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ABSTRACT 

We present new quantitative results for the characterization of the b-error of wavelet-like expansions as a function of the 
scale a. This yields an extension as well as a simplification of the asymptotic error formulas that have been published 
previously. We use our bound determinations to compare the approximation power of various families of wavelet 
transforms. We present explicit formulas for the leading asymptotic constant for both splines and Daubechies wavelets. 
For a specified approximation error, this allows us to predict the sampling rate reduction that can obtained by using 
splines instead Daubechies wavelets. In particular, we prove that the gain in sampling density (splines vs. Daubechies) 
converges to 7c as the order goes to infinity. 

Keywords: wavelet transform, linear approximation, error analysis, approximation theory, asymptotic& splines, 
Daubechies wavelets. 

1. INTRODUCTION 

The order of approximation is a fundamental notion in wavelet theory. It is a concept that is intimately related to the way 
in which wavelets interact with polynomials. It has important implications for data compression [l] (i.e., the ability of 
wavelets to approximate piecewise smooth functions), and signal analysis [2, 31 (i.e., the characterization of local 
singularities from the decay of the wavelet coefficients across scale). 

There are four equivalent indicators of the order of the transform: 
(i) The largest L such that the synthesis refinement filter can be factorized as 

H(z) = (1 + z-‘jLQ(z) (1) 
where Q(Z) is bounded on the unit circle. 

(ii) The number of vanishing moments of the analysis wavelet q(x); i.e., 
+= 

I x”yr(x)dx=O, (n=O,...,L-1) 
-c-3 

(2) 

(iii) The order of the synthesis scaling function cp(.x) in the sense of the reproduction of polynomials of degree 
n=L- 1. In other words, there must exist sequences c,,(k) such that 

&(k)cp(x-k)=x”, (n=O ,...) L-l). (3) 
kEZ 

(iv) The rate of decay of the approximation error 11s - e,fll as the scale n = 2’ goes to zero: 
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Ilf-%fJI=o(aL), as a=2’+0 (or i--+--m), (4) 

where pz, f denotes a (biorthogonal) projection off into the multiresolution subspace y = span{cp,,,}aGz. 
The first two conditions are emphasized in most wavelet textbooks [4, 5,6, 71. The equivalence with conditions (iii) and 
(iv) is not quite as well known; it goes back to the Strang-Fix theory of approximation [8]. 

In this paper, we are especially interested in the comparison of wavelets from the point of view of their approximation 
power, that is, the way in which the linear approximation error ((f - e, f (( d eta s as a function of the scale. While all Lth y 
order wavelets yield the O(a’) decay (4), we want to be more quantitative and look at the magnitude of the error more 
closely. 

This kind of investigation was initiated by Sweldens who derived some upper bound constant for the asymptotic error 
which he used to compare the various wavelet transforms available [9, lo]. This error analysis was then refined by Unser 
who derived the exact asymptotic form of the error [ 111. These analyses were all carried out in the time-domain using the 
Taylor series as the main tool. While this kind of approach yields a local (pointwise) characterization of the error, it does 
not lend itself easily to the derivation of global error estimates, except in the asymptotic regime. In this paper, we will 
circumvent this difficulty by using some recent theorems in approximation theory [ 121. In particular, we will show how it 
is possible to perform the entire error analysis in the Fourier domain. This will allow us to obtain simpler and more 
reliable error estimates. In particular, we will use our bound determinations to quantify the approximation power of 
various wavelet transforms. 

2. PRELIMINARY NOTIONS 

We take a more general perspective than the usual multiresolution formulation and consider signal representations in terms 
of resealed translates of an (almost) arbitrary generating function cp. At this stage, cp is not required to have the 
multiresolution property and the scale parameter (or sampling step) a can be arbitrary (not necessarily a power of two). 

Associated with the function cp is the autocorrelation sequence a,(k) = (cp(x),cp(x - k)) whose z-transform is 

A,(z) = ~,,,(cP(x)~~(x - k))z-‘. 

