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ABSTRACT

We develop a spline calculus for dealing with fractional
derivatives. After a brief review of fractional splines,
we present the main formulas for computing the
fractional derivatives of the underlying basis functions.
In particular, we show that the γ th fractional derivative
of a B-spline of degree α (not necessarily integer) is
given by the γ th fractional difference of a B-spline of
degree α γ− . We use these results to derive an
improved version the filtered backprojection algorithm
for tomographic reconstruction. The projection data is
first interpolated with splines; the continuous model is
then used explicitly for an exact implementation of the
filtering and backprojection steps.

1. INTRODUCTION

Splines are made up of polynomials and are essentially
as easy to manipulate. One operation that is especially
simple to implement is differentiation. It has the same
effect on splines as it has on polynomials: it reduces the
degree by one. The derivative of a B-spline of degree n
is given by

D x x x xn n n nβ β β β( ) ( ) ( ) ( )= = + − −− − −∆ 1 1 1
2

1 1
2

where ∆  denotes the central finite difference operator.
The implication of this differentiation formula is that
one can calculate spline derivatives simply by applying
finite differences to the B-spline coefficients of the
representation. Thus, with splines, one has an exact
equivalence between finite differences and
differentiation and not just an approximate one as is
usually the case in numerical analysis. This is a
property that can be exploited advantageously for
implementing differential signal processing operators
[6].

Our purpose in this paper is to consider more
general forms of differentiation (fractional derivatives)
and to develop the corresponding spline calculus. The
main difficulty with fractional derivatives is that the
derivatives of polynomials (or splines) are no-longer

polynomial when the order of differentiation in non-
integer. This forces us to consider the enlarged family
of fractional splines [7]; these are reviewed in Section
2. In Section 3, we present the differentiation rules for
the fractional splines and show that this family is
closed under fractional differentiation: specifically, the
γ th derivative of a fractional spline of degree α is a
fractional spline of degree α γ− , where α and γ  are
not necessarily integer. Finally, in Section 4, we
indicate how these results are useful for improving the
implementation of the filtered backprojection (FBP)
algorithm for tomographic reconstruction [4, 5].

2. FRACTIONAL SPLINES

In this section, we define the fractional splines and
summarize the main properties of their basic
constituents: the fractional B-splines. For more details,
refer to [7].

2.1 Power functions

The purest examples of fractional splines of degree α
are the one-sided and rectified power functions, x+

α  and
x *

α , which both exhibit one singularity of order α
(Hölder exponent) at the origin. The one-sided power
function is defined by:
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For α ∉N, its Fourier transform is Γ( ) / ( )α ω α+ +1 1j .

The second symmetric type, x *
α , is defined as the

function whose Fourier transform is Γ( ) /α ω α+ +1 1.
For α non-even, it is a (rectified) power function;
otherwise, it has an additional logarithmic factor:

x

x

x x
n

n

n

*
sin( )

,  

 
log

( )
,  ( )

α

α

α
α

π
α

= −

−
=










π

+

2

1
2

2
2

1

not even

even
(2)



2.2 Causal fractional B-splines

By analogy with the classical B-splines, one constructs
the fractional causal B-splines by taking the ( )α + 1 -
fractional difference of the one-sided power function

β
α α

αα
α α

α
+

+
+

+

=

+∞

+=
+

=
+

−
+





−( )∑( ):
( ) ( )

( )x
x

k
x kk

k

∆
Γ Γ

1

01
1

1
1

1

  (3)

where Γ( )u x e dxu x+ = −∫1  is Euler’s gamma function.

∆+
+α 1 is the ( α + 1)-fractional difference operator; it is

a convolu-tion operator whose transfer function is
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The fractional B-splines are in L2 for α > − 1
2 . They

are compactly supported for α integer; otherwise, they
decay like x − +( )α 2  (cf. [7], Theorem 3.1). The Fourier
domain equivalent of (3) is
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2.3 Symmetric fractional B-splines

