
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005 1425

Cardinal Exponential Splines: Part I—Theory and
Filtering Algorithms

Michael Unser, Fellow, IEEE, and Thierry Blu, Member, IEEE

Abstract—Causal exponentials play a fundamental role in
classical system theory. Starting from those elementary building
blocks, we propose a complete and self-contained signal processing
formulation of exponential splines defined on a uniform grid. We
specify the corresponding B-spline basis functions and investigate
their reproduction properties (Green function and exponential
polynomials); we also characterize their stability (Riesz bounds).
We show that the exponential B-spline framework allows an exact
implementation of continuous-time signal processing operators
including convolution, differential operators, and modulation,
by simple processing in the discrete B-spline domain. We derive
efficient filtering algorithms for multiresolution signal extrapola-
tion and approximation, extending earlier results for polynomial
splines. Finally, we present a new asymptotic error formula that
predicts the magnitude and the th-order decay of the 2-ap-
proximation error as a function of the knot spacing .

Index Terms—Continuous-time signal processing, convolution,
differential operators, Green functions, interpolation, modulation,
multiresolution approximation, splines.

I. INTRODUCTION

DURING the past decade, there has been an increasing
number of papers devoted to the use of polynomial splines

in signal processing (cf. [1] and the references therein). The
interest in these techniques grew after it was shown that most
classical spline-fitting problems on a uniform grid (interpo-
lation, least squares, and smoothing splines) could be solved
efficiently using recursive digital filtering techniques [2]–[4].
These spline-based algorithms have been found to be quite
advantageous for image processing and medical imaging, espe-
cially in the context of high-quality interpolation, where it has
been demonstrated that they yield the best cost-quality tradeoff
among all linear techniques [5]–[8]. Polynomial splines have
also been shown to play a fundamental role in wavelet theory
[9].

Although there are a few applications of polynomial splines
in continuous-time signal processing [10]–[12], splines have ap-
parently had less impact in this area. Part of the reason may
be that (piecewise) polynomials do only appear marginally in
basic systems theory (e.g., the rect function and the impulse re-
sponse of the -fold integrator: ). The most promi-
nent functions in continuous-time signal-and-systems theory are
the exponentials, which correspond to the modes of differen-
tial systems (analog filters and circuits) [13]. Having made this
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observation and motivated by the search for a unification be-
tween the continuous and discrete-time approaches to signal
processing, we decided to undertake the task of extending the
previously mentioned formulation to the enlarged class of ex-
ponential splines. These splines, as their name suggests, are
made up of exponential segments that are connected together
in a smooth fashion. They form a natural extension of the poly-
nomial splines and have been characterized mathematically in
relatively general terms [14], [15]. Even though there have not
been many computational applications of exponential splines so
far, we believe that they constitute an attractive, unifying frame-
work for signal processing, which is something that we intend
to demonstrate in the present series of papers. Two earlier pa-
pers by Panda et al. [17] and Asahi et al. [37] are also relevant
to the issue.

The kind of splines that are the most appropriate for signal
processing are the cardinal ones, which are defined on a uniform
grid. Mathematically, this corresponds to the simplest possible
setup, which goes back to the pioneering work of Schoenberg
on polynomial splines in 1946 [17]. Since then, there have been
many theoretical advances, and the methods of spline construc-
tions have been extended for nonuniform grids and many other
types of nonpolynomial basis functions [14]. In particular, there
is a small, rather sophisticated mathematical literature on ex-
ponential splines [15], [18], [19], which are themselves special
cases of Tchebycheffian splines [20], [21], as well as -splines
[22]. There are also a few papers on exponential box splines
[23], [24], which are multidimensional extensions of the uni-
variate B-splines; however, this is relatively advanced material
because the mathematical analysis of multivariate box splines is
known to be much harder than in the univariate case [25]. These
unifying spline theories are very elegant, but their level of gen-
erality is often such that it is difficult for a spline outsider to
extract the information that is relevant to his application.

As far as signal processing is concerned, what is missing in
the literature is a specialized, accessible, and yet comprehen-
sive theory of cardinal exponential splines, and this is the gap
that this paper is attempting to fill. The good news is that the
choice of a uniform grid leads to important simplifications, thus
making it possible to propose a self-contained formulation using
relatively elementary mathematics, which is something that has
not been done before, to the best of our knowledge. The main
advantages of the cardinal framework are as follows.

• Shift-invariance: The structure of the problem is
such that we can make use of the standard mathe-
matical tools of signal processing (Fourier, Laplace,
and -transforms), which simplifies the formulation
considerably.
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• Digital filter-based solutions: Similar to what has been
done before for polynomial splines [3], [4], it is pos-
sible to derive explicit formulae and recursive digital
filtering solutions that do not exist in the more general,
nonuniform, or multidimensional cases.

• Terminology: The concepts and algorithms can be
explained in standard “signal-and-systems” terms,
making these splines more accessible to this commu-
nity.

