaces spanned by scaling functions, and their orthogonal
complements spanned by wavelets. These functions are re-
lated to each other via digital filters for Mallat’s fast wavelet
transform algorithm.

Most two-dimensional wavelet transforms use tensor
products of one-dimensional basis functions. Unfortu-
nately, these tend to favor horizontal and vertical directions;
they also create a “diagonal” cross-term that does not have a
straightforward interpretation. We distinguish between two
viable options for the design of better non-separable wavelet
transforms: directionality and isotropy. In the first case,
one pursues maximal angular selectivity. The second option
of emphasizing isotropy is interesting for image processing
as well, but it has received considerably less attention. A
strong motivating factor is that many standard image pro-
cessing algorithms exploit the rotation-invariant properties
of filters such as the Gaussian and Laplacian.

In this paper, we introduce new non-separable wavelet
bases. Our construction starts from isotropic polyharmonic
B-splines, which are improved versions of Rabut’s elemen-
tary polyharmonic B-splines. Unlike for Rabut’s, we can
prove that these new B-splines are guaranteed to converge
to a Gaussian as their order increases, in contrast with their
elementary counterparts. Next, we define a multi-resolution
analysis based on these scaling functions using the quincunx
subsampling scheme. We derive the corresponding family

of semi-orthogonal wavelets focussing on one that is par-
ticularly interesting: the isotropic-polyharmonic B-spline
wavelet. This wavelet too is particularly well localized in
space and frequency because it converges to a combination
of Gabor atoms (occupying the corners of the Nyquist re-
gion) as the order increases. Finally, we briefly mention the
implementation in the Fourier domain and we show some
results that are relevant to image processing.

2. POLYHARMONIC B-SPLINES

2.1. Elementary polyharmonic B-splines

The “elementary γ/2-harmonic B-splines” where first intro-
duced by Rabut [1]. In the Fourier domain, their definition
is remarkably similar to the univariate B-spline case:

φγ(x) ↔ φ̂γ(ωωω) =
||2 sin (ωωω/2)||γ

||ωωω||γ (1)

=
(

4 sin2 (ω1/2) + 4 sin2(ω2/2)
ω2

1 + ω2
2

) γ
2

,

with sinωωω = (sin ω1, sin ω2). The parameter γ is the or-
der, with γ ∈ R and γ > 1. The elementary polyharmonic
B-spline can be regarded as the convolution of a localiza-
tion operator (the numerator in the Fourier domain expres-
sion), which is the γ/2-th iterate of the most elementary
discretization of the Laplacian operator, with a radial basis
function (RBF) of degree γ − 2.

The elementary polyharmonic B-splines satisfy many
interesting properties; e.g., Riesz basis generation, convolu-
tion relation φγ1+γ2 = φγ1 ∗ φγ2 , partition of unity, tunable
order of approximation γ, total positivity (φ̂γ > 0). It has
been shown before [2] that the elementary polyharmonic B-
splines are perfectly valid scaling functions for a whole va-
riety of scaling relations. However, and despite the fact that
they are generated by multiple convolutions, we have ob-
served that they fail to converge to a Gaussian when the or-
der increases, as one would normally expect. The reason for
this is that the central limit theorem is not applicable since
they do not have a well-defined second-order moment. This
means that they do not decrease fastly enough and that they
are never optimally space-frequency-localized. Moreover,
they exhibit priviledged directions as shown in Fig. 1 (a);
e.g., consider ω1 ± ω2 = 0.

0-7803-8554-3/04/$20.00 ©2004 IEEE. 661



(a) (b)

−4
−3

−2
−1

0
1

2
3

4

−4

−2

0

2

4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
1

x
2

−4
−3

−2
−1

0
1

2
3

4

−4

−2

0

2

4

−0.1

0

0.1

0.2

0.3

0.4

x
1

x
2

Fig. 1. Polyharmonic B-splines of order γ = 5. (a) The elementary polyharmonic B-spline φ5. (b) The isotropic polyhar-
monic B-spline β5.

2.2. Isotropic polyharmonic B-splines

Here, we propose to improve the properties of the ele-
mentary polyharmonic B-splines by introducing a more
isotropic version of the localization filter, which is a dis-
cretization of an iterated Laplacian. Our aim is to change the
localization filter in the slightest way, such that the second-
order moment becomes well-defined and the Gaussian con-
vergence is guaranteed. So we introduce the isotropic poly-
harmonic B-splines of order γ in the Fourier domain as fol-
lows

β̂γ(ωωω) =

(
4 sin2 (ω1/2) + 4 sin2(ω2/2)

ω2
1 + ω2

2

−8
3

sin2(ω1/2) sin2(ω2/2)
ω2

1 + ω2
2

) γ
2

, (2)

which has a Taylor series development β̂γ(ωωω) = 1 −
γ ||ωωω||2 /24 + O(||ωωω||4), and as such a well-defined
(isotropic) second-order moment. We can show that this
isotropic version of the polyharmonic B-splines spatially
decays like 1/ ||x||6, versus 1/ ||x||4 for its elementary
counterpart (for γ ≥ 2).