Its Fourier transform may be determined either by replacing z by ejw, or by using the identity 

A,(ejW) = ~I@(o + 27ck)12, 
ksZ 

(5) 

which is a direct consequence of Poisson’s summation formula; we use the mathematical symbolism j(w) to denote the 
Fourier transform of f(x) . 

Definition 2.1 : q(x) is an Lth order generating function if and only if 
(a) O<AIA,(e”)lB<+w (Riesz basis condition) 

(b) e(O) = 1 and (?)(111)(27ck) = 0, k E Z, k # 0 for (m = 0,. . ., L - 1) (Order property) 
where G(W) is the Fourier transform of cp, and $(“‘)(cu) denotes its mth derivative with respect to O. 
The corresponding signal representation space at scale a is 

-“2~c,(k)cp(xla-k):c, ~1~ . (7) 
I;EZ 

Condition (a) ensures that V,(q) is a well-defined subspace of L2 and that each function f, E y,(q) has a unique 
representation in terms of its coefficients c,(k) [133. The constraint (b) is the Fourier domain equivalent of Condition (iii) 
given in the introduction; it ensures that cp reproduces all polynomials of degree L- 1. This equivalence is well known in 
approximation theory; it is often referred to as the Strang-Fix conditions [ 14, 151. 
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To define a linear approximation operator in V,(q), we also need to specify an analysis function @. We assume that 
this function (which is not necessarily in L2) has a bounded Fourier transform and is biorthogonal to cp in the sense that 

(cp(x - k), @(x - 0) = S,-, (8) 
The corresponding approximation operator is 

(t,f)(n)=a-‘x(f,Cj(xla-k)).q(.x/u--k). 
ksZ 

(9) 

It can be shown that e, f is a projector. Note that it is an orthogonal projector if and only if $I E V(q), in which case 
(p = ‘p,! is the so-called dual of cp, which is unique [ 131. 

In the case of a wavelet transform, there is an additional multiresolution constraint: the analysis and synthesis 
functions @ and cp must be solution of two-scale equations. 

Definition 2.2 : q(x) is an Lth order scaling function if and only if it is an Lth order generating function satisfying 
the additional two-scale relation : 

cp(x/2)=~h(k)cp(x-k). 
k-22 

(9) 

By applying this refinement equation ad infinitum, one gets the equivalent infinite product representation of the Fourier 
transform of the scaling function cp 

jwl2' 

;p(w)= fi Hte2 i 1 ) ) 

i=l 
(10) 

where H(z) denotes the z-transform of the refinement filter h. It is then possible to establish the following which gives 
the equivalence between the conditions (i) and (iii) mentioned in the introduction (cf. [ 11). 

Proposition 2.3: H(ej”) has zeros of multiplicity Nat o = rc (i.e., H(z) = 2-L(1 t- z)~ . Q(Z) where Q(Z) is a stable 
transfer function) if and only if cp is an Lth order scaling function. 

3. THEORETICAL RESULTS 

Here, we are interested in studying the behavior of the L,-approximation error 

IIf- Cfll= 
( 
~(fw-cfb))2dx 

1 
"2> (11) 

-m 
as a function of the scale a. In particular, if we consider the dyadic scale a = 2’, it is clear that this measure also 
represents the truncation error for a wavelet approximation in which all the finer coefficients have been set to zero. We 
will derive estimates for this error in order to compare the performance of the various wavelet transforms available and to 
predict their coding performance. 

3.1 Approximation theorem 

Most of our error estimates involve a Fourier kernel associated with the projector; it is defined as follows: 

a(w)=l-~+AJ+)-+, 
Q ‘p 

(12) 
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where G(o) and 6(w) are the Fourier transforms of q and $, respectively - Ap(ei”‘) is given by (6). Note that the 
right most term in (12) is zero in the case of a semi-orthogonal transform, that is, when @ E V(q). Our main result is as 
follows (cf. [2]): 

Theorem 3.1: For all f E Wl (Sobolev’s space of order Y > $-), the approximation error is given by 

l~f-~,fl~=[~~~~a.,h~,~d~];’ +ya’.Ilf”‘IIL2. 
d 

where 1~1 I -$dm with c(s) = 5s ( Riemunn Zeta jkzct~on). 

