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ABSTRACT
Wavelet-based statistical analysis methods for fMRI are
able to detect brain activity without smoothing the data.
Typically, the statistical inference is performed in the
wavelet domain by testing the t-values of each wavelet coef-
ficient; subsequently, an activity map is reconstructed from
the significant coefficients. The limitation of this approach
is that there is no direct statistical interpretation of the re-
constructed map. In this paper, we propose a new method-
ology that takes advantage of wavelet processing but keeps
the statistical meaning in the spatial domain. We derive a
spatial threshold with a proper non-stationary component
and determine optimal threshold values by minimizing an
approximation error. The sensitivity of our method is com-
parable to SPM’s (Statistical Parametric Mapping).

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become
a key modality in neuroscience. The detection of a weak and
noisy activity signal requires statistical analysis. One of the
widely deployed and recognized methods for fMRI analysis
is SPM [1]. In SPM, one typically applies a Gaussian pre-
filter to reduce the effect of the measurement noise. Statisti-
cal inference is based on the theory of continuous Gaussian
random fields.

The “wavelet community” has proposed an alternative
approach where the Gaussian prefilter is replaced by a spa-
tial wavelet transform [2, 3]. The detection of functional
activity is performed in the wavelet domain by applying
a coefficient-wise t-test. An activity map is reconstructed
from the coefficients that are marked as significant. This
reconstructed map is very useful for visualization purposes,
but is not directly interpretable in statistical terms because
each activated wavelet coefficients contributes to many vox-
els. This problem is often dealt with by applying an ad-
hoc spatial threshold to the reconstructed image; researchers
have also proposed to re-test in the spatial domain [4], or to
recursively reconstruct the activity map by controlling the
false discovery rate [5].

In this paper, we re-examine the initial wavelet-based
scheme from a different point of view. Our basic philoso-
phy is to reconstruct an intermediate activity map from pro-
cessed (but not tested!) wavelet coefficients, and to test it
afterwards in the spatial domain. For this goal, we derive a
proper non-stationary spatial threshold. From the point of
view of implementation, the difference with respect to the
standard approach is minimal. However, the statistical inter-
pretation in the spatial domain adds an important advantage
to the current method.

We have implemented our new method as a toolbox for
SPM. With an example, we show that its sensitivity is com-
parable to that of SPM.

2. CLASSICAL WAVELET-BASED METHOD
INCORPORATING THE GLM

We briefly review the wavelet-based method, which is ex-
tended with the general linear model (GLM) to easily set up
experiments and incorporate the effect of the hemodynamic
response function (HRF) [6, 7, 8].

Consider an MRI dataset vn(t), n ∈ Z
3, t ∈ Z, where

n and t = 1, . . . , Nt are the 3D-spatial and temporal in-
dexes, respectively. For each volume, we compute the non-
redundant 3D spatial discrete wavelet transform, yielding
the coefficients wk(t), where the index k addresses all sub-
bands and orientations. For the ease of notation, we write
the spatial wavelet decomposition of our data set as

vn(t) =
∑
k

wk(t)ψk(n), (1)

where the wavelet basis functions ψk are shifted and dilated
versions of some prototype (tensor product of wavelets or
scaling functions).

Now we introduce the time-series vector of length Nt

for a wavelet coefficient k; i.e., wk = [wk(1) . . . wk(Nt)]T.
This vector is modeled by the GLM as wk = Xyk + ek,
where X is the Nt × L design matrix, and where ek is the
residual error. For a simple block-based experiment, X con-
tains two columns: one for the on-off stimulus (eventually
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Fig. 1. (a) The classical wavelet-based approach. The desired significance level αB is fed to the statistical inference stage in
the wavelet domain. (b) The proposed approach treats the wavelet coefficients with an adaptive threshold. After reconstruc-
tion, a statistical test is performed in the spatial domain, taking into account the wavelet processing.