For a more detailed exposition of the isotropic polyhar-
monic B-splines and their properties in N dimensions, we
refer to our paper [3].

3. MULTI-RESOLUTION ANALYSIS WITH
QUINCUNX SUBSAMPLING

We define the dilation matrix D that maps k ∈ Z
2 to Dk,

which is a subset of Z
2. The signal space spanned by the

isotropic polyharmonic B-spline at a resolution Di is

VDi = clL2(R2)spann∈Z2{βγ(Dix − n) : n ∈ Z
2}. (3)

From now on, we select the quincunx subsampling
scheme, which provides a slower progression through scales
than the dyadic one [4,5]. The subsampling rate at each iter-
ation is 2 such that a single wavelet spans the wavelet space
at each resolution. The dilation matrix is given by

D =
[

1 1
1 −1

]
. (4)

The scaling filter associated with the isotropic polyhar-
monic B-spline enables us to map βγ to a coarser resolution
as βγ(x) =

∑
n bγ(n)βγ(Dx−n). It can be derived in the

Fourier domain as

Bγ(ejωωω) = |det(D)| β̂γ(DTωωω)

β̂γ(ωωω)
= 21− γ

2 ·
 

sin2(ω1+ω2
2 )+sin2(ω1−ω2

2 )− 2
3 sin2(ω1+ω2

2 ) sin2(ω1−ω2
2 )

sin2(ω1
2 )+sin2(ω2

2 )− 2
3 sin2(ω1

2 ) sin2(ω2
2 )

! γ
2

.

4. ISOTROPIC-POLYHARMONIC B-SPLINE
WAVELETS

In this paper, we consider the semi-orthogonal design pro-
cedure as in [6]: at each scale, the two signal spaces spanned
by the scaling function and the wavelet are orthogonal.

The wavelet ψ(D−1x) =
∑

n w(n)βγ(x − n) and its
translates span the space WD1 , which is included in the
space VD0 = VD1 ⊕WD1 at a finer scale. The orthogonal-
ity condition between the wavelet and the scaling function at
scale D−1 leads to the following condition in the z-domain:

W (z)B(z)A(z) + W (−z)B(−z)A(−z) = 0, (5)

where A(ejωωω) =
∑

n

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2 represents the au-

tocorrelation filter of βγ . By substitution, we see that the
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Fig. 2. (a) Isotropic-polyharmonic B-spline wavelet ψ
of order γ = 5. (b) Tiling of the frequency domain
for this wavelet and eight consecutive iterations. (c) Fre-
quency response of the wavelet filter W (ejωωω) for orders
γ = 1.5, 2.2, 5. The contour lines correspond to 50% levels.

general solution of this equation is

W (z) = −z−1
1 Q(zD)Bγ(−z−1)A(−z), (6)

where Q(z) is a polynomial in z and zD is a shortcut
notation for (z1z2, z1z

−1
2 ). The most obvious choice1 is

Q(z) = 1, which gives

ψ̂(DTωωω) =
W (ejωωω)

2
β̂γ(ωωω), (7)

with W (ejωωω) = −e−jω1Bγ(e−j(ωωω+πππ))A(ej(ωωω+πππ)), where
πππ = (π, π). This wavelet is referred to as the “isotropic-
polyharmonic B-spline wavelet”.

The isotropic-polyharmonic B-spline wavelets (for an
example, see Fig. 2 (a)) have several important properties.

1. Their shifted versions form a Riesz basis of the
wavelet space at each resolution scale.

2. They behave as a γ/2-th iterate of the isotropic Lapla-
cian operator for low frequencies; i.e., ψ̂(ωωω) ∝ ||ωωω||γ .

3. They converge to the sum of four Gabor atoms, well
separated in frequency domain, as the order γ in-
creases (for the proof, see [3]).

In Fig. 2 (b) we show their tiling in the frequency domain
for eight consecutive iterations. Wavelet-like Gabor decom-
positions have already been successfully applied to many
image processing tasks; e.g., edge detection, texture analy-
sis, vision modelling. In Fig. 2 (c) we show the frequency
response of the wavelet filter. For low order, the filter is
isotropic for quite a large region in the Nyquist region. In
this “Laplacian regime” it behaves more or less like a sym-
metric differentiation operator. For higher orders, the filter’s
frequency response gets more and more concentrated at the
high frequencies as it enters the “Gabor regime”, where it
behaves directional.

