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Generalized Smoothing Splines and the Optimal
Discretization of the Wiener Filter
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Abstract—We introduce an extended class of cardinal
L L-splines, where L is a pseudo-differential operator satis-
fying some admissibility conditions. We show that the L L-spline
signal interpolation problem is well posed and that its solution
is the unique minimizer of the spline energy functional L 2 ,
subject to the interpolation constraint. Next, we consider the cor-
responding regularized least squares estimation problem, which
is more appropriate for dealing with noisy data. The criterion to
be minimized is the sum of a quadratic data term, which forces
the solution to be close to the input samples, and a “smoothness”
term that privileges solutions with small spline energies. Here, too,
we find that the optimal solution, among all possible functions,
is a cardinal L L-spline. We show that this smoothing spline
estimator has a stable representation in a B-spline-like basis and
that its coefficients can be computed by digital filtering of the
input signal. We describe an efficient recursive filtering algorithm
that is applicable whenever the transfer function of L is rational
(which corresponds to the case of exponential splines).

We justify these algorithms statistically by establishing an
equivalence between L L smoothing splines and the minimum
mean square error (MMSE) estimation of a stationary signal cor-
rupted by white Gaussian noise. In this model-based formulation,
the optimum operator L is the whitening filter of the process, and
the regularization parameter is proportional to the noise variance.
Thus, the proposed formalism yields the optimal discretization of
the classical Wiener filter, together with a fast recursive algorithm.
It extends the standard Wiener solution by providing the optimal
interpolation space. We also present a Bayesian interpretation of
the algorithm.

Index Terms—Nonparametric estimation, recursive filtering,
smoothing splines, splines (polynomial and exponential), sta-
tionary processes, variational principle, Wiener filter.

I. INTRODUCTION

I N A SERIES of companion papers, we have introduced a
general continuous/discrete approach to signal processing

that uses an exponential B-spline representation of signals
[1], [2]. A key feature of this framework is that it allows one
to implement continuous-time signal processing operations
exactly, and quite efficiently, by simple discrete processing of
the B-spline coefficients of the signal. Its main advantage over
the traditional bandlimited approach is that the underlying basis
functions are compactly supported. The E-spline framework
offers the choice of a large variety of basis functions, which are
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specified in terms of their poles and zeros, and which constitute
a considerable extension of the standard, piecewise polynomial
ones. While the availability of such a rich collection of signal
models provides many new design opportunities, it also raises
the issue of the selection of the most appropriate one for a given
application. One possible criterion is to favor simplicity and to
choose the input signal representation (e.g., piecewise constant
or linear) that minimizes algorithmic complexity. Another
option, which is the one developed in this paper, is to optimize
the choice of the signal space based on the characteristics (e.g.,
general smoothness properties or prior statistical distribution)
of the class of continuous-time signals from which the measure-
ments (discrete samples) are derived. This can be accomplished
in essentially two ways: a) within a deterministic framework by
searching for a solution that minimizes some suitable smooth-
ness energy functional and b) within a stochastic framework by
deriving a Bayesian or a minimum mean square error (MMSE)
estimator of the signal. Similar to what has been noted in
the related area of image restoration [3]–[5], we will see that
these various points of views (which may be referred to as
Lagrange/Tikhonov, Bayesian, and Wiener) are mathematically
equivalent and that they lead to generalized spline solutions
that can be determined by digital filtering techniques. We will
also take advantage of the proposed formalism to specify a
rather general class of spline estimators that can handle noisy
input data, similar to the classical smoothing splines proposed
by Schoenberg and Reinsh [6], [7].

The model-based approach to splines that we are suggesting
has its roots in approximation theory: There is an extensive liter-
ature that deals with the variational aspects of splines and even
a whole sub-branch of spline theory that uses the energy min-
imization property as starting point for the definition of a gen-
eralized notion of spline [8]–[10]. This kind of formulation is
also the one that carries over best to multiple dimensions; for
instance, it has led to the methods of thin-plate splines and ra-
dial basis functions [11]–[13], which have become quite popular
for the interpolation of scattered data in multiple dimensions.

The equivalence between variational splines and statistical
estimation techniques—in particular, Bayesian ones—has been
recognized early on [14], [15]. Smoothing splines and their mul-
tidimensional extensions have been studied in depth by Wahba,
who used a powerful Reproducing-Kernel-Hilbert-Space for-
mulation [16]; these efforts led to a variety of nonparametric
linear estimation techniques, which are now widely used in
statistics [17]–[19]. Somewhat lesser known is the work of
Weinert, who uncovered the connection between spline inter-
polation and MMSE estimation and who used this formal link
to derive Kalman-type recursive smoothing algorithms [20],
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[21]. The theoretical connection that exists between spline esti-
mation techniques and the kriging methods that were developed
in geostatistics for the interpolation of scattered data is also
relevant to the issue [22]–[24].

Unfortunately, the adaptation of these mathematical results
to the cardinal framework is not straightforward. The major dif-
ficulty is that the above-mentioned formulations all consider a
finite number of samples—these cannot be simply transposed
to infinite dimensions without resolving some delicate conver-
gence and stability issues. In addition, the generality of some
of the methods (they consider nonuniform samples as well as
space-varying differential models) is such that it does not facil-
itate the identification of fast computational schemes. This is a
typical situation where it is more efficient to formulate the con-
strained version of the problem and to derive the solution we
are seeking. This justifies our present effort, which is to revisit
the variational aspects of splines within the cardinal framework.
As in our previous work, we apply a signal processing formu-
lation and take advantage of the shift-invariant structure of the
problem, with the following benefits:

• Simplification of the theory: Even though there are a
few technicalities associated with the infinite dimen-
sionality of the data sequences, we can simplify the
mathematics by applying Fourier techniques. In par-
ticular, there is no more need for a special treatment
of the homogeneous component of the solution (in our
view, the most delicate aspect of the classical formula-
tion) because there are no boundary conditions.