The paper is organized as follows. In Section II, we start with
a brief review of ordinary differential operators and show how
these can be linked to the definition of exponential splines. From
there, we focus on cardinal splines, which are defined with re-
spect to the integer grid. In Section III, we investigate the prop-
erties of the exponential B-splines and prove that every cardinal
spline has a unique and stable representation in terms of such
basis functions. In the process, we also provide B-spline repro-
duction formulae for Green functions and exponential polyno-
mials, as well as an explicit specification of the Gram sequence
of the B-spline basis. In Section IV, we show that the exponen-
tial B-spline framework is ideally suited for performing some
basic continuous-time signal processing operations in the dis-
crete domain. In particular, we present novel digital algorithms
for the exact implementation of continuous-time convolution,
differential operators, dilation, and modulation. Finally, in Sec-
tion V, we consider the possibility of changing the spline reso-
lution and describe a filtering algorithm for computing the min-
imum-error approximation of a signal in some cardinal spline
space with step . We also provide an asymptotic formula for
the -approximation error for smooth signals.

The practical relevance of these results will be demonstrated
in a series of companion papers [26], which are part of a larger
program that aims at unifying continuous and discrete signal
processing.

A. Notations

Vectors are marked with an arrow and are used to represent
-tuples, i.e., . The concatenation of two

vectors and of size and , respectively, yields a vector
of size denoted by .

We consider real or complex-valued continuously de-
fined signals that are typically included in

, which is the Hilbert space of finite-energy func-
tions. The corresponding (Hermitian) inner product is

, where is the com-
plex conjugate of . is the -norm of .

The Fourier transform of is denoted by .
For , it is given by

; otherwise, it is defined in the distribu-
tional sense. The (unilateral) Laplace transform of a causal
(possibly exponentially increasing) function is defined as

. When is analytical
along the axis , then coincides with the
Fourier transform.

The one-sided power function is . The unit
step is written as , which is compatible with this notation.

The discrete counterpart of is , which is the Hilbert
space of square-summable (real or complex-valued) sequences.
The discrete signal is characterized by its -trans-
form . Its discrete-time Fourier trans-
form is obtained by setting

.

II. PRELIMINARIES

In this section, we briefly review some basic properties of
ordinary differential operators and use these to define of a wide
class of exponential splines.

A. Differential Operators

Let us consider the generic differential operator of order

(1)

with constant coefficients , whose argument is some con-
tinuously varying time function . Here,
denotes the th-order derivative, and is the identity op-
erator. The operator is also characterized by the roots of its
characteristic polynomial

(2)

We will therefore use the notation , where
is a vector that specifies the roots explicitly.

Note that the roots may be complex and that their ordering
is irrelevant; in other words, there is an equivalence class
associated with all possible permutations of the components of

. In order to be able to handle the case of multiple roots, we
will sometimes use the alternative notation ,
where stands for the th distinct root which is of order
(or multiplicity) . Thus, we have that ,
where is the total number of distinct roots.

The equation (where and are the
input and output signals, respectively) defines a linear, shift-
invariant system (convolution operator). Knowing the roots of
the characteristic polynomial, we can factorize the system into a
cascade of first-order operators .
In the Fourier domain, this is expressed by

(3)

where the right-hand side form of the frequency response uses
our second, alternative root notation. Note that the above for-
mula corresponds to the evaluation of the characteristic polyno-
mial (2) for .

B. Null Space

The null space of , which is denoted by , is the space of
dimension that contains all the solutions of the homogenous
differential equation . As is well known from
systems theory, these can all be written as linear combinations
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of the modes of , which are exponentials and, possibly, ex-
ponential polynomials of the form for a
root of multiplicity . More precisely, we have that

span

where the ’s are the distinct roots of the characteristic
polynomial (2). This means that has an exponential anni-
hilation property in that it will produce a zero output for any
excitation signal .

C. Green Function

In signal processing, a shift-invariant operator is usu-
ally characterized by its impulse response .
When dealing with differential equations, it is more conve-
nient mathematically to consider the reverse characterization

, where is the so-called Green function
of . In signal processing terms, is the impulse response
of the inverse operator . The only difficulty when dealing
with the differential operator is that is not unique in
the sense that we may add to it any component
and still satisfy the equation . To
obtain a unique definition, it is therefore necessary to introduce
additional (boundary) conditions. Among all possible solutions,
there is a single one that is causal (i.e., ), and
it is the one that we are considering here.

It is well known that the Green function of the first-order op-
erator is the one-sided (or causal) exponential:

(4)

as can be verified by substitution. We can then use this result
and work our way up to higher orders using the fact that

, which follows from the
(commutative) factorization of into a cascade of first-order
systems. This leads to the convolution formula for the Green
function of

(5)

which is guaranteed to be causal (but not necessarily absolutely
integrable), provided that the individual constituents are causal
as well. To obtain the corresponding explicit time formula, we
take the Laplace transform of (5) and decompose it into partial
fractions

(6)

which imposes the coefficients . Finally, we take the inverse
transform, which yields

(7)

D. Exponential Splines

We will now see how it is possible to associate a family of
exponential splines with each differential operator . This is

a generalization of the classical polynomial-spline case which
corresponds to the choice .

Definition 1: An exponential spline with parameter and
knots is a function
such that

(8)

where the sequence is bounded and where is the Dirac
distribution.

This means that exhibits discontinuities of order at
the knot points but that it is very smooth otherwise; in fact,
in each interval, coincides with a function that is in the
null space of . From the definition of the Green function, we
deduce the following explicit representation of the exponential
spline:

(9)

where is an additional global component that is a solu-
tion of the homogeneous differential equation .
Note that in order to characterize uniquely, we need to de-
termine the homogenous component ; this is usually
done through the specification of boundary conditions ( linear
constraints).