(13) 

Thus, the approximation error is made up of two terms: a first one that is easy to compute by integration of the spectrum 
off against the kernel E(aw) , and a second one, Ae,f, that is bounded and depends on the regularity (differentiability) of 
J Clearly, the second term will vanish whenever the function f to approximate is sufficiently smooth with respect to the 
sampling step, that is, when r is large and a small (oversampling). Another remarkable property is that the second term - 
which may be positive or negative - will cancel out when one computes the average error over all possible shifts of the 
input function f (cf. Theorems 2 and 3 [ 161). Hence, the first part of the error in (13) provides a valid distortion measure 
which is meaningful whenever the initial positioning off with respect to the sampling grid can be considered to be 
arbitrary -this turns out to be the case in most applications. In addition, Aef(a) also vanishes when the sampling does 
not introduce any aliasing; for instance, when eitherf or ($ and q) are bandlimited. 
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Fig.1. Least squares approximation error of the function f(x) = em.” ‘* by cubic splines as a function of the sampling step T. 

The error estimate &j(T) (dashed line) is an unbiased smoothed version of the true error (solid line). 

3.2 Practical error estimation 

From the above theorem, we have the following measure of the approximation error 

&;(a) := &rE(am)/j(ofdo z (If -&fir . (14) 

This is a very good estimate of the true approximation error for the reasons that have just been mentioned. It is also 
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very easy to compute if we know the spectrum of f(x). The graph in Fig. 1 provides an example of comparison between 
our error estimate (left hand side of (14)) and the true approximation error (right hand side of ( 14)). In this experiment, 
we computed the least squares approximation of the test function f(x) = e-.“‘* using cubic splines with step size T. The 
two curves are in very close agreement with each other which demonstrates the adequacy of the error estimate (14). Also 
note that the measure E; (a) yields a smoothed version of the true approximation error (averaging property). 
Thus, the kernel E(o) contains all the necessary information for assessing the performance of a given approximation 
operator. Graphing these kernels will give us a direct and easy way of comparing the performance of various wavelet 
transforms. Some examples of least squares spline error kernels are shown in Fig. 2. 

Fig.2. Frequency plot of the error kernels for the orthogonal projection on the spline spaces of degree 0, 1, 2, and 3. The higher 
order kernels are consistently smaller below the Nyquist frequency o = 7t. This explains why higher order splines provide a better 
approximation of functions that are predominantly lowpass. 

3.3 Asymptotic error analysis 

We will now use Theorem 1 to compute the asymptotic form of the approximation error as the scale gets sufficiently 
small. This will allow us to add higher order terms to the first order result in [ 111. An advantage of the present 
formulation is that it is much more direct than the time-domain derivation that was initially proposed in [l 11. 

For f smooth (or a sufficiently small), we have u’llf”“li 4 0 w rc means that the second term in Theorem 1 h’ h 
vanishes. Therefore 

1I.f - Sf 112 = &TE(a~$?(a)f do, as a$+‘ll+ o 

To study the behavior of this error as a + 0, we take the Taylor series of E(o) at o = 0 : 

‘i’ EC2”‘(0) *p 21; 
E(w) = c----- n 

k=o (=I! 
o + O(a*Jo+202%+2) 

Substitution in (1.5) yields 

1l.f - lq* = &qf)/~ + qa*~~+*) L=ll 
(16) 

where 

((f’k’//z = JJd@$h 

-m 

(17) 
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is the energy of the kth derivative off, and where 

c, = E’*“‘(o) 
i! (2k)! ’ (18) 

Let us now consider an Lth order transform which preserves all polynomials up to order n=L-1 . One implication of 
this property (in addition to the vanishing moments of the analysis wavelet) is that E(w) must be essentially vanishing at 
the origin in the sense that E(w) = O(O~~), as w + 0. Thus, by keeping the first non-vanishing term in (16) only, we 
obtain 

IJf - ~,.fll = C~uLll.fL’IJ, as a --+ 0 (18) 

where C; = 4E’*“)(0)/(2L)! ; this is precisely the result reported in [l 11. By differentiating the kernel E(m) and using the 
biorthogonality property, it is then not difficult to obtain the explicit form of the leading asymptotic constant 

(19) 

which is the formula given in [ 111. 