• Generality: The Fourier domain formulation allows us
to consider a larger class of spline-defining (pseudo-
differential) operators than what is done usually—with
the restriction that they need to be shift-invariant.

• Self-contained formulation: The present derivations
and algorithms can all be explained in standard signal
processing terms, making them accessible and more
appealing to this community.

• New computational solutions and link with standard
signal processing methods: As in our previous work,
we can solve the spline fitting problems using dig-
ital filters. The formulation also yields an optimal dis-
cretization of the classical Wiener filter.

The paper is organized as follows. In Section II, we start with
a brief exposition of the key mathematical notions that are re-
quired for this paper. In Section III, we enlarge our previous
family of cardinal E-splines by introducing the notion of spline-
admissible convolution operator. We then consider the class of
positive-definite operators L L that yield generalized cardinal
splines with interesting mathematical properties. In Section IV,
we show that these L L-splines can also be specified via the
minimization of a pseudo-differential energy functional. We use
this functional to define a smoothing spline estimator for noisy
signals. Taking advantage of the existence of a B-spline-like
representation of these splines, we derive efficient smoothing
spline algorithms, extending our earlier results for polynomial
splines [25]. In Section V, we propose a statistical interpretation
of the proposed spline fitting techniques. In particular, we show
that the smoothing spline algorithm solves the problem of the

MMSE estimation of a stationary signal corrupted by additive
white noise. This result is important because it allows us to opti-
mally tune the parameters of the spline algorithm based on some
a priori knowledge of second-order statistics of the signal and
noise. It also yields a fast recursive implementation of the clas-
sical Wiener filter (cf. (18) and Appendix II), as an interesting
by-product. Finally, we also show how to recast the spline es-
timation problem into a Bayesian framework, which is more in
line with the interpretation of Kimeldorf and Wahba [14].

II. PRELIMINARIES

We start with a presentation of the notations and mathematical
tools that are used throughout the paper.

A. Continuous-Time Operators and Function Spaces

In our formulation, we consider an extended family of linear
shift-invariant operators L, which are characterized by a convo-
lution kernel , i.e., L , where the argument

is a continuous-time function with . We assume
that is a tempered distribution (i.e., ) and that its
Fourier transform is a true function of .
The adjoint operator is denoted by L , and its impulse response
is .

We classify the operators L according to an equivalent differ-
entiation order .

Definition 1: The convolution operator L is of order if and
only if, for all positive real , we have that

(1)

A prototypical example of an th order operator is the th frac-
tional derivative D , whose frequency response is . An al-
ternative notation is D .

To each operator L, we associate a corresponding generalized
Sobolev space

where is the Fourier trans-
form of . For the particular choice L D , we recover the
usual Sobolev spaces of order , i.e., .

Our first result clarifies the link between the order of the op-
erator L and the classical notion of Sobolev smoothness (for a
proof, see Appendix I).

Theorem 1: Let L be a linear shift-invariant operator of order
; then, for all , we have the following

properties.

i) .
ii) If , then the Poisson summation formula holds

almost everywhere.
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iii) If , then the integer samples are square
summable: .

In particular, when L is of smoothness order , then the
samples of are in .

B. Digital Filters and Sequence Spaces

Discrete signals are indexed by the discrete variable
using square brackets to distinguish them from their con-

tinuous-time counterparts. Such signals will be distinguished
based on their appartenance to the classical sequence spaces:

with
for , and .

The digital filtering of a sequence yields the signal
, where is the impulse response

response of the filter; when the discrete context is obvious, we
will sometimes drop the time indices and simply write .
The digital filter can also be represented by its equivalent con-
tinuous-time impulse response .

Here, we will only consider “stable” filters whose impulse
responses are in . The frequency response of such a filter,
which is obtained by evaluating the -transform of ,

, for , is guaranteed to be bounded and
continuous [26].

An important related mathematical result is Young’s in-
equality

for (2)

which implies that the application of such a filter to an -se-
quence produces an output signal that is in as well. For in-
stance, by taking , we can deduce that the digital fil-
tering of a bounded input (BI) signal produces a bounded output
(BO) signal. In fact, there is a well-known equivalence between

and BIBO-stability, where the latter property is crucial
for signal processing applications [27]. Another direct conse-
quence of Young’s inequality for is that the cascade of
two BIBO-stable filters and yields a filter

that is BIBO-stable as well. In addition, note that
implies that has finite energy (i.e., ) because of

the inclusion property of the discrete spaces:

for

The convolution inverse of will be denoted by . A suf-
ficient condition for the existence of this inverse is provided by
Wiener’s Lemma [29], which states that if
and for . Hence, the inverse filter
is stable provided that the frequency response of is nonvan-
ishing.

The adjoint operator of (real-valued) is the time-reversed
filter whose impulse response is . Indeed, we
have the -inner product relation

which is established by simple change of summation variable.

C. Riesz Bases

Cardinal splines provide a one-to-one mapping between dis-
crete sequences and continuous-time functions. A convenient
mathematical way of describing this mapping is through the
specification of a Riesz basis for a given spline family. In the
present context, the Riesz bases have a convenient integer-shift-
invariant structure , where the generator is
a generalized B-spline, which is typically the shortest possible
(or most localized) spline within the given family. A standard
result in sampling theory is that the integer shifts of a function

form a Riesz basis1 if and only if there exist two
positive constants and such that

(3)

where denotes the Fourier transform of . The corre-
sponding function space, which is a subspace of , is

(4)

The Riesz basis conditions implies that we have an equivalence
between the -norm of a signal and the -norm
of its coefficients :

with equality if and only if the basis is orthonormal, that is, when
.