An important property of the exponential polynomials is that
the space that they span is shift invariant; specifically, for any
shift , we have that

which is also an exponential polynomial with parameter . Con-
sequently, since the individual spline atoms (shifted Green func-
tions and ) are linear combinations of exponential polyno-
mials (the modes of ), the same is obviously true for
within each interval . Moreover, Definition 1 implies
that the spline pieces are patched together in a way that guaran-
tees the continuity of the function and its derivatives up to order

. These are properties that justify the denomination “ex-
ponential spline.”

The present spline definition is quite general. For
, we recover the classical—nonuni-

form—polynomial splines, which are extremely well
studied and the most popular in applications [27], [28].
For , we get the splines under tension, which
were initially derived from the solution of a variational problem
[29]. For , the null space contains
pairs of real exponential functions that can be
grouped and represented in terms of the hyperbolic functions

; this is the reason why these types of
splines are often referred to as hyperbolic ones [18], [30]. The
trigonometric splines are another important family for which
the roots are purely imaginary and equally spaced around the
origin [31], [32].
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On the other hand, the exponential splines that have just been
presented are a special case of the so-called Tchebycheffian
splines (or -splines), which are made of segments coinciding
with functions in certain Tchebycheffian spaces (here, the expo-
nential polynomials) that are connected together such as to in-
sure a certain degree of continuity [20], [21]. These latter splines
are themselves included in the family of -splines, which can
also be represented in terms of the Green function of some gen-
eral differential operator [22]. The theory of -splines goes
quite further than what has been exposed here in that the differ-
ential operators may be shift-variant. In fact, is defined by a
formula analogous to (1) with coefficients that may
vary smoothly with [14].

III. CARDINAL EXPONENTIAL SPLINES

The cardinal exponential splines correspond to the special-
ized case where the knots are at the integer, i.e., . We
will now see that this particular framework allows for important
simplifications and that it is ideally suited for a signal processing
formulation. While the general spline representation (9) is obvi-
ously still valid in this particular context, it is not the one that we
are promoting here. Instead, we will consider an equivalent ex-
pansion in terms of compactly supported basis functions, which
is much more efficient to work with. Interestingly, the compu-
tational tools that we will describe are, for the most part, based
on digital-filtering techniques.

A. Construction of Exponential B-Splines

The exponential B-splines are localized, that is compactly
supported and shortest possible, versions of the Green functions
that generate the exponential splines. The way in which such
B-splines are constructed is especially easy to understand in the
first-order case and is illustrated in Fig. 1. One takes and
subtracts a shifted—and properly weighted—version of it to an-
nihilate the exponential term for . This yields the first order
B-spline with parameter

(10)

Note that this first-order B-spline is supported in [0,1), irrespec-
tive of . In addition, it is non-negative, provided that
is not oscillating, that is, when is real.

The higher order B-splines are obtained by successive convo-
lution of lower order ones:

(11)

which is a process that is justified by the convolution relation
(5) of the corresponding Green functions. It follows that the

th-order B-splines are supported in . Another impor-
tant property is that the regularity of these functions increases
with ; indeed, (the class of functions with con-
tinuous derivatives up to order ), which is not surprizing
since it is an th-order exponential spline, as we will see below.
Some examples of such B-splines are shown in Fig. 2.

Fig. 1. From Green functions to B-splines. (a) Causal exponential � (t) with
� = �0:5. (b) Exponential B-spline � (t).

Fig. 2. Examples of exponential B-splines. (a) First-order B-splines with � =
�2, �1, �1=2, 0, and 1/2. (b) Second-order B-splines � (t) with � as in
(a). (c) N th-order B-splines � (t) with � = �1=4 and N = 1; . . . ; 5.

As in the first-order case, the higher order exponential
B-splines are non-negative whenever is a real vector. In fact,
we have the following inequality:

Re (12)

which can be proven by induction.
We now define the localization operator with parameter as

(13)

where is the th-order exponential finite-difference se-
quence characterized by its -transform

Thanks to this notation, the exponential B-spline with parameter
can be written explicitly and more concisely as

(14)

Thus, we have established that the exponential B-spline can be
expressed as a linear combination of integer shifts of the Green
function , which proves that it is a cardinal exponential
spline with parameter .

Another convenient way to characterize these B-splines is to
go to the Fourier domain. By combining the Fourier transforms
of (11) and (10)—or, equivalently, by transforming (14)—we
find that

(15)

Since is formed from a product of first-order terms, it
is of interest to investigate the general behavior of its individual
components. The frequency response of the first-order B-spline



UNSER AND BLU: CARDINAL EXPONENTIAL SPLINES: PART I—THEORY AND FILTERING ALGORITHMS 1429

with complex parameter , is a sinc-like
function that exhibits a well-pronounced maximum at the res-
onance frequency Im and that asymptotically decays
like as one moves away from it. The amplitude
of the maximum is

for Re

Re for Re (16)

and can be used to normalize the amplitude response.
To prove this, it suffices to notice that

and that this max-
imum is attained for . Interestingly, the general shape
of the normalized frequency response only depends on the
magnitude of Re but not on its sign.

The frequency response for the limiting case Re is a
modulated sinc function, which exhibits zeros at Im

, with . The general effect of including an attenuation
term Re is to broaden the central peak and to smooth out
the response, as illustrated in Fig. 3. Our next result formalizes
the property that the central peak at is the narrowest—and
the attenuation away from it maximal—for .

