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ABSTRACT

The translational equivariant nature of Convolutional Neural Networks (CNNs) is
a reason for its great success in computer vision. However, networks do not enjoy
more general equivariance properties such as rotation or scaling, ultimately limiting
their generalization performance. To address this limitation, we devise a method
that endows CNNs with simultaneous equivariance with respect to translation,
rotation, and scaling. Our approach defines a convolution-like operation and ensures
equivariance based on our proposed scalable Fourier-Argand representation. The
method maintains similar efficiency as a traditional network and hardly introduces
any additional learnable parameters, since it does not face the computational issue
that often occurs in group-convolution operators. We validate the efficacy of our
approach in the image classification task, demonstrating its robustness and the
generalization ability to both scaled and rotated inputs.

1 INTRODUCTION

The remarkable success of network architectures can be largely attributed to the availability of large
datasets and a large number of parameters, enabling them to “remember” vast amounts of information.
On the contrary, humans can learn new concepts with very little data and are able to generalize
this knowledge. This disparity is due, in part, to the current limitations in modeling geometric
deformations in network architectures. Networks are inclined to “remember” data through filter
parameters rather than “learning” a full generalization ability. For instance, in classification tasks,
networks trained on datasets with specific object sizes often fail when tested on objects with different
sizes that were not present in the training set. The ability to factor out transformations, such as
rotation or scaling, in the learning process remains to be addressed. It is indeed quite frequent to
deal with images in which objects have a different orientation and scale than in the training set, for
instance, as a result of distance and orientation changes of the camera.

To mitigate this issue, it is common practice to perform data augmentation (Krizhevsky et al., 2012)
prior to training. However, this leads to a substantially larger dataset and makes training more
complicated. Moreover, this strategy tends to learn a group of duplicates of almost the same filters,
which often requires more learnable parameters to achieve competitive performance. A visualization
of the weights of the first layer (Zeiler & Fergus, 2014) highlights that many filters are similar but
rotated and scaled versions of a common prototype, which results in significantly more redundancy.

The concept of equivariance emerged as a potential solution to this issue. Simply put, equivariance
requires that if a given input undergoes a specific geometric transformation, the resulting output
feature from the network (with weights randomly initialized) should exhibit a similarly predictable
geometric transformation. Should a network satisfy equivariance to scalings and rotations, training
it with only one size and orientation would naturally generalize its performance to all sizes and
orientations.

To achieve this property, group convolution methods have been widely used in this field. An
oversimplified interpretation of a typical group convolution method is as follows: Features are
convolved with dilated filters of the same template to obtain multi-channel features, where the
distortion of input features corresponds to the cycle shift between channels. For example, equivariant
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CNNs on truncated directions (Cohen & Welling, 2016; Zhou et al., 2017) leverage several directional
filters to obtain equivariance within a discrete group. Further works extended rotation equivariance
to a continuous group, using techniques such as steerable filters (Weiler et al., 2018; Cohen et al.,
2019), B-spline interpolation (Bekkers, 2020) or Lie Group Theory (Bekkers, 2020; Finzi et al.,
2020). A similar path to scaling equivariance has been explored, although scaling is no longer
intrinsically periodic. The deep scale space (Worrall & Welling, 2019) defined a semi-symmetry
group to approximately achieve scale equivariance, while Sosnovik et al. (2020) applied steerable
CNNs to scaling. However, integrating equivariance to both rotations and scalings simultaneously
leads to a larger group (e.g., a rotation group with M points and a scaling group with N points
results in M ×N points for the joint rotation and scaling group), making the task more challenging.
Additionally, certain ”weight-sharing” techniques based on group convolution can be computationally
and memory-intensive.

SREN

SREN

Figure 1: The visualization of the Sim(2)
equivariance property: Our SREN method
inherently retains the structure information of
the input, enabling it to handle distorted ob-
jects (rotation, scaling, and translation) with-
out additional training.

Despite the difficulties, empowering the model with
equivariance of rotation and scaling together can be
highly advantageous. For instance, in object detec-
tion, the distance changes between the camera and
the object, or the random rotations of the object, can
significantly impact the accuracy of the method.