In some instances—for example, when one is processing
samples of a stationary process as in Section V —one is in-
terested in enlarging the space of admissible splines by
allowing for B-spline coefficients . This is possible,
provided that the Riesz basis is -stable, that is, when there
exist two positive constants and such
that

for any . It can be shown (cf. [30]) that a suffi-
cient condition for an integer-shift-invariant Riesz basis

to be -stable (for all ) is

(5)

which adds a stronger constraint to (3). In particular, our -sta-
bility condition implies that must be
bounded and included in for all . Conversely,
we note that (5) is satisfied whenever is bounded and de-
cays faster than with . This is obviously the

1The condition '(t) 2 L is not absolutely necessary, but it simplifies the
formulation by ensuring that the sum in (3) is continuous in ! when B exists.
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case for the exponential B-splines described in [2], which are all
compactly supported.

We now establish a Young-type convolution inequality for the
-stability condition, which will be required later on.
Proposition 1: Let and be two -stable func-

tions. Then

Proof: We consider the following 1-periodic function in ,
which we bound from above:

(Fubini's Theorem)

where we have used the fact that the functions
and are 1-periodic in and

, respectively, and where we have bounded them by their
maximum within this period. Since this inequality is true for
all , it also holds for the value of at which the left-hand side
function reaches its maximum, which yields the desired result.

III. L L-SPLINES AND CARDINAL INTERPOLATION

A. Spline-Admissible Operators

In our previous series of papers, we have investigated the car-
dinal exponential splines and have shown how these can be spec-
ified via a differential operator L, whose transfer function can
be expressed as a polynomial in or, more generally, the ratio
of two such polynomials. Here, we extend our class of linear,
shift-invariant operators L further to encompass an even wider
family of splines. The operators that we will be considering
are referred to as “spline-admissible”; they must satisfy the fol-
lowing properties.

Definition 2: L is a spline-admissible operator of order if
and only if we have the following.

1) L is a linear shift-invariant operator of smoothness
order .

2) L has a well-defined inverse L whose impulse re-
sponse is a function of slow growth (i.e.,

). Thus, L admits as Green’s function: L
.

3) There exists a corresponding spline-generating func-
tion (gener-
alized B-spline) that satisfies the Riesz basis condition
(3).

4) The localization operator in 4) is a stable digital
filter in the sense that .

5) The spline generator satisfies the -stability con-
dition (5).

Properties 1) to 3) are quite explicit and easy to check. Prop-
erties 4) and 5) are less direct statements; the most delicate
issue is to establish that there is indeed a function in
span that satisfies the Riesz basis condi-
tion. This typically needs to be done on a case-by-case basis for
a given family of operators.

We will now elaborate some more on the crucial role played
by the localization filter and justify the use of this terminology.
The Fourier transform of is given by

so that a necessary requirement for it to be in is that the lo-
calization filter be such that is
compensates for the potential singularities of the inverse filter

. In particular, this means that must locally
have the same behavior as , especially around the frequen-
cies where is vanishing. An important practical require-
ment is that should have the largest possible degree of
continuity (ideally, ) to guarantee that has very
fast decay (ideally, compact support). It also makes good sense
to select a digital filter such that is close to one
over a reasonable frequency range. This will have the following
desirable effects:

1) It will ensure that the discrete operator is a good
approximation of the continuous-time operator L .

2) It will yield an impulse-like spline generator that
is well localized in time; this function can be thought
of as a regularized approximation of in the space
generated by the Green function of L, which is typi-
cally nonlocal.

Prominent examples of spline-admissible operators are the
th-order derivatives D and, more generally, the

whole class of operators with rational transfer functions that
generate the generalized exponential splines [2]; the only con-
straint is that the degree of the numerator must be greater
than that of the denominator so that the order
is positive. The generalized splines considered in [31] are also
included. We should note, however, that the present class is con-
siderably larger; for instance, it includes fractional derivatives
that admit B-spline like generators, albeit not compactly sup-
ported when the order is noninteger [32]. It also contains some
more exotic self-similar operators that can be associated with
refinable basis functions and wavelets [33].

This naturally leads to the following definition of a general-
ized cardinal L-spline.

Definition 3: The continuous-time function is a cardinal
L-spline if and only if L with

.
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Since L is a generalized th-order differentiation operator,
the intuitive meaning of this definition is that is piecewise
“smooth” with th-order discontinuities at the integers.

In general, when L is spline-admissible, it is possible to rep-
resent such a spline in terms of its generalized B-spline expan-
sion with . Note that the

’s in Definition 3 are related to the ’s through the dis-
crete convolution relation , where is the
localization filter.

B. Positive Definite Operators and Symmetric B-Spline
Interpolation

One potential problem when considering general L-splines
is that the corresponding cardinal interpolation problem is not
necessarily well-posed. In this section, we will show that this
problem can be avoided by considering the cardinal splines as-
sociated with the class of positive definite operators L L. To
this end, we will first specify an -stable Riesz basis for these
splines. We will then show that the corresponding interpolation
problem is always well-defined and that it can be solved effi-
ciently by digital filtering.

Proposition 2: Let L be a spline-admissible oper-
ator of order with spline generator such that
L . Then, the positive defi-
nite operator L L is spline-admissible of order with
symmetric spline generator such that
L L .

Proof: We need to show that all conditions in Definition 2
are satisfied for the operator L L. Using the inequality

we see that if the left-hand side converges for any ,
then the right-hand side converges for any ,
where ; i.e., L L is of order if L is of
order .

Because is a true function and is a tempered
distribution, then is tempered as well. Its inverse
Fourier transform thus satisfies L L .
Next, we evaluate L L L L

, which proves that is an L L-spline. The
corresponding localization operator is symmetric and
guaranteed to be in as long as .

The spline generator is -stable, as a direct conse-
quence of Proposition 2. -stability, in particular, ensures that
the upper Riesz bound in (3) is well-defined. The existence of
the lower Riesz for implies that is
nonvanishing for all . By writing this sum for a given

as , we deduce that be-
cause there must always be at least one that is nonzero. This

implies that the lower Riesz bound for is strictly greater
than zero, which completes the proof.