Proposition 1: The general inequality

Im
(17)

holds true for all .
Proof: Starting from (15) with and ,

we write the following identity, which is obtained after a few
trigonometric manipulations:

The right-hand side is seen to be larger than
, thanks to the general inequalities

and

These two relations are proven by noticing that
and arcsinh are in-

creasing functions of (their derivative is always positive) and
are thus themselves positive for .

Note that this result obviously implies that Im
, with the extended vector notation

.

B. B-Spline Properties

The B-splines are always stable and well-defined (i.e.,
bounded and compactly supported), even when the underlying
Green functions are diverging at infinity (as in the polyno-
mial spline case); that is, when there is at least one root with

Fig. 3. Normalized first-order frequency responses j�̂ (!)j=M for
various values of �. These functions all have their maximum at ! = ! . The
lowest curve is j�̂ (!)j, which vanishes at all integer multiples of 2�, except
at the origin ! , where it takes the value one.

Re . In fact, changing the sign of the roots has a simple
mirroring (and scaling) effect

(18)

which is a property that can be visualized in Fig. 2(a) for
the first-order case. A direct implication is that an expo-
nential B-spline is symmetric with respect to its center-
line whenever its roots are either zero or can be grouped
in pairs of opposite sign; a prototypical example is that

with . In
addition, note that one can increase the multiplicity of the
nonzero roots in the previous example to generate a one-pa-
rameter family of symmetric B-splines that is equivalent to the
generalized B-splines considered in [16].

The convolution of two B-splines yields another one of aug-
mented order:

(19)

which is a key property that follows directly from (11). There
is a corresponding formula for the cross-correlation of two
B-splines

(20)

with the notation . This is established by using
(18) and noticing that .

Another fundamental property is that is the shortest
possible cardinal spline with exponential parameter . This can
be established by adapting Schoenberg’s famous proof for the
polynomial spline case [33]. One intuitive explanation is the fol-
lowing: A localization filter of order has zeros that pre-
cisely cancel the poles of the denominator in (15). If the lo-
calization filter was chosen to be shorter, there would be some
singularities left, and the basis functions would be infinitely
supported. If, on the other hand, one would select a longer,
pole-cancelling filter, it would necessarily include as a
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factor and, therefore, yield a longer basis function that would
include the B-spline as a convolutional factor.

C. B-Spline Representation

The key result that is emphasized in this section is the
B-spline representation theorem, which is a generalization of
Schoenberg’s classical result for cardinal polynomial splines
[33].

Theorem 1: The set of functions provides
a Riesz basis of —the space of cardinal exponential splines
with finite energy—if and only if for
all pairs of distinct, purely imaginary roots.

Thus, if one excludes the pathological cases of improp-
erly spaced imaginary roots first identified by Ron [24], this
means that every cardinal exponential spline with parameter

has a unique and stable representation in
terms of its B-spline expansion

(21)

Even though this result can be deduced from existing theorems
in spline theory (e.g., in the context of the construction of local
bases for -splines [14] or in the multidimensional setting of
exponential box splines [23], [24]), we will propose our own
derivation, which will reveal some important connections and
relations that will be particularly useful for our purpose, which
is signal processing.

There are two important aspects to Theorem 1. The first is
completeness, meaning that the B-splines span the space of car-
dinal exponential splines. To prove this point, we need to show
that in the case of integer knots, it is possible to express the
individual components in (9)—shifted Green functions and ex-
ponential polynomials—as linear combinations of exponential
B-splines. The second is stability, which presupposes the exis-
tence of upper and lower Riesz bounds. Here, we use Fourier
analysis techniques that are now well established in sampling
and wavelet theory [34], [35] and obtain some precise estimates,
which have not been reported before.

1) Reproduction of the Green Function: Formally, we can
reconstruct the Green function by inverting (14), which
yields

(22)

where is the unique causal sequence that satisfies
. Thus, the -transform of is

, which we decompose as

(23)

where the are coefficients determined using the standard
partial-fraction expansion method. Next, we apply the inverse

Fig. 4. B-spline reproduction properties. (a) Reproduction of the Green
function � (t). (b) Reproduction of the exponential e . The B-spline is
shaded.

-transform, which yields an explicit formula for the Green-
function reproducing sequence in (22):

(24)

where

for
for

is the discrete analog of the exponential polynomial . In the
case of a first-order operator, the B-spline coefficients in (22)
are the samples of the Green function , as illustrated in
Fig. 4(a).

For higher order systems, the principle is essentially the same,
except that the determination of the coefficients is slightly more
involved.

2) Reproduction of Exponential Polynomials: If we extrap-
olate the Green function for , that is, if we drop the “ ”
subscript of in (7), we get an exponential polynomial. We
can obtain the corresponding B-spline reproduction formula by
extrapolating (22) for negative ’s. In the first-order case, this
yields the particularly simple formula

which is illustrated graphically in Fig. 4(b). Similarly, for a
system with a single root of multiplicity , we find that

which is a generalized version of the well-known monomial re-
production formula of the polynomial B-splines with .

We then extend the argument to higher order splines by ob-
serving that the exponential polynomial reproduction is pre-
served through convolution.

Proposition 2: Let be a function that reproduces the ex-
ponential polynomials in span .
Then, for any such that , the composite
function also reproduces these exponential polyno-
mials.