We construct the symmetric B-splines by taking
( )α + 1 -symmetric fractional differences of the rectified
power function:
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where ∆*    α ω αFourier je← → − −1  is the symmetric

fractional difference operator. Similar to their causal
counterparts, these functions are not compactly
supported either unless n is odd, in which case they
coincide with the traditional polynomial B-splines.
When α is not odd, they decay like x − +( )α 2  and their

asymptotic form is available [7]. The Fourier
counterpart of (6) is simply
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Note that the expansion coefficients on the right hand
side of (3) and (6) are generalized versions of the
binomials. They are both compatible with the following
extended definition:
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where the gamma function replaces the factorials
encountered in the standard formula when u  and v  are
both integer. The coefficients in (6) are a re-centered
version given by
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2.4 Fractional splines

In most general terms, fractional splines may be
defined as linear combinations of shifted fractional
power functions or fractional B-splines. As in the
polynomial case, it is usually more advantageous to use
the second type of representation. The fractional B-
splines have all the good properties of the conventional
B-splines, except that they lack compact support when
α is not an integer. In particular, they form a Riesz
basis which ensures that that B-spline representation is
stable numerically. Thus, if we consider the basic
integer grid, we may represent a fractional spline signal
by its B-spline expansion

s x c k x k
k Z

( ) ( ) ( )= −
∈
∑ βα (10)

where we use the generic notation βα ( )x  to specify any
one of the fractional B-splines (βα

+ ( )x , or βα
∗ ( )x ).

What this means is that a fractional spline signal s x( )
with knots at the integers is unambiguously
characterized through its B-spline coefficients c k( ),
k Z∈  (discrete/continuous representa-tion). The
representation is one-to-one—there is exactly one
coefficient c k( ) by sample value s k( ). Note that this
spline representation is compatible which the traditional
model used in signal processing for it can be shown
that the signal (10) converges to a bandlimited function
as the order of the spline increases [1].

3. FRACTIONAL DIFFERENTIATION

3.1. Fractional derivatives

We consider two versions of fractional derivatives
which can be defined in the Fourier domain. The first
type, which is compatible with Liouville's definition
[2], is given by

D f x j fFourierγ γω ω( )      ( ) ˆ( )← → (11)

where ˆ( ) ( )f f x e dxj xω ω= −∫  denotes the Fourier

transform of f x( ) and where z z e j zγ γ γ= arg( )  with
j = −1  and arg( ) ,z ∈ −π π[ [.



The second type of derivative, which is a
symmetrized version of first, is defined by

D f x fFourier
* ( )      ˆ( )γ γω ω← → (12)

Note that the first type agrees with the usual definition
of the derivative when α is integer, while the second
one only does when α is even.

3.2 Differentiation rules

The general B-spline differentiation rules are

D x xγ α γ α γβ β+ + +
−= ∆( ) ( ) (13)

D x x* * * *( ) ( )γ α γ α γβ β= ∆ − (14)

where Dγ  and D∗
γ  are defined by (11) and (12),

respectively. This is established easily in the Fourier
domain. For instance, to obtain (14), we substitute (7)
in (12) and rewrite the Fourier transform of D x* * ( )γ αβ
as
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We now briefly indicate how these rules can be
applied to obtain the fractional derivative of the spline
signal in (10). Taking the fractional derivative and
interchanging the order of summation, we get

D s x c k x k
k Z

α γ α γβ( ) ( ) ( )= −−

∈
∑ ∆

            

  

= ∗( ) −−

∈
∑ ∆γ α γβc k x k

d k
k Z

( ) ( )

( )
1 24 34

(15)

where we have moved the fractional difference operator
into the discrete domain. Thus, the B-spline
coefficients d k( )  of D s xα ( )  are obtained by
convolving the c k( )’s with the digital filter ∆γ  whose
frequency response is  ( )1 − −e jω γ  or | |1 − −e jω γ ,
depending on the type of derivative.

4. FRACTIONAL SPLINES AND
TOMOGRAPHY

The mathematical basis for the standard filtered
backprojection tomographic reconstruction algorithm is
the following identity ∀ ∈f L R2

2( ) (cf. [3])

f x y R KRf x y R K p t( , ) ( , ) ( )* *= = { }θ (16)

with   t x y= ⋅( , )
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θ  where   

r
θ θ θ= ∈(cos ,sin ) S  is the unit

vector that specifies the direction of the projection;

p t R f tθ θ( ) ( )= =  
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transform of f  and R∗ is the so-called backprojection
operator; it is the adjoint of the Radon or projection

operator R . The right hand side of (16) provides the
filtered backprojection solution for the recovery of the
function f x y( , )  from its projection data p tθ( ).