Now that we have identified an stable B-spline-like basis
for the cardinal L L-splines, we want to use this representation
to determine the spline function that interpolates
a given discrete input signal . It turns out that such a
spline interpolant always exists and that its B-spline coefficients
can be computed by simple digital filtering of the input data.

Proposition 3: Let span be the car-
dinal spline space associated with the symmetric operator L L,
where L is spline-admissible, as in Proposition 2. Then, the
problem of interpolating a bounded sequence in has
a unique and well-defined solution. The interpolating spline is
given by

where is the impulse response of the digital filter
whose transfer function is

Moreover, we have the following equivalence:

(6)

Proof: To establish this result, it suffices to note that there
is an exact correspondence between the integer samples of
and the Gram sequence of the Riesz basis generated by :

(7)

This relation allows us to write the discrete-time Fourier trans-
form of as follows:

(8)

which is positive and greater than the lower Riesz bound
. Since (as a consequence of -stability) and

is nonvanishing, we can apply Wiener’s Lemma to show that
its convolution inverse is in . Finally, we verify that the
solution is interpolating by resampling at the integers,
which amounts to evaluating the discrete convolution relation:

(because is the convolution
inverse of ).

To prove (6), we evaluate the quantity

L :
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where , and
. Because and satisfy the Riesz

basis condition and because is bounded (since
), there exist two constants such that

This means that is bounded from below and from
above by Const .

Proposition 3 implies that there is a one-to-one mapping be-
tween the spline interpolant and the discrete samples
of the signal . This mapping is not restricted
to -sequences; it is also valid when , which is
the most general setting for doing discrete signal processing.
The spline coefficients are obtained by filtering the discrete
input signal with the interpolation filter , which is guar-
anteed to be BIBO-stable. The representation is reversible since

, where is the sampled version of the gener-
alized B-spline.

When is compactly supported, the interpolation can be
implemented quite efficiently by using the recursive filtering
procedure described in Appendix II; see also [34]. To take full
advantage of this type of algorithm, we need to have an explicit
time-domain expression for the spline-generating function .
This is possible when the spline-defining operator has a rational
transfer function

with . In this case, is a rescaled and re-
centered exponential B-spline with parameters

:

(9)

(10)

which can be determined explicitly using the generalized spline
formulas given in [2]. This is a symmetric function of class

that is supported in . The corresponding Fourier
domain formula is

(11)

in which we can also identify the transfer function of the local-
ization filter .

When the underlying L-spline basis is or-
thonormal, the interpolation algorithm becomes trivial since the
filter reduces to the identity (because the evaluation of (7)
yields ). This happens, for example, when is a
Haar function (B-spline of degree 0) or a Daubechies scaling
function of order [35]. The corresponding L L interpola-
tors are the second-order piecewise linear interpolator, and the

th-order Dubuc–Deslaurier interpolators whose basis func-
tions are the autocorrelation of a Daubechies scaling function
[36].

IV. VARIATIONAL SPLINES AND ALGORITHMS

We have just seen that it is always possible to interpolate a
data sequence with an L L-spline and that this process estab-
lishes a one-to-one mapping between the discrete and contin-
uous-time domain representations of a signal. In this section, we
show that this kind of interpolation can also be justified theoret-
ically based on an energy minimization principle (variational
formulation). We also consider a variation of the data fitting
problem that relaxes the interpolation constraint and is therefore
better suited for dealing with noisy signals. This is achieved by
introducing a regularization constraint, which leads to a class of
nonparametric estimation algorithms, referred to as “smoothing
splines.”

A. Energy Minimization Properties

Theorem 2: Let L be a spline-admissible operator of order
. Then, we have the remarkable norm identity

L L L

where is the unique L L-spline that interpolates ,
i.e., , , as specified in Proposition 3.

Proof: We will prove that if such that
for , then the inner product between L and
L vanishes. Note that because —the
sampled version of —is in (as a consequence of
(6) and iii of Theorem 1). Moreover, because ,

(see ii of Theorem 1). With
the same notations as for the proof of Proposition 3, we have

L L

where the first term on the right-hand side is bounded because
is in ; is

upper bounded (because ); and is lower bounded
(Riesz basis condition).

Thus, we have L L L L L
L L L , which provides the result of

the theorem when we make .
Corollary 1: Let be a discrete input signal and L

be a spline-admissible operator of order . Among all
possible interpolating functions , the optimal one
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that minimizes L subject to the interpolation constraint
is the L L-spline interpolant specified in

Proposition 3.
Indeed, for any interpolating function , the quadratic

norm L can be written as the sum of two positive terms
where the first one is fixed and uniquely determined by the
input samples . Therefore, the optimal solution among
all possible interpolators is , which makes the
second term vanish.

Corollary 1 expresses a well-known property of splines that
goes back to the pioneering work of Schoenberg [37]. For L
D , the optimal interpolant is the cubic spline with L L D .
Since D is a good approximation of the curvature of ,
the cubic spline interpolant is often said to have the “minimum
curvature” property; in fact, this is the argument2 that was used
by Schoenberg for calling these functions “splines”.

The energy minimization property of splines in Theorem 2
constitutes a variation on a well-known theme in spline theory
[8]. It is a complementary result because the traditional formula-
tion usually considers a finite number of data points on a nonuni-
form grid. Since our formulation is restricted to the cardinal
framework, we are obviously giving up on some level of gener-
ality. However, there are some positive compensations: First, the
result in Theorem 2 is also applicable to certain nonlocal differ-
ential operators, such as those with rational transfer functions,
which are not covered by the standard theory. Second, the car-
dinal framework is ideally suited for signal processing because
it allows for very efficient digital-filter-based solutions that are
not available otherwise. Last, but not least, the present formu-
lation leads to important theoretical simplifications because the
derivation are entirely Fourier-based; in particular, this keeps us
from having to worry about the technicalities associated with
the part of the solution that is in the null space of the operator
L L.