convolved with the HRF), and one for the background. We
assume the elements of ek to be independently and identi-
cally Gaussian distributed. The unbiased least-squares es-
timate of yk is given by ŷk = (XTX)−1XTwk. Usually,
one is only interested in the information of ŷk that is ex-
tracted by a so-called contrast vector c (e.g., c = [1 0]T in
our example). Therefore, for each wavelet coefficient k, we
obtain two scalar values:

gk = cTŷk, (2)

s2
k = êT

k êkcT(XTX)−1c, (3)

where gk and s2
k follow a Gaussian and a Chi-squared dis-

tribution, respectively. One then builds a t-value for each
wavelet coefficient,

tk =
gk√
s2
k/J

, with J = Nt − rank(X), (4)

which can be tested against a threshold τw. The value
τw is given by the desired significance level α (e.g., 5%)
for a two-sided1 t-test, corrected for multiple testing using
Bonferroni-correction; in other words, the significance level
for each test is αB = α/Nc where Nc is the number of intra-
cranial wavelet coefficients.

After statistical inference, the detected coefficients are

1Both positive and negative wavelet coefficients can contribute to an
increased signal in the spatial domain.

reconstructed as

rn =
∑
k

Tτw
(tk)gkψk(n), (5)

where Tτw
(tk) is an indicator function controlled by a two-

sided threshold; i.e., Tτw
(tk) = 1 for |tk| ≥ τw, and 0 oth-

erwise. As reported before, the wavelet coefficients can be
used advantageously to detect activity. However, depend-
ing on the support of the wavelet, the volume rn contains
many non-zero voxels; often, an ad-hoc spatial threshold is
applied to obtain “acceptable” detection maps. Addition-
ally, the reconstructed value rn does not have a direct sta-
tistical interpretation, in contrast with the t-value tk in the
wavelet domain. This constitutes the main disadvantage of
the wavelet approach when compared to detection methods
that operate in the spatial domain.

3. JOINT SPATIO-WAVELET STATISTICAL
ANALYSIS

The major advantage of wavelet-based methods is their high
sensitivity, even when very conservative (e.g., Bonferroni-
corrected) testing procedures are used. Here, we propose to
still rely on thresholding in the wavelet domain to improve
the SNR. However, we now perform the statistical test after-
wards in the spatial domain, taking into account the process-
ing that has been done in the wavelet domain (see Fig. 1).

Our method does not require the wavelet coefficients to
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be decorrelated. Our only assumption is that Nt is suffi-
ciently large (say Nt > 50) for sk/

√
J to be a reliable esti-

mate of the true standard deviation σk of gk. This hypothe-
sis is fullfilled in most fMRI experiments.

3.1. Adaptive spatial threshold

The procedure here is the same as the classical one ex-
plained in Sect. 2 up to the calculation of the t-value in
the wavelet domain. We also consider the thresholded val-
ues Tτw

(tk)gk, except that there is no statistical test yet at
this stage. τw is now considered to be a global threshold
parameter to be determined later on. First, we look for a
spatially-varying threshold function qn, such that, under the
null hypothesis, the probability that the reconstruction of the
processed wavelet coefficients contributing to the value of
the voxel n does not exceed the required significance level
αB :

P

[∣∣∣∣∣
∑
k

Tτw
(tk)gkψk(n)

∣∣∣∣∣ ≥ qn

]
≤ αB . (6)

To this end, we rewrite the absolute value of the reconstruc-
tion term, introducing the true standard deviation σk of gk:∣∣∣∣∣
∑
k

Tτw
(tk)gkψk(n)

∣∣∣∣∣ ≤
∑
k

Tτw
(tk)|gk| |ψk(n)|

=
∑
k

Tτw
(tk)

|gk|
σk

σk |ψk(n)|

= Λn

∑
k

λkTτw
(tk)

|gk|
σk

, (7)

with Λn =
∑

k′ σk′ |ψk′(n)| and λk = σk |ψk(n)| /Λn.
Due to the property

∑
k λk = 1, we observe that the ex-

pected value of (7) is given by

Λn E
[
Tτw

(t)
∣∣∣ g

σ

∣∣∣] , (8)

where t follows a t-distribution with J degrees of freedom,
and g/σ is distributed according to a normalized Gaussian.
We now have all the elements to apply to (6) the following
Bienaymé-Tchebycheff inequality

P [|X| ≥ Y ] ≤ E[|X|]
|Y | . (9)

In particular, if we select the threshold function to be qn =
τsΛn, with τs a positive scalar, we obtain

P

[ |∑k Tτw
(tk)gkψk(n)|∑

k σk |ψk(n)| ≥ τs

]
≤ E

[
Tτw

(t) · ∣∣ g
σ

∣∣]
τs

.