The presented formulas only provide the filters at one
side of the wavelet transform (resp. analysis/synthesis). The
filters corresponding to the other side can be found as their
dual. This leads to the expressions of Table 1. Of course,
the filters can be interchanged between the analysis and syn-
thesis side, depending on the application.

5. RESULTS

5.1. Implementation

None of the filters listed in Table 1 is compactly supported.
However, we have implemented the wavelet transform us-
ing the Fourier transform as in [7, 8]. Therefore, there is no
need for compactly supported filters and periodic boundary
conditions are automatically implied. Also note that all fil-
ters are known analytically in the Fourier domain. Another
important implementation issue is the calculation of the au-
tocorrelation filter A(ejωωω), which is obtained in the Fourier
domain as well via an iterative numerical procedure, that we
have developped recently [9].

1In the 1D case, this choice corresponds to the shortest FIR wavelet
filter.
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Table 1. Overview of isotropic-polyharmonic B-spline
wavelet transform

analysis side

scaling filter H̃(z) = A(z)
A(zD)

Bγ(z)

wavelet filter G̃(z) = −z−1
1

A(z)Bγ(−z−1)
A(zD)A(−z)

synthesis side

scaling filter H(z) = Bγ(z)

wavelet filter G(z) = −z−1
1 Bγ(−z−1)A(−z)

(a)

(b)

Fig. 3. (a) Test image ‘zoneplate’. (b) Decomposition of
‘zoneplate’ for 8 iterations and order γ = 5.

5.2. Some examples

In Fig. 3 we show an example wavelet decomposition of
the “zoneplate” image. The subbands are organized in a
way that is standard for the quincunx subsampling scheme;
i.e., for odd iterations the odd lines are shifted by one pixel
and then odd columns are subsampled. The intensity val-
ues within each subband of Fig. 3 (b) have been rescaled to
improve visualization.

In the first subband, we only capture high frequency
components at the corners of the frequency sweep. In
fact, the local spatial frequency at these corners is close
to the center frequency of the corresponding Gabor atoms
depicted in Fig. 2 (b). As we progress through scale, the
“sensitive” regions detected by the wavelet have lower spa-
tial frequencies. Interestingly, at some juncture, we switch
from “Gabor regime” to “Laplacian regime”.

6. CONCLUSIONS & OUTLOOK

We proposed a new wavelet transform based on the isotropic
polyharmonic B-splines. These wavelets were designed to
be semi-orthogonal.

While due to space constraints, we limited ourselves
to the description of one particular wavelet—the B-spline
one—, there are other interesting members in the family,
including the more ‘classical’ orthonormal one.

7. ACKNOWLEDGEMENTS

This work is funded in part by the grant 200020-101821 from the Swiss
National Science Foundation. Brigitte Forster also acknowledges the finan-
cial support from the German Academy of Natural Scientists Leopoldina
(BMBF-LPD 9901/8-64) and from the European Union’s Human Potential
Program (HPRN-CT-2002-00285).

8. REFERENCES

[1] C. Rabut, “Elementary m-harmonic cardinal B-splines,” Numerical
Algorithms, vol. 2, pp. 39–62, 1992.

[2] W. R. Madych, Wavelets: A tutorial in theory and applications,
chapter Some elementary properties of multiresolution analyses of
L2(Rn), pp. 259–294, Academic Press, Boston, 1992.

[3] D. Van De Ville, T. Blu, and M. Unser, “Isotropic polyharmonic B-
splines: Scaling functions and wavelets,” IEEE Transactions on Image
Processing, to appear.

[4] M. Vetterli, “Multi-dimensional sub-band coding: Some theory and
algorithms,” Signal Processing, vol. 6, no. 2, pp. 97–112, Feb. 1984.

[5] J.-C. Feauveau, Analyse multirésolution par ondelettes non orthogo-
nales et bancs de filtres numériques, Ph.D. thesis, Univ. Paris Sud,
1990.

[6] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline
wavelet transforms,” Signal Processing, vol. 30, pp. 141–162, 1993.

[7] F. Nicolier, O. Laligant, and F. Truchetet, “Discrete wavelet trans-
form implementation in Fourier domain for multidimensional signal,”
Journal of Electronic Imaging, vol. 11, no. 3, pp. 338–346, July 2002.

[8] M. Feilner, D. Van De Ville, and M. Unser, “An orthogonal family of
quincunx wavelets with continuously-adjustable order,” IEEE Trans-
actions on Image Processing, to appear.

[9] T. Blu, D. Van De Ville, and M. Unser, “Numerical methods for the
computation of wavelet correlation sequences,” SIAM Journal on Nu-
merical Analysis, submitted.

664