B. Smoothing Splines

When the input data is corrupted by noise, it can be
counterproductive to determine its exact spline fit. Instead, one
would rather seek a solution that is close to the data but has some
inherent smoothness to counterbalance the effect of the noise.
There are two possible ways to look at this problem within our
variational framework: The first is to say that we want an ap-
proximate fit where the magnitude of the approximation error
is fixed (i.e., , where the
constant is typically set to a fraction of the noise variance)
and where all remaining degrees of freedom are taken care of by
searching for the continuous-time solution that minimizes

L . Alternatively, we may assume that we have some
a priori knowledge on the solution, which is given in the form of
an upper bound on the spline energy functional (i.e., ,
where needs to be smaller than the energy of the spline inter-
polant), and search for the solution that minimizes the quadratic
fitting error , subject to this constraint. In general, when
the data is noisy and L is of order , any attempt to decrease the
fitting error will increase the spline energy , and vice

2According to the American Heritage dictionary, a spline is a thin rod that
was used for drawing smooth curves.

versa. This means that both formulations are qualitatively equiv-
alent because they attempt to achieve the right balance between
having a solution that is close to the data (i.e., small) and
one that is smooth in the sense that is reasonably small. It
turns out that the first problem is mathematically equivalent to
the second one. The solution can be determined by using the
method of Lagrange multipliers; in both cases, this boils down
to the minimization of the functional , where is a
free scalar parameter that is selected such as to fulfill the con-
straint. A remarkable result is that the solution of this approxi-
mation problem, among all possible continuous-time functions

, is a cardinal L L-spline and that it can be determined by
digital filtering.

Theorem 3: Let L be a spline-admissible operator of
order with spline generator such that
L . Then, the
continuous-time solution of the variational problem with dis-
crete input data and regularization parameter

L (12)

is a unique and well-defined cardinal L L-spline. It is given by

(13)

where and where is the impulse
response of the digital smoothing spline filter whose transfer
function is

(14)

Proof: Since the cost function is quadratic in , the
problem is guaranteed to have a solution. Using Theorem 2, we
write the criterion to minimize as

L

L

where is the L L-spline interpolator of the sequence
. The left-most data term is entirely specified by the integer

samples . If we assume that the ’s are the samples of
the optimal solution, we can further minimize the regularization
part of the criterion by selecting the solution that
sets the third positive term to zero. This proves the first part
of the theorem; namely, that the optimal solution is a cardinal
L L-spline.

To determine this spline solution, we substitute its
B-spline expansion (4) into the criterion. Using the fact
that L L L together with the property
L L , we manipulate to
express its explicit dependency on

L
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which now involves discrete convolution operators and -inner
products only; is the digital convolution kernel defined by (7).
The optimal solution is determined by setting the partial deriva-
tive of with respect to to zero, which yields

Using the fact that the symmetric convolution operator
is invertible, we get the discrete convolution relation

This equation can be solved by going into the discrete-time
Fourier domain

where is given by (8) and is guaranteed to be strictly
positive. Hence, the filter , which
is made up of positive terms only, cannot vanish and can be
safely inverted, irrespective of the value of , to yield the
smoothing spline filter described by (14).

The optimal solution in Theorem 3 is called a
smoothing spline. By adjusting the regularization parameter ,
we can control the amount of smoothing. When , there is
no smoothing at all, and the solution coincides with the spline
interpolant specified in Proposition 3. For larger values of ,
the smoothing kicks in and tends to attenuate high-frequency
components because the localization filter has qualitatively the
same th-order behavior as the operator: (cf.
argument in [2]). In the limit, when , the only signal
components left are the ones in the null space of the operator
L, for instance, the best fitting polynomial of degree when
L D (polynomial spline case). Note that when is
rational, the smoothing spline filter can be implemented
quite efficiently using the recursive algorithm that is given in
Appendix II.

The key practical question is how to select the most suitable
operator L and the optimal value of for the problem at hand.
While this can be done empirically along the lines of what has
been exposed at the beginning of this section, it can also be
approached in a rigorous statistical way by introducing a sto-
chastic model for the signal. In Section V, we will establish a
formal equivalence between the present smoothing spline al-
gorithm and MMSE-estimation for stationary processes, which
will allow us to select these parameters in an optimal fashion.

To illustrate the smoothing spline concept, we now consider
the case of the first-order differential operator L D I with

. Its causal Green function is . We lo-
calize this function by applying to it the digital filter

, which yields the first order exponential B-spline:
, as described in [1]. The gener-

ating function for the optimal smoothing spline in Theorem 3

Fig. 1. Optimal interpolation kernels associated with the first-order differential
operators LL = D��I. The corresponding parameter values from top to bottom
are � = 0 (piecewise linear interpolator) and � = �1;�2;�4;�16. The
magnitude of � controls the degree of concavity of the curve and its peakedness
at the origin, while the sign has no influence.

corresponds to the autocorrelation function of , which is
given by

for and
for and
for

(15)

with

for
for .

(16)

These functions are continuous, symmetric, and supported in
. The corresponding interpolation kernels are obtained

by dividing these B-splines by . Some examples are shown
in Fig. 1.

The B-spline coefficients of the smoothing spline are obtained
by filtering the data with the digital filter whose transfer function
is

(17)

At the end of the process, the integer samples of the smoothing
spline are recovered by convolving the computed B-spline co-
efficients with (the sampled B-spline kernel). In the first-order
case that has just been considered, this amounts to a simple
scalar multiplication by . In practice, it makes good sense to
incorporate this rescaling into the smoothing spline filter, which
is equivalent to considering an expansion in terms of renormal-
ized basis functions , such as the ones displayed in
Fig. 1.

This smoothing spline filter can be implemented quite effi-
ciently from a cascade of first-order causal and anticausal oper-
ators. It is a filter that is commonly used for image processing
and goes under the name of the Shen–Castan detector. As far as
we know, this type of exponential filtering has not yet been cat-
aloged as a smoothing spline estimator, expect for the piecewise
linear case , which is investigated in [25].