The statement that reproduces the exponential polyno-
mials of degree is equivalent to the existence of sequences

such that for
. For our formulation to be rigorous, we also require

two mild technical conditions: i) ,
and ii) , which are
satisfied when the functions are exponential B-splines.
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Proof: First, we show that the convolution product of
and yields another exponential polynomial of degree :

(25)

The coefficients are finite because of the decay condition
i) on , which ensures that the exponentially weighted mo-
ments are well-defined for .

The next step is to convolve the exponential polynomial re-
production formula of with :

where we have made use of (25) and of conditions i) and ii)
to justify the exchange of the order of convolution and sum-
mation (Fubini’s Theorem). Finally, because of our assumption
that , we have that for ,
which ensures that these exponential polynomials form a basis
of .

Since the th-order B-spline is constructed by convolution of
lower order ones, this implies that it has the ability to reproduce
the exponential polynomials that are in the union of the null
spaces of all lower order constituents.

Of course, the above argument only holds if the condition of
validity for Proposition 1 is met in all cases. This means that we
cannot include any first-order B-spline for which the
condition fails, i.e.,

, which does only happen when and are two distinct,
purely imaginary roots with . In such a situa-
tion, the exponential reproduction formula
collapses to zero, implying that the basis functions are linearly
dependent. This is a problem that has been studied in depth by
Ron [24] within the more general context of exponential box
splines.

3) Gram Sequence: The stability of the B-spline basis de-
pends on the condition number of its Gram matrix. Because the
basis functions are shifted versions of a single prototype, the
Gram matrix is entirely characterized by the Gram (or autocor-
relation) sequence

(26)

whose explicit form is obtained as a special case of the cross-
correlation formula (20). Note that the Gram sequence is Her-
mitian-symmetric and that it vanishes for (remember
that is supported in , with its two end points

being zero). An important theoretical quantity is the discrete-
time Fourier transform of , which can be written in the
form of a trigonometric polynomial

(27)

the coefficients of which are given by (26). There is also another
equivalent form

(28)

which is useful for deriving certain mathematical properties.
This latter equation, which is related to the first one through
Poisson’s summation formula, expresses the fact that is
obtained by sampling the continuously defined autocorrelation

function whose Fourier transform is .

4) Riesz-Basis Property: The functions are
said to form a Riesz basis if and only if there exist two constants

and such that

(29)

Moreover, we know from basic sampling theory that the lower
and upper Riesz bounds are given by (cf. [36])

(30)

(31)

which enables us to compute them on a case-by-case basis by
using the expression of provided by (27).

We now have all the pieces to complete the proof of Theorem
1.

Proof of Theorem 1: The completeness of the B-spline
representation is ensured by their reproduction properties
(Green function and exponential polynomials) [cf. Sec-
tions III.C2 and 3]. To prove the existence of the Riesz bounds
for the general th-order case, we use the property that

is upper bounded and continuous because .
The upper bound is taken care immediately by the inequality

. Because of (28), which repre-
sents as a sum of positive terms, the existence of the
lower Riesz bound depends on the structure of the set of fre-
quencies for which . To characterize this set, we
define . Clearly,

, where the individual ’s are empty,
provided that Re [cf. the discussion around Fig. 3].
Since is continuous and bounded, we have a Riesz
basis if and only if , which is equiv-
alent to . The only potential problem arises
when there are some purely imaginary roots. Fortunately, when
Re , there is always one that is empty—it cor-
responds to the segment where sinc takes its maximum value.
This leads to an empty intersection over unless there is
another distinct, purely imaginary root such that
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, which zeroes out the response at the resonance frequency
Im .

5) Some Riesz Bounds: In the simplest first-order case, we
have tight upper and lower Riesz bounds

which expresses the fact that the corresponding B-spline basis
is orthogonal for any .

More generally, the estimate for the upper Riesz bound ,
which appears in the proof of Theorem 1, is . The next
proposition is interesting because it allows us to bypass the cal-
culation of (26) and because it leads to the identification of cases
for which this upper bound is tight.

Proposition 3: The upper Riesz bound can be estimated by

(32)

where with defined by (16).
Proof: The left-most inequality is trivial. For the right-

most one, we first treat the simpler case (real poles)
for which for all . Our task thus boils down to
calculating the corresponding .
To this end, we concentrate on the 1-periodic quantity

. We pick one component of , say , and use
the convolution property , where .
The convolution integral involves the sum , which equals

for . This expression is upper bounded by 1 if
or by if . Then

the right-hand side of which is given by if ,
or otherwise. Thus,

. Finally, by noticing that that and
taking the minimum over the arbitrary component , we get
the announced result for the case .

When has an imaginary part, we use inequality (12) to show
that Re Re

, which allows us to extend the upper bound to the complex
case as well.

It is clear from the proof that the upper bound in Proposi-
tion 3 is tight whenever the exponential parameters are real, i.e.,

. By using a modulation argument, we see that the
same holds true if Im , that is, when all roots
are on the same vertical line in the complex plane. Moreover,
the right-most estimate in (32) simplifies to , as soon
as one of the components of is purely imaginary.

Because of the potential instabilities that have been men-
tioned before, it is more difficult to obtain in general an esti-
mate for the lower Riesz bound unless we consider some
structured configurations of poles. The next proposition covers
the important case where the roots are all included in the same
Nyquist region in the complex plane.