(10)
The right-hand side can be computed independently from
the data and for any choice of the thresholds τw and τs.
Thus, our task is now to determine some optimal threshold
values that make the probability bound on the right-hand
side of (10) equal to αB .

3.2. Optimal threshold values

Eq. (10) only provides a partial answer to our problem be-
cause there is still an infinity of possible combinations of τw

and τs that achieve the desired significance level. Specifi-
cally, by using the property that the t-distribution converges
to a Gaussian for large Nt, we obtain the relationship be-
tween both thresholds for a fixed αB :

τs =
1

αB

√
1
π

exp
(
−τ2

w

2

)
. (11)

Next, we show how a simple argument from approxi-
mation theory helps us to find the optimal threshold values.
Consider the following reconstructions:

un =
∑
k

gkψk(n),

rn =
∑
k

Tτw
(tk)gkψk(n),

r′n = TτsΛn(rn)rn,

corresponding respectively to the reconstruction of the
GLM’s fitted parameters2, the reconstructed data after
wavelet thresholding, and the final result including spatial
thresholding. It is appropriate to minimize the “approxima-
tion error” between the non-processed data un and the final
result r′n:

|un − r′n| ≤ |un − rn + rn − r′n|
≤ |un − rn| + |rn − r′n|
≤ (τw + τs)

∑
k

σk |ψk(n)| .

So, we need to minimize the sum of both thresholds. Using
(11), we can find the optimal values:

τs = 1/τw, τw =

√
−W−1

(
−α2

Bπ

2

)
, (12)

where W−1(·) is the −1-branch of the Lambert W-function,
which can be evaluated numerically [9].

4. RESULTS

We show an example of a block-based fMRI experiment
with auditory stimulation [10], consisting of Nt = 84
isotropic volumes (3mm×3mm×3mm). The setup of the
design matrix has been done as recommended in SPM and
incorporates a model for the HRF. We used Bonferroni-
correction for multiple testing that takes into account the
number of intracranial voxels (i.e., Nc = 2.6e6). We

2Notice that the same un would be obtained when fitting the GLM
directly in the spatial domain.
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Fig. 2. (a) Map obtained using the proposed approach showing the activation in the auditory cortex. (b) Reconstruction of
the “adaptive” part of the spatial threshold; i.e., Λn =

∑
k σk |ψk(n)|. (c) Map obtained using SPM (presmoothed data).

applied the 3D separable symmetric orthonormal B-spline
wavelet transform of degree 0.7 and one iteration [7]. The
optimal thresholds are τw = 5.83 and τs = 0.17. The spa-
tial activation map contains those voxels where rn/Λn ex-
ceeds τs. Notice that the value rn/Λn can be used to com-
pute a p-value using (11).

In Fig. 2 (a), the slice at the auditory cortex is showing
activation and can be compared against the result of SPM
in (c). The activated region in the upper part of the activa-
tion map appears disconnected, an observation that deserves
further examination from the brain’s structure in the T1 ac-
quisition. In Fig. 2 (b), the reconstruction Λn of the σk’s (or
at least their estimates sk/

√
J) is shown, using the “abso-

lute value reconstruction”. The sensitivity of our approach
is that it yields approximately the same number of activated
voxels (550) as SPM.

5. DISCUSSION & CONCLUSION

We proposed a unifying approach that takes advantage of
wavelet domain processing, but provides a statistical inter-
pretation in the spatial domain. The main result is derived
using Tchebycheff’s inequality and the minimization of the
approximation error between the unprocessed and final ac-
tivation map. Although Tchebycheff’s inequality is rarely
used for computational purposes, the truncated nature of the
probability density functions (i.e., after wavelet threshold-
ing with τw) renders it an appropriate tool in our case, as
confirmed by the reported sensitivity. The proposed method
requires only slight modifications to a standard wavelet-
based approach implementation; i.e., the computation of τw

and τs, and the reconstruction of Λn.
Currently, Nt is assumed to be large enough for the er-

ror of the estimate σk to be negligible. In future work, we
intend to take the variability of this estimate into considera-
tion as well.
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