C. Splines Under Tension and Generalizations

In some applications, it can be desirable to have more free
parameters for the specification of the regularization functional.
For instance, one may consider a linear combination of energies
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associated with derivatives of increasing order. It turns out that
this type of problem can be solved in essentially the same way
as the previous one.

Corollary 2: Let L , be a series of spline-ad-
missible operators of order with stable spline generators

such that L
with . Then, the continuous-time solution of the varia-
tional problem with discrete input data and regular-
ization parameters

L

is a L L -spline, which is unique and well-defined. It is
given by

where ; the B-spline coeffi-
cients are determined by digitally filtering the input data

with the filter , whose transfer function is

Proof: We bring this problem back to the previous one by
using the linearity of the -inner product and noticing that

L L L

L L

Thus, we may consider an equivalent operator L such that
L L L L . The simplest way to get such an L is by
taking a square-root in the Fourier domain. When the ’s
are rational transfer functions that satisfy the Paley–Wiener
condition, we can apply a standard spectral factorization tech-
nique to determine a solution that corresponds to a causal
operator. The operator L will be associated with a spline-gen-
erating function whose Gram sequence is the inverse
Fourier transform of

. Because of the stability
assumption on each individual components, we have that

, where and
are the lower and upper Riesz bounds of the individual

spline-generators . This guarantees that L—irrespective of
whether it is causal or not—is a spline-admissible operator; the
result then follows directly from the application of Theorem
3.

The well-known splines-under-tension, initially introduced
by Schweikert, correspond to the choice L D and L D
[38]. The present formalism provides a most efficient way to
implement this smoothing method on a uniform grid.

V. APPLICATION TO STOCHASTIC SIGNAL PROCESSING

In this section, we propose two equivalent stochastic inter-
pretations of the deterministic spline-fitting methods that have
been considered so far. The main difficulty here is that the in-
teger samples of a stationary process defined over the entire
real line are not in , which has the unfortunate consequence
of making the variational quantities considered in Section IV
ill-defined. First, we will bypass this difficulty by concentrating
on the task of determining the minimum mean square estimate
(MMSE) of the process at a given time . We will then propose
an alternative Bayesian formulation that is restricted to the peri-
odic case where the various energy terms can be renormalized.
In either case, we will see that the general spline-fitting algo-
rithms that have been presented so far are optimal for the esti-
mation of a wide family of stationary signals. The relevant class
of stationary processes are the regular ones (cf. [39]) whose
whitening operator is spline-admissible. The advantage of the
present formulation is that it yields a proper discretization and a
recursive implementation of the corresponding Wiener filter for
stationary signals corrupted by additive white noise.

A. Stationary Processes: Innovations and Whitening Filters

Here, we will consider the case of a continuous-time signal
that is a realization of a wide sense stationary process.

The process is assumed to have zero mean, ,
, and is characterized by its autocorrelation function

. Its spectral power density is
given by [39].
Furthermore, we assume that the process is regular in the sense
that there exists a whitening filter L—which is generally not
BIBO stable but whose impulse response is a tempered distri-
bution—that transforms into an innovations signal

, which is completely uncorrelated. The whitening filter
is the inverse of the innovations filter that transforms
back into .

The whitening property implies that
L L . If, in addition, L is spline-admis-
sible, this is equivalent to saying that can be represented
in terms of the B-spline basis functions associated with the op-
erator L L. Thus, we can write that

where is the discrete convolution inverse of the localization
operator .

B. MMSE Estimation and Spline Interpolation

The next result provides a strong statistical justification for
the use of L L-spline interpolation.

Theorem 4: Let be the samples of a realization of a
continuous-time stationary process whose whitening filter L is
spline-admissible. Then, the linear MMSE estimator of at
time , given the samples , is , where

is the L L-spline interpolator of , as specified
in Proposition 3.
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Proof: The goal is to determine the linear estimator
such that the mean square error

is minimized. The estimator is specified
by the bi-infinite sequence of regression coefficients ,
which are collected in the vector . By applying the orthogo-
nality principle , , it is not
difficult to show that the optimal regression coefficients are the
solution of the corresponding Yule–Walker equations:

where is an infinite Toeplitz matrix whole entries are
and where is the infinite correlation

vector whose th entry is . This system of
equations can also be written as a discrete convolution equation

By convolving this equation with (the BIBO-stable con-
volution inverse of ), we find that the optimal coefficients are
given by

where is the convolution inverse of . Thus, the final
form of the MMSE estimator is

where the B-spline coefficients are obtained as
.

Thus, we have a simple, efficient spline interpolation algo-
rithm that provides the linear MMSE estimator of a stationary
signal at noninteger locations. If, in addition, we assume that the
process is Gaussian, then the spline interpolation corresponds to
the conditional mean that is the optimum solution among all es-
timators (including the nonlinear ones). Interestingly, we note
that the result remains valid when the autocorrelation function

is a cardinal L L-spline, which is less restrictive than the
requirement that L is the whitening filter of the process.

C. MMSE Estimation and Smoothing Splines

We consider a similar estimation task but in a noisy situation.
The goal is now to estimate a realization of the process
given some noisy measurements , where

is some additive, signal-independent white noise. Here, too,
there is a direct connection with our previous variational formu-
lation: The optimal solution is provided by the smoothing spline
algorithm described in Section IV-B.

Theorem 5: Let be a realization of a contin-
uous-time wide sense stationary process whose autocor-
relation function is such
that L L , where L is spline-admis-
sible. Then, the linear MMSE estimator of at time

, given the measurements ,
where is white noise with variance , is
with , where is the L L-smoothing
spline fit of , as specified in the second part of
Theorem 3.

Proof: The argument is essentially the same as before,
with the linear estimator now being .
The matrix entries for the corresponding Yule–Walker equations
are , which now
takes into account the effect of independent additive noise, and

, which is unchanged. Here, too,
the system can be rewritten as a discrete convolution equation

where denotes the discrete Kronecker impulse. By
convolving each side of this identity with —the convo-
lution inverse of —and dividing by , we get

Finally, we solve this equation by applying the convolution in-
verse of the filter on the left-hand side, which yields

where the relevant inverse filter is , as defined by (14), with
.