Proposition 4: If the roots are such that Im
for all and for some radial frequency

, then we have the following lower Riesz-bound estimate:

Im

Im
(33)

Proof: Without loss of generality, we assume that .
In that case, we observe that . Next,
we apply the inequality provided by Prop. 1, which yields

Im

sinc
Im

Since and Im , we are ensured that
Im . Moreover, we know that sinc

is strictly increasing for and decreasing for
. This implies that sinc Im is minimized

either at or at , from which we deduce that
sinc Im Im Im .
Putting things together, we get our lower bound estimate.

Note that the lower bound in (33) vanishes when Im
gets closer to , which is precisely what happens for the un-
stable root configurations that have been identified in the proof
of Theorem 1.

IV. CONTINUOUS/DISCRETE SIGNAL PROCESSING

In this section, we show how the exponential spline frame-
work that has just been presented can be used advantageously
for the exact implementation of a number of fundamental con-
tinuous-time signal processing operations. Interestingly, this is
achieved by applying standard discrete processing techniques
in the B-spline domain. The proposed framework offers an at-
tractive alternative to the traditional bandlimited model, which
uses infinitely supported basis functions and is not appropriate
for the representation of causal signals.

A. Signal Interpolation

Often, the input signal is given in digital form as a sequence
of samples . Thus, the first step of spline processing is to fit
the discrete signal with an interpolating spline , specified by
its B-spline expansion (21), and such that . This
can be achieved quite efficiently by straightforward adaptation
of the recursive filtering algorithms that have been proposed for
symmetric spline interpolation [4], [37]. For this purpose, we in-
troduce the discrete B-spline sequence , which is obtained
by sampling the basis function at the integers. The corre-
sponding -transform is

(34)

The interpolation condition is equivalent to the
discrete convolution relation , which suggests
that the B-spline coefficients can be obtained by inverse filtering
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of the input signal: . The -transform of the
inverse filter can be written as

(35)

where is a suitable constant and where the ’s are the zeros
of . This is an all-pole, infinite-impulse-response (IIR)
filter that is stable, but not necessarily causal, whenever

. A practical way to implement it numerically is to de-
compose it into a cascade of stable causal and anti-causal filters.
The causal part corresponds to the roots and is imple-
mented recursively in a conventional fashion. The anti-causal
part is associated with the roots ; it is also implemented
recursively, but one has to reverse the time axis and to scan the
input signal from end to start.

Unfortunately, there is no general guarantee that the interpo-
lation filter (35) is stable unless we are dealing with a Hermitian
symmetric B-spline , which corresponds to a Gram
sequence that satisfies the Riesz-basis condition in Theorem 1.
For instance, we can show that the interpolation associated with
an odd-order symmetric B-spline is unstable be-
cause the corresponding filter has a pole at . A standard
way around this problem, which is used for odd-order poly-
nomial spline interpolation, is to shift the basis functions (and
spline knots) by one half with respect to the grid. In addition,
note that for image processing, one prefers to work with basis
functions that are centered on the origin, which requires some
shifting anyway.

When the interpolation problem is well-posed, or, equiva-
lently, when the interpolation filter is stable, there is a reversible,
one-to-one mapping between the signal samples and the
B-spline coefficients . This means that there is no loss of in-
formation by representing the signal by its B-spline coefficients,
even though the choice of the underlying continuous-time model
is somewhat arbitrary, but not more so than the classical ban-
dlimited model (which can also be interpreted as a polynomial
spline of infinite order [38], [39]).

B. Convolution

Let and
be two cardinal spline signals with

exponential parameter and , respectively. We are inter-
ested in evaluating their continuous-time convolution, which
we can do explicitly by making use of the B-spline convolution
property (19):

(36)

Fig. 5. Signal processing system for the spline-based evaluation of the
differential operator L f�g.

This shows that the continuous-time convolution of two spline
signals can be implemented via a discrete convolution of the
B-spline coefficients of the underlying signals. The method is
exact but requires a change of basis function (augmented-order
B-splines).

C. Differential Operators

In line with the previous formula, we choose to partition the
B-spline parameter into two subparts of length
and , keeping in mind that the ordering of the roots is arbi-
trary. By considering the Fourier transform representation (15),
it is then relatively straightforward to establish the differential
relation

(37)

which is the generalization of the well-known multiple differen-
tiation formula of the polynomial B-splines [17]. The important
point is that the application of an th-order operator yields a
spline of reduced degree , whose B-spline co-
efficients are the weights associated with the localization op-
erator (exponential finite differences). The restriction, of
course, is that the operator must be part of the factorization of

. Since the differential oper-
ator is linear and shift-invariant, we can directly transpose
the result for an arbitrary spline signal:

(38)

This suggests a simple differentiation algorithm where the
B-spline coefficients are filtered with the digital FIR filter

whose transfer function is given by (13) with . The
full procedure is summarized in Fig. 5; it includes a prefiltering
step to get the B-spline coefficients of the input signal and a
postfiltering with , which corresponds to the sampled
version of the basis functions in (38).

D. Dilation by Integer Factors

At this stage, it is convenient to introduce the spline scaling
filter, which plays an important role in our formulation:

(39)

Even though this filter is given in rational form, it turns out to
be FIR of size . In fact, it is not difficult to show that

(40)
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Fig. 6. Dilation versus grid coarsening. (a) Cardinal B-spline � (t) with � =
�1=2. (b) B-spline dilated by a factor of 4. (c) Coarse grid B-spline � (t) at
step size T = 4.

so that one may think of it as a discrete analog of the exponential
B-spline.