The aim of this paper is to propose a CNN archi-
tecture that achieves continuous equivariance with
respect to both rotation and scaling, thereby filling
a void in the field of equivariant methods. To ac-
complish this, we provide a theoretical framework
and analysis that guarantees the network preserves
this inherent property. Based on this, we propose a
new architecture, the Scale and Rotation Equivariant
Network (SREN), that avoids the abovementioned
limitations and does not sizably increase computa-
tional complexity. Specifically, we first designed a
scalable Fourier-Argand representation. The expres-
sion of the basis makes it possible to operate the angle
and scale in one shot. Further, we propose a new convolution-like operator that is functionally similar
to traditional convolution but with slight differences. We show that this new method has similar
computational complexity to convolution and can easily replace the typical network structures. Our
approach can model both rotation and scaling, enabling it to consistently achieve accurate results
when tested with datasets that have undergone different transformations, such as rotation and scaling.

The main contributions in this paper are summarized as follows:
• We introduce the scalable Fourier-Argand representation, which enables achieving equivariance on

rotation and scaling.
• We propose the SimConv operator, along with the scalable Fourier-Argand filter, forming the Scale

and Rotation Equivariant Network (SREN) architecture.
• SREN is an equivariant network for rotation and scaling that is distinct from group-convolutional

neural networks, offering a new possible path to solving this problem for the community.

2 RELATED WORK

Group convolution To accomplish equivariance property, a possible direction is the application of
group theory to achieve equivariance. Cohen & Welling (2016) introduced group convolution, which
enforces equivariance to a small and discrete group of transformations, i.e., rotations by multiples of
90 degrees. Subsequent efforts have aimed to generalize equivariance (Zhou et al., 2017) and also
focus on continuous groups coupled with the idea of steerable filters (Cohen & Welling, 2017). To
achieve this purpose, Lie group theory has also been utilized, as presented in works such as LieConv
(Finzi et al., 2020), albeit only for compact groups. Unfortunately, the scaling group is non-compact,
so methods typically treat it as a semi-group and use approximations to achieve truncated scaling
equivariance. TridentNet (Li et al., 2019) gets scale invariance by sharing weights among kernels with
different dilation rates. Another approach is to apply scale-space theory (Lindeberg, 2013), which
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considers the moving band-limits caused by rescaling, as proposed by Worrall & Welling (2019)
to attain semi-group equivariance. Bekkers (2020) generate the G-CNNs for arbitrary Lie groups
by B-spline basis functions, and can achieve scale or rotation equivariance when using different
settings. SiamSE (Sosnovik et al., 2021c) equip the Siamese network with additional built-in scale
equivariance. Although Sosnovik et al. (2021b;a) replacing weight sharing scheme with dilated
filters can parallel the process, and thus O(1) in terms of time, the overall computational load is still
increased concerning the group size. Beyond all these methods, expanding the group to a larger space
can increase the overhead computation.

Steerable filters Steerable filters have been used in previous works to achieve equivariance. H-Net
(Worrall et al., 2017) and SESN (Sosnovik et al., 2020) are examples of methods that utilized steerable
filters to achieve equivariance. Specifically, H-Net utilized complex circular harmonics as filter bases
while SESN used Hermite polynomials. The underlying idea behind these methods is to represent
filters of different sizes or rotation angles as linear combinations of fixed basis functions. Although
this idea is related to our method, achieving rotation-scaling equivariance using this approach is
difficult due to the lack of a suitable basis in image processing. Other approaches have also improved
equivariance in different aspects. For example, polar transformer networks (Esteves et al., 2018)
generalized group-equivariance to rotation and dilation, while attentive group convolutions (Romero
et al., 2020) utilized the attention mechanism to generalize group convolution. Some other techniques,
such as Shen et al. (2020); Jenner & Weiler (2022), proposed using partial differential operators to
maintain equivariance. Additionally, Gao et al. (2022) presented a roto-scale-translation equivariant
CNN, but it expanded the filters of the G-CNN in the scale dimension with a truncated interval.

Differences between related works and ours. Unlike previous methods that achieve equivariance
only in one aspect, our goal is to ensure continuous rotation and scaling equivariance in a single
network. Methods that modify the filters used in the neural network to achieve equivariance require
more learnable parameters and are computationally expensive. In contrast, we propose a scalable and
steerable filter representation (scalable Fourier-Argand) to modify the convolution operator (SimConv)
so that it embodies scale, rotation, and shift equivariance. This approach does not introduce new
learnable parameters and allows us to achieve rotation and scale equivariance more efficiently than
other methods.

3 PRELIMINARIES AND NOTATION

This section clarifies the notations about the sim(2) transformation and the convolution that is often
mentioned later. The property of equivariant and invariant are also formulated explicitly, which is
derived from our proposed method.