This result is interesting in two respects. First, it provides
us with the optimum regularization parameter
for the smoothing spline algorithm, which is quite valuable.
Second, it yields an estimation algorithm that is an optimal dis-
cretization of the classical continuous-time Wiener filter. The
discrete version of the output signal is recovered by resampling
the smoothing spline at the integers, which is equivalent to a dig-
ital post-filtering with the sampled version of the basis function
(B-spline). Both filters can be combined to yield an equivalent
discrete filter Wiener, whose frequency response is

(18)

where is defined by (8).
While smoothing splines and conventional Wiener filtering

should lead to similar results, the former has a conceptual ad-
vantage over the latter because it provides a solution that is valid
for any and not just the integers. If we were designing a
classical Wiener filter, we would have the choice between two
options: i) Restrict ourselves to the integer samples and use a
purely discrete formulation, or ii) derive the continuous-time so-
lution and discretize the corresponding filter assuming, as one
usually does, that the signal is bandlimited. With the present
formulation, the answer that we get is more satisfying because
we are addressing both issues simultaneously: a) the specifica-
tion of the optimal signal space and b) the search for the best
solution within that space, which leads to a digital filtering so-
lution. In addition, when the spline generator is compactly
supported, the smoothing spline formulation yields a recursive
filtering algorithm (cf. Appendix II) that is typically faster than
the traditional Wiener filter, which is specified and implemented
in the Fourier domain.

As an illustration, we consider the estimation of a first-order
Markov signal corrupted by additive white noise. This measure-
ment model is characterized by two parameters: the normalized
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Fig. 2. Example of continuous-time signal estimation from discrete noisy
data. The underlying third-order continuous-time process x(t) is displayed in
dotted lines, and its noise-free samples are marked by crosses. The noisy input
samples are shown as circles. The thin continuous curve is the corresponding
interpolating L L-spline. The optimal smoothing spline (thicker line) is
comparatively much closer to the noise-free reference signal.

correlation coefficient
and the quadratic signal-to-noise ratio: SNR .
The autocorrelation function of the normalized first-order
Markov process is , and its spectral power
density is [39]. We
whiten the process by applying the filter
with , which corresponds to the first-order
differential operator D I. The variance of the normalized
whitened signal is given by .
Thus, the optimal estimator is an exponential spline with pa-
rameter , and the smoothing spline algorithm can be
implemented efficiently via the recursive filtering procedure
described at the end of Section IV-B. The optimal smoothing
parameters is SNR . It can also be checked
that the smoothing spline filter defined by
(16) and (17) is equivalent to the classical discrete-time Wiener
filter that can be specified for the corresponding discrete
first-order Markov model. The essential difference here is that
the smoothing spline fit also fills in for the noninteger values of
the signal.

Some concrete results of another similar signal esti-
mation problem are shown in Fig. 2. The corresponding
spectral shaping filter is a third-order allpole system with

. The noise-free contin-
uous-time process is represented by a dotted line. The
noisy input samples are displayed as circles.
The corresponding L L-spline estimators were computed in
Matlab using the recursive filtering procedure described in
Appendix II. The spline interpolant , which
fits the noisy input data exactly, is displayed using a thin
continuous line, while the optimal smoothing spline estimator
with is superimposed using a thicker line.
Clearly, is less oscillating than and closer to the
noise-free signal.

D. Bayesian Formulation

Following the lead of Wahba and others, it is also tempting
to interpret smoothing spline estimation in Bayesian terms. The
difficulty, when is a realization of a stationary process, is
that the cost function in (12) is not defined because the input
sequence is no longer in . We can circum-
vent the problem by concentrating on the time interval
and assuming that the process is -periodic with in-
teger. The corresponding normalized cost function with input
data is written as

L

(19)
and its minimization yields the periodic maximum a poste-
riori (MAP) estimate of the signal .
This is because the criterion corresponds to the a poste-
riori log-likelihood function of a Bayesian measurement
model: , where the unknown noise
and signal random variables are Gaussian-distributed. In
the Bayesian framework, the data term of the criterion is

, which corresponds to the addi-
tive white Gaussian noise component, while the regularization
term is , which is the log-likelihood prior derived
from the signal model. In the present case, the log-likelihood
prior corresponds to a periodic stationary signal whose au-
tocorrelation function is the -periodized version of the one
considered in Sections V-A–C. This can be shown by applying
a standard argument from time-series analysis: First, we ex-
pand the periodic signal into a Fourier series, noticing that
the Fourier coefficients
are Gaussian distributed with zero mean and variance

. Next, we use the prop-
erty that the Fourier coefficients of a stationnary signal
are independent and write the corresponding Gaussian
log-likelihood function

, where is a signal-independent
constant. Finally, we map the result back into the time domain
using Parseval’s formula, which yields the right-hand side
integral in (19) up to a constant offset.

From a mathematical point of view, the minimization of the
MAP criterion (19), subject to the periodicity constraint

, is the periodized version of the smoothing spline
problem in Theorem 3. This means that the solution can be de-
termined by applying the exact same algorithm (digital filtering
with ) to an augmented -periodic input signal .
The solution is a -periodic cardinal L L-spline, which can be
represented as with
or, equivalently, as with

.

VI. CONCLUSION

We have presented a series of mathematical arguments to jus-
tify the use of splines in signal processing applications. They
come into two flavors:
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1) Deterministic results: The L L-spline interpolator is
the optimal solution among all possible interpolators

of a discrete signal in the sense that it minimizes
the energy functional L . This is a result that
holds for a relatively general class of generalized
differential operators L, including those with rational
transfer functions. The same type of property also
carries over to the regularized version of the problem
that involves a quadratic data term. The corresponding
solution defines the L L smoothing spline estimator,
which is better suited for fitting noisy signals.