As far as scaling is concerned, the key observation is that
the dilation by (integer) of a cardinal exponential spline
with parameter yields another exponential spline with knots

but with a rescaled parameter . This dilated
function can also be represented as a cardinal spline by intro-
ducing artificial knots at the integers that are not multiples of

. By using the same technique as for the proof of [26, Prop.
3], we can show that the exponential B-spline with parameter
satisfies the -dilation relation

(41)

where is the impulse response of the filter (39) with
rescaled exponential parameter . The dila-
tion relation is illustrated in Fig. 6(b) for the case of a first-order
exponential B-spline. Note that the relation is compatible with
the -scale relation for causal polynomial splines, in which
case, the filter corresponds to the -fold iter-
ation of a moving average filter of size [40]. The dilation
relation also suggests an efficient signal processing algorithm
for zooming up a signal by an integer factor of . This algo-
rithm, which extends the polynomial-spline method presented
in [2], is schematically represented in Fig. 7. An alternative pro-
cedure proposed by Asashi et al. is also shown [37]. It can be
shown to be equivalent to the former by using one of the Noble
multirate identities (cf. [41] ) to move the upsampled numer-
ator of to the
left-hand side of the up-sampling operator. We note, however,
that the second solution is computationally less advantageous
than the first one because the filter is FIR of size

. Indeed, as pointed out Vrcelj and Vaidyanathan [42]
for the case of polynomial splines, the combination of upsam-
pling and post-filtering can be implemented with operations
per output sample using the polyphase decomposition.

E. Modulation

By using the modulation property of the Fourier transform,
we establish the B-spline modulation relation

(42)

where is the -component imaginary vector . We
then use this result to show that the modulation of the spline
signal yields another spline with
parameter that is given by

Fig. 7. Two equivalent algorithms for spline-based zooming by an integer
factor of m. (a) Polynomial-spline inspired approach, which is direct
transcription of the dilation relation (41). (b) Asahi et al. algorithm, which
applies a FIR prefilter and uses a recursive IIR expansion filter.

This formula establishes an exact equivalence between the con-
tinuous-time modulation of a signal and the discrete-time mod-
ulation of its B-spline coefficients. The twist is that this also
induces a corresponding change of basis functions (modulated
B-splines). Note that the B-spline coefficients are unchanged
when , that is, when is an even multiple of the
Nyquist frequency .

V. MULTIRESOLUTION SIGNAL APPROXIMATION

A. Exponential Spline With Knot Spacing

By varying the knot spacing—or sampling step —we can
get finer or coarser signal representations using exponential
splines. However, we observe that, in contrast with wavelet-like
or polynomial-spline representations, there is no direct scaling
involved (cf. Fig. 6). The underlying Green function remains
the same, and it is just the spacing between the knots that is
changed. The corresponding exponential B-splines are gener-
ated as in the cardinal case, except that one has to rescale the
localization operator appropriately. Specifically, the B-spline
with step size is given by

(43)

where the th-order localization operator
is constructed by iterating first-order difference

operators of the form

Observe that this basis function also corresponds to the dilation
by a factor of of a cardinal B-spline with rescaled exponential
parameter :

(44)

as may be visualized in Fig. 6(c). The equivalence between this
relation and (43) becomes more apparent if we take their Fourier
transform, which reads

(45)
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We have now all the elements in hand to define the spline
space at resolution :

(46)

In order to check whether or not this is a closed subspace of ,
we need to compute the Gram sequence of the basis functions

. To this end, we make use of the scaling
relation (43) and manipulate the inner product as follows:

(47)

Thus, up to a factor , the situation is exactly the same as for
the cardinal B-splines with parameter . This implies that the
Riesz bounds are the ones of (cf. Section II) multiplied
by . Thus, we have a Riesz basis (which implies a closed sub-
space of ) if and only if for all
pairs of distinct, purely imaginary roots.

In order to derive efficient approximation algorithms, it is im-
portant to investigate the embedding properties of these spline
spaces. First, by using the same technique as for the derivation
of (41), we obtain the -scale relation

(48)

which relates the basis functions at step size to the
cardinal ones at . More generally, we can show that

(49)

which is a relation that can be the basis for deriving fast wavelet-
like approximation algorithms. A direct implication of this for-
mula is the inclusion property , which holds
for any positive integer ; again, this is not surprizing since
the knots defining the splines in are a subset of those of

.

B. Least-Squares Approximation

Given an arbitrary function , we now consider the
problem of determining its minimum-error spline approxima-
tion at resolution . This amounts to computing its orthogonal
projection into , which we denote by . The generalized
sampling theory in [36] provides an explicit form for the projec-
tion operator

(50)

where the dual analysis function is the unique function
in that is biorthogonal to , i.e.,

. By solving for this condition in the Fourier
domain, we obtain

(51)

which is guaranteed to be well-defined whenever (or,
equivalently, ) satisfies the Riesz-basis condition.