4. COMPARISON OF WAVELET TRANSFORMS 

We will now compare the various wavelet transform based on the magnitude of the leading constant Ci . One difficulty is 
that the general form (19) is rather impractical for dealing with wavelets whose Fourier transform is specified through an 
infinite product in Fourier domain (cf. (10)). It is therefore crucial to search for a simpler formula in terms of the 
refinement filter h. 

4.1 Simplified bound calculation for the wavelet transform 

In the case of a wavelet transform, the scaling function cp is the solution of the two scale relation (9). By using a recursive 
computation that takes advantage of this relation, one can derive a much simpler formula for the bound constant (cf. [ 121) 

(20) 

where L is the order of the transform, A,(z) is defined by (5), and where Q(z) is the remainder in the factorization 

H(z) = 2-?l+ z)~ . Q(Z). (21) 

If the wavelet transform is orthogonal then AT(z) = 1, and the determination of the bound constant is straightforward. 
Otherwise, it necessary to determine A,(z), the z-transform of the autocorrelation sequence u,+,(k) = (q(x),cp(x -k)). In 
the case where H(z) is FIR, this can be done rather easily through the solution of a linear system of equation (cf. [17]). 
In fact, a,(k) is the eigenvector of the transition operator for the filter +H(z)H(z-‘) that corresponds to the eigenvalue 
one [6]. 

Table I provides a comparison of the bound constant for various wavelet transforms. Note that the results for splines are 
applicable for any type of spline wavelet transform (orthogonal Battle-Lemarie [ 18, 191, semi-orthogonal Chui-Wang / 
Unser-Aldroubi [20,21,22], and biorthogonal Cohen-Daubechies-Feauveau [23]). For a given order L, we see that the 
Daubechies wavelets have the worst performance; splines are by far the best. These results suggest that splines at half the 
resolution can provide as good an approximation as Daubechies wavelets at twice the rate. In general, the performance is 
better for the scaling functions that are the most regular. 
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TABLE 1 : RESCALED BOUND CONSTANT Ai = C; . L! 
FOR DIFFERENT WAVELET FAMILIES. 

L Daubechies closest-to-linear phase coiflets spline Dcslauriers-Dubuc 

0.2887 0.2887 0.2887 
0.2236 0.2236 0.2124 0.07454 0.07454 
0.2988 0.2988 0.03450 
0.5557 0.5557 0.4953 0.02182 0.187 I 
1.316 1.316 0.01734 
3.779 3.779 3.231 0.01655 1.212 

12.74 12.74 0.01844 
49.35 49.35 40.92 0.02347 15.06 

215.8 215.8 0.03362 

4.2 Splines versus Daubechies wavelets 

There are two families of wavelets for which the bound constant can be determined analytically. The first are the splines 
for which one gets (cf. [ 111) 

(22) 

On the right hand side, we have identified B2L, which is Bernouilli’s number of degree 2L [24]. Remarkably, it is also 
possible to obtain an explicit form for the Daubechies wavelets even if those wavelets don’t have a closed form solution. 
The result, which is derived in [ 171, is the following 

GaLhx,,ics = 4 -LJ&(,,“). (23) 

Thanks to those equations, we can derive the following asymptotic result, a most unusual occurrence of the number n! 

Theorem 4.1: Asymptotically as L + +m, the approximation quality of Daubechies wavelets is the same than that of 
splines sampled at a n-times courser rate, or, equivalently 

lim( Gaukchics / ~~plincn)“L = n 
L+== 

(24) 

Proof: This is only a sketch because we assume that (22) and (23) are given; the most difficult part is to obtain this latter 
equation (cf. [ 17]).To get the asymptotic form of the B-spline constant, we note that for L large, the predominant term in 
the infinite sum is the first one, so that 

2/2 
*im CL splms = -----T L-1- * 

(2x) 

On the Daubechies side, we use Stirling’s formula to get the asymptotic form of the factorials. Thus, we obtain 

lim CL,l~auhcchics = - 
L-i- &  

Finally, we take the ratio and determine the limit 
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