2) Statistical results: Here, the premise is that we are
observing the integer samples of a realization of
a continuous-time stationary process , whose
power spectrum is . Then, the
L L-spline interpolator (resp., smoothing spline esti-
mator) evaluated at yields the MMSE estimator
of when the measurements are noise-free (resp.,
corrupted by additive white Gaussian noise). This is a
strong result that implies that the E-spline framework
is optimal for the estimation of stationary signals
whose power spectrum is rational.

The solutions of these problems are defined in the continuous-
time domain, and a key contribution of this work has been to
show how to compute them efficiently using digital filters. The
smoothing spline and interpolation algorithms that have been
described yield the expansion coefficients of the continuous-
time solution in the corresponding B-spline basis; once these
coefficients are known, the spline function is entirely specified
and can be easily evaluated at any location with an cost.
When the transfer function of the operator L is rational, then
the corresponding exponential B-spline is compactly supported,
and the whole process is implemented efficiently using recursive
filtering techniques.

Thanks to the above-mentioned MMSE property, our gen-
eralized smoothing spline algorithm, when evaluated at the
integers (cf. (18)), is in fact equivalent to a classical discrete
Wiener filter. In this respect, the present formulation brings
in two advantages. First, it yields a direct characterization of
the restoration filter in the -transform domain together with
a fast recursive algorithm—this has to be contrasted with the
standard frequency-domain specification and implementation
of the Wiener filter. Second, the underlying spline also gives the
optimal solution at noninteger locations, which is an aspect that
is not addressed in the traditional formulation. Thus, we may
think of the smoothing spline as an optimum discretization of
the Wiener filter: In addition to yielding the optimally filtered
sample values, it also specifies the function space that allows us
to map the solution back into the continuous-time domain. Note
that the optimum function space is generally not bandlimited,
which constitutes a conceptual departure from the standard
signal processing paradigm.

In this paper, we have limited ourselves to the class of varia-
tional problems that have explicit spline solutions that can be
computed using simple linear algorithms (i.e., digital filters).
We believe that the proposed spline framework can also be ex-
tended to yield some interesting nonlinear algorithms for con-
tinuous/discrete signal processing. For instance, we note that the

variational argument that is used in the beginning of the proof
of Theorem 3 will also hold in the more general case where the
data term is an arbitrary nonlinear function of the the signal
samples . This implies that there is a much more general
class of variational problems that admit a cardinal L L-spline
solutions and may require the development of specific compu-
tational techniques. This may constitute an interesting direction
for future research.

APPENDIX I
PROOF OF PROPOSITION 1

A. Proof of Property i

Because L is of order , (1) implies that

for every . Moreover, if belongs to , then

which proves that implies .

B. Proof of Property ii

Again, let belong to and . We build the
function . Then,
using Cauchy–Schwarz inequality, we have

The left-hand side is integrable in since , which
implies that is square integrable over . This also
implies that is square integrable as well,
while the convergence from to is dominated by the above
right-hand side. Thanks to Fourier’s theorem, we know that the

-periodic function can be expressed as
almost everywhere. The coefficients are given by

(Lebesgue's dominated convergence Theorem)
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which proves Poisson’s summation formula for and all its
derivatives up to order .

C. Proof of Property iii

As a corollary of ii., the coefficients are known to belong
to because .

APPENDIX II
RECURSIVE IMPLEMENTATION OF THE SMOOTHING

SPLINE/WIENER FILTER

When the underlying B-spline and localization filter are com-
pactly supported, which is necessarily the case when is ra-
tional, the smoothing spline filter specified by (14) is an
allpole symmetrical system. This implies that its roots (poles)
come in reciprocal pairs with be-
cause the filter is stable (cf. Theorem 3). To obtain a stable re-
cursive implementation, we need to separate the filter into causal
and anticausal components.

A first solution is based on the product decomposition

where is an th-order polynomial in of the form

This suggests a cascade structure where the allpole causal filter
is implemented recursively from left to right and is

followed by the anticausal filter , whose implemen-
tation is essentially the same, except that the recursion is applied
from right to left. The only delicate aspect is the handling of the
boundary conditions, which should be chosen to be mirror sym-
metric to minimize artifacts. When all roots are real, this can
be done via the algorithm described in [34], which is based on
a finer decomposition into a cascade of firstorder systems, with
an appropriate treatment of boundary conditions.

When some of the roots are complex, the decomposition into
a cascade of first-order systems is less attractive computation-
ally. The grouping into second-order systems is not a good so-
lution either because of the complications introduced by the
boundary conditions. We therefore propose an alternative ap-
proach that is based on the sum decomposition

(20)

where is a stable causal rational filter.
The coefficients of the polynomial in the denominator of

are determined by solving a linear system of equation or
by regrouping the causal terms of a decomposition of in
simple partial fractions.

We now propose a simple practical solution for implementing
this filter using a standard causal recursive filtering module (e.g.,
a Matlab routine) while enforcing the constraint of mirror sym-
metric boundary conditions. Let denote our

input signal of size . This signal is extended to infinity, at least
conceptually, by imposing the mirror symmetric conditions

(21)

which produces an extended signal that has centers of symmetry
at the boundaries ( and ) and is -peri-
odic. The reason for using these particular boundary conditions
is that they are preserved at the output when the filter symmetric,
which is precisely the case here. This ensures that the spline
model is consistent with the same boundary conditions on .
For instance, in the case of an exact fit , we recover
exactly by filtering the B-spline coefficients with ,
which is center-symmetric as well.

For a signal that satisfies boundary conditions (21), it is not
difficult to show that

with , where is the causal filter in the sum
decomposition (20). Thus, a quick and simple way of imple-
menting the smoothing spline filter is by constructing an aug-
mented input vector , feeding it into a
causal recursive filter to obtain the values ,
and finally computing as indicated above.
The integer is selected sufficiently
large for the transient effect of the general purpose causal fil-
tering routine to be -negligible at .
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