The algorithm proceeds in two steps. First, each
projection p tθ( ) is filtered continuously with the ramp
or Ram-Lak filter [4]; the crucial observation here is
that the filtering operator K  is proportional to our
fractional derivative D∗ ↔ ω ; i.e., K D= π −( ) *2 1 .
Second, the filtered projections are projected back onto
the image and averaged according to the formula

R K p t D p t d
N

D p t
i

i

N
*

* *( ) ( ) ( )θ θ θθ{ } =
π

≅
=

π

∑∫1
2

1
2 10

(17)

with  t x y= ⋅( , )
r
θ . The reconstruction formula (16) is

exact provided that one treats the projection data p tθ( )
as a continuum both in terms of t  and θ . In practice,
however, one has only access to a finite number of
projections at the angles θi , and the continuous average
in (17) is usually replaced by the discrete one on the
right. The error can be assumed to be negligible
provided that the number of projections N is sufficient.

In our method, we assume that the projection data
at angle θ  is a fractional spline of degree α:
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After symmetric differentiation (ramp filter), we find
that
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where the d k( )  are obtained by applying the symmetric
finite differences to the c k( ) (cf. (15)). Thus, we have
an explicit continuous representation of the filtered
projection which can then be directly plugged into (17).

In practice, we are given the sampled values of the
projection p kθ( )  and the first step is to determined the
B-spline coefficients c k( ) such that the spline model
interpolates these values exactly. This can be done by
digital filtering. Combining both filters together
(interpolation and ramp-filter), we get

d k h p k( ) ( )( )= ∗∗ θ (20)

where h∗ is the digital filter whose transfer function is
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In our implementation, we select α even (typ. α = 2
or 4) such that the basis functions in (19) are



polynomial B-splines that are compactly supported.
This allows us to use the spline model (19) to our full
advantage in the backprojection part of the algorithm
(Eq. (17)). The digital filtering part of the algorithm
(20) is implemented in the Fourier domain since the
filter h∗ has infinite support. The interesting aspect of
the algorithm is that, once we have selected the spline
model (18), all other aspects of the computation are
exact. In particular, the discretization of the ramp filter
is achieved implicitly through (21).

Some experimental results are presented in Fig. 1;
to facilitate the comparison, we give the reconstruction
errors amplified by a factor of four. The test image
(Fig. 1d) is of size 128 128×  and its Radon transform
was computed over 256 equidistant angles. Fig. 1a
displays the reconstruction error for the standard
algorithm (Shepp-Logan filter [5]) with linear
interpolation for the backprojection. The PSNR is
26.89dB; switching to the Ram-Lak filter improves this
measure to 28.03dB. The reconstruction error for the
proposed FBP algorithm with α = 2 is shown in Fig.
1b (PSNR=29.80). The results are slightly better
(smaller magnitude of the error) than the standard
approach (Fig. 1a or Ram-Lak filter), even though the
backprojection was implemented using the same
piecewise linear interpolation model. This suggest that
the use of a consistent design, where the ramp filter is
discretized in accordance with the underlying signal
model, is helpful. The best results (PSNR=30.37)
were obtained with α = 4 (cf. Fig. 1c); in this case, the
backprojection was implemented using cubic B-spline
basis functions. Here we suspect that the main reason
for the improvement is the use of a higher order
interpolation model, especially in the backprojection
part of the procedure.

5. CONCLUSION

The fractional splines offer the same conceptual ease
for dealing with fractional derivatives as the polynomial
splines do with derivatives. In the B-spline domain,
fractional differentiation gets translated into simple
fractional finite differences. This spline calculus
provides a general tool for the discretization and
implementation of fractional derivative operators.

The Ram-Lak filter, which plays a crucial role in
tomography, corresponds to our symmetric differential
operator D* ← → ω . It is an non-local operator that
can be implemented exactly provided that one has a
spline representation of the projection data. We have
proposed a modification of the standard FBP algorithm

that takes advantage of this property. We have found
that working with splines is also beneficial for the
back-projection part of the reconstruction process.

Fig. 1: Reconstruction errors for the various
algorithms. (a) standard reconstruction using the
Shepp-Logan filter, (b) fractional spline
reconstruction with α = 2, (c) fractional spline
reconstruction with α = 4, (d) test image (Shepp-
Logan phantom).
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