3.1 SIM(2) TRANSFORMATION

In Euclidean geometry, two objects can be transformed into each other by a similarity transformation
if they share the same shape. This concept of similarity is critical in instance-level computer vision,
as objects remain unchanged under scale, translation, and rotation transformations. Consequently,
we are motivated to investigate the notion of similarity equivariance. To this end, we introduce the
Sim(2) group, which is defined by an invertible translation matrix, as follows:

T = s

[
R⊤ −s−1R⊤t
0 s−1

]
, and T−1 = s−1

[
R t
0 s

]
∈ Sim(2) ⊂ R3×3 (1)

where R =
[
cos θ sin θ
− sin θ cos θ

]
∈ R2×2 denotes the rotation matrix. The translation vector is denoted by

t ∈ R2, and s ∈ R is the scale factor. By composing rotation (by an angle θ), scaling (by a factor
s), and translation (by a vector t) into a single matrix, we obtain a shape-preserving transformation
that belongs to the Sim(2) group, given by T = AsYtRθ Now let’s consider a spatial index
x̃ = [x1, x2]

⊤ ∈ R2 on a 2D image plane. We can extend this index to a 3D homogeneous coordinate
by adding a 1 as the third component, that is, x = [x̃, 1]⊤ ∈ R3. Then, for an input signal f , we
define a linear transformation LT : L2(X)→ L2(X) that transforms feature maps f ∈ L2(X) on
some space X according to the Sim(2) transformation T, written as:

LT[f ](x) = f(T−1x) (2)

3



Published as a conference paper at ICLR 2023

The equation above can be interpreted in the following way: The left-hand side represents a linear
transformation LT applied to a set of feature maps f , and the right-hand side represents the value
of the feature map f evaluated at the point T−1x. Moreover, we have LT[·] = L(AsYtRθ)[·] =
LAs[LYt[LRθ[·]]], which means that LT can be decomposed into a series of shape-preserving
transformations. The formula for the transformed feature map becomes

f(T−1x) = f
(
[s−1(Rx̃+ 1t)⊤, 1]⊤

)
(3)

This corresponds to a rotation transformation followed by a translation and scaling.

3.2 FORMULATION OF CONVOLUTION

Let’s consider a stack of two-dimensional features as a function f(·) = {fc(·)}Nc=1 : R2 × 1→ RN ,
where N is the number of channels. Similarly, a filter bank containing M elements in a convolutional
layer can be formalized as φ = {ψk}Mk=1, where each filter with N channels can be written as
ψk = {ψk,c}Nc=1 , and ψk : R2 × 1 → RN is a vector-valued output filter. Then, for a continuous
input with N channels, we regard the spatial cross-correlation between the input and the continuous
filter bank Ψ as an operator Φ[·] = [· ⋆ φ] : RN → RM , written as follows:

Φ[f ](x) = [f ⋆ φ](x) = {
N∑
c=1

∫
R

fc(x− t)ψc,k(t)dt}Mk=1 (4)

Without loss of generality, we can set N =M = 1 and simplify the above formula with the following
formula:

Φ[f ](x) = [f ⋆ φ](x) =

∫
R

f(x− t)ψ(t)dt (5)

To explicate, despite the fact that t is a three-dimensional vector, the integration is still a double
integral, along the first and second dimensions, akin to the conventional convolution. The last
dimension of t acts only as a symbolic index, and serves as a mere placeholder. This simplified
formulation is employed throughout the remainder of the paper to enhance the comprehensibility of
the deduction.

3.3 EQUIVARIANCE AND INVARIANCE PROPERTY

Definition 3.1 (Equivariance). An operator Φ : L2(N)→ L2(M) is equivariant to the transform LT

if there exists a predictable transform L̃T, such that the following equation holds for any x ∈ Rd+1.

Φ[LT[f ]](x) = L̃T[Φ[f ]](x) (6)

If LT = L̃T, we can also say that these two operators are commutable. This equivariance property
provides structure-preserving properties for the network.

Definition 3.2 (Invariance). An operator Φ : L2(N)→ L2(M) is invariant to the transform LT if
the following equation holds for any x ∈ Rd+1.

Φ[LT[f ]](x) = Φ[f ](x) (7)

This paper aims to design a convolution-like operation that is similar in function to convolution
without lifting the intermediate variable size of the network (as is common in group methods) as well
as satisfies the equivariance or invariance property for any similar transform.