We now apply this result to generate a multiresolution repre-
sentation of a signal by projecting its fine-scale representation
in onto . Let be our
input signal and be its min-
imum-error approximation in . Then, we know from (50)
that the B-spline coefficients of the coarse-grid signal approxi-
mation are given by

By replacing by its B-spline expansion in the above ex-
pression, we find that the ’s can be obtained by simple digital
prefiltering and downsampling by a factor of :

(52)

where the discrete analysis filter is defined by

Next, it is not difficult to evaluate the explicit form of this filter
by moving to the Fourier domain and making use of Poisson’s
summation formula to identify autocorrelation terms. This gives

with , which is an extension of the polynomial-spline
solution described in [43].

The algorithmic transcription of the approximation proce-
dure (52) and the -scaling relation (48) yield the basic mul-
tirate Reduce and Expand operators that are shown in Fig. 8.
The reduce operator coarsens the spline grid and may be used
for building multiresolution signal representations. Conversely,
a coarse-grid spline representation can be converted back to
the finer grid by applying the Expand operator. A wavelet-like
signal decomposition is obtained by considering the residuals:

Expand Reduce , similar to what can be done with
polynomial splines [43].

Because of (49), we may also adapt the procedure for
converting between grids at resolution and . How-
ever, this requires changing the exponential parameter to

. This is the fundamental difference
with the polynomial spline case where the filters remain the
same, irrespective of . In fact, it is this scale invariance
together with their differential properties that make polynomial
splines play such a crucial role in wavelet theory [9].

C. Approximation Power of Exponential Splines

As the sampling step gets smaller, we expect the least-
squares spline approximation to get increasingly closer
to the function . In fact, there are general results (Jackson-
type inequalities) from the theory of -splines that indicate that
the approximation error for smooth functions will decrease like
the th power of the scale [14], [22]. In our particular setting
where the grid is uniform, we can be much more precise and
derive an exact asymptotic error formula.
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Fig. 8. Block diagram representation of the basic Reduce and Expand
operators for multiresolution signal processing.

Theorem 2: Let be a function such that ,
and let denote its orthogonal projection onto the spline
space at scale . Then, the asymptotic form of the approx-
imation error is

as (53)

with , where is
the Riemann zeta function.

The proof is given in the Appendix . This formula extends
an earlier result for polynomial splines, which is essentially the
same as (53), except that needs to be replaced by [44].
Interestingly, the asymptotic constant does not depend on
the precise values of the parameter vector but only on the
order . This means that the asymptotic error behavior is es-
sentially the same for all spline approximations of order up
to a magnitude factor, which is given by . The theorem
implies that we can approximate the signal as closely as we
wish by taking a sampling step that is sufficiently small. How-
ever, in contrast with the classical error bounds in spline theory,
our formula is quantitative and directly applicable to the deter-
mination of a critical sampling step that guarantees that the
error is below some prescribed threshold.

VI. CONCLUSION

In this paper, we have proposed a signal processing formula-
tion that has allowed us to extend all the results and processing
techniques available for cardinal polynomial splines to the more
general family of exponential splines. We have presented the
concepts using a signal processing terminology and have done
our best to keep the mathematics simple (with the exception
of the proof of Theorem 2). We have characterized the cor-
responding compactly supported B-spline basis functions and
have provided exponential spline equivalents of almost all poly-
nomial spline properties and filtering algorithms. To summarize
the extension in a nutshell, this amounts to replacing polyno-
mials by exponential polynomials, the multiple derivative oper-
ator by the more general differential operator , and the fi-
nite differences by some exponentially weighted difference op-
erator . We have also observed that there is an underlying
multiresolution spline structure but that it is somewhat different
from the one used in wavelet theory because it does not involve
simple dilations of the B-spline basis functions.

While we believe that our treatment of the subject is fairly
complete, some theoretical questions remain open. For instance,
we presented no generalization of de Boor’s order recursion for
the calculation of B-splines [45]. It would also be interesting
to know if it is possible to construct high-order B-splines that
are orthogonal and if one can specify the subset of exponential
parameters for which the interpolation problem is well posed.

Another issue that may be relevant for real-time applications is
the characterization of parameter sets for which the recursive
interpolation filter is causal.

Those limitations notwithstanding, the collection of results
that have been presented constitutes a foundation on which we
can now build to develop specific algorithms and, more impor-
tantly, to establish new connections between the continuous-
and discrete-time approaches to signal processing.

APPENDIX

PROOF OF THEOREM 2

We consider the approximation of a function
(Sobolev’s space of order ) with ; in other words,
must be in and have derivatives in the -sense.
Then, from [46, Th. 1], we know that

(54)
where the approximation kernel is given by

Since we are interested in the behavior of for
small values of only, we assume that . To prove
the theorem, we introduce the auxiliary function

(55)

and rely on the following Lemma, which will be established
below.

Lemma 1: For , the function defined by (55) satisfies
the properties

(56)

(57)

Proof:
First Step: We show that for ,

. For this, we observe that for every scalar
, we have the following upper bound:
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Multiplying this inequality for , we find that

as we have claimed.
Second Step: We prove (56) by using the Riesz lower bound

expressed by (33), namely

Im

Im

taking into account that, by hypothesis, . Putting
things together, we finally have that

which is (56).
As for (57), we easily verify that and

that for
as . Since is bounded by

an absolutely summable sequence, we can therefore claim that
, which proves (57).

We now consider the evaluation of the following limit, which
we rewrite as

We observe that thanks to the -membership of and to the
bound (56), the function is dom-
inated by a summable function (in and ), which does not
depend on . We can thus apply Lebesgue’s theorem and ex-
change the and signs, which proves that

where .
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