4 METHOD

In this section, we explore the feasibility of achieving simultaneous equivariance in rotation, scale, and
translation for traditional convolutional neural networks. The underlying intuition behind the method
is: we first obtain the local scale and orientation of the image. Then, this local information is used to
adapt the scale and direction of the filter used for the convolution. Moreover, this (image-dependent)
spatially-varying convolution has an efficient implementation.
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Figure 2: SREN Architecture Overview: The architecture comprises multiple SimBlocks, each
utilizing the scalable Fourier-Argand filter (Section 4.1) to extract geometry information Mf (x).
The similarity convolution structure (Section 4.2) combines this indicator to achieve similarity
equivariance. A head layer is added to convert the equivariant output to invariant output (Section 4.3).

4.1 SCALABLE FOURIER-ARGAND REPRESENTATION

We propose a representation called the Scalable Fourier-Argand Representation to retrieve local
geometric information and use it as a covariance indicator in Equation (12). It is exact and steerable.
This representation can be defined as follows:

Definition 4.1 (Scalable Fourier-Argand representation). Let h be a square-integrable function
expressed as h(r, θ) in polar coordinates. Its scalable Fourier-Argand representation is defined as
the following series form:

h(r, θ) =
∑

k1,k2∈Z

(
hk1,k2

rmk1 exp

(
i(k1θ + k2

2π ln r

ln b/a
)

))
=

∑
k1,k2∈Z

Hk1,k2
(r, θ) (8)

where Z denotes the set of all integers, and mk can be chosen as a constant value. The function has
limited support, i.e., (r, θ) ∈ [0, 2π[×[a, b[, and k1, k2 can be truncated for a subset of integers to
approximate h.

To compute the coefficient of each item hk1,k2 , we can use the following proposition:

Proposition 4.1. Let hk1,k2
: Z2 → C as the coefficient of each item. We can compute it as follows,

hk1,k2 =
1

ln b
a

∫ ln b

ln a

1

2π

∫ 2π

0

h(eρ, θ) exp

(
−ik1θ − ik2

2πρ

ln b/a
− ρm

)
dθdρ (9)

This formula represents the filter as a composition of elementary feature basis. The part about θ can
be seen as the Fourier series of filters on the Argand plane, inspired by Zhao & Blu (2020). The filter
itself is related to the harmonic filter (Worrall et al., 2017) in a sense. For the scaling part, we use
the logarithmic method to make the scaling of the size a linear shift. We also restrict the support
of the function to a plane where the radius ranges from a to b, where a → 0+. In practice, we set
mk = −1, which acts like a window function and ensures that the function vanishes at infinity. This
is why we call it the Scalable Fourier-Argand Representation. The proof of the proposition can be
found in Appendix A.

One benefit of our proposed expression is that its basis functions are steerable for rotation and scalable
for scaling. Specifically, consider a transformation matrix T = AsY0Rα, which only involves
rotation and scaling. Using this matrix, we have the following equation:

LT[Hk1,k2 ](r, θ) = hk1,k2 · exp(ik1(θ − α) + ik2
2π ln r/s

ln b/a
) · (rs−1)mk1

= Hk1,k2
(r, θ) · exp(−ik1α− ik2

2π ln s

ln b/a
)s−mk1

(10)

This equation holds for any α ∈ [0, 2π) and s ∈ (a, b). The following proposition is easily verified:

Proposition 4.2. For a continuous filter h ∈ R2 that can be decomposed by a set of basis, let
T = AsY0Rα as a transformation matrix. Then the transformed filter of h, noted as LT[h], can
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still be represented by the same basis, with a steerable linear combination:

LT[h](r, θ) =
∑
k1,k2

LT[Hk1,k2
](r, θ)

=
∑
k1,k2

Hk1,k2
(r, θ) ·

(
exp(−ik1α− ik2

2π ln s

ln b/a
)s−mk1

) (11)

Using this property, we can keep the basis Hk1,k2 fixed and estimate the filter h for different rotations
and scales by using different linear combinations. Additionally, to convolve the input signal f
with h and its various LT[h], we can pre-convolve the image with the basis Hk1,k2 of the original
filter. Moreover, to achieve more robust results than traditional convolution, we use the normalized
cross-correlation denoted as ⋆. This allows us to calculate the intermediate variable fk1,k2

using the
following formula:

fk1,k2
(x) = [f ⋆ Hk1,k2

](x) =
[f ∗Hk1,k2 ](x)− µi(x)µHk1,k2

σi(x)σHk1,k2

(12)

where ∗ denotes convolution, while µ and σ present the mean and variance of the signal or basis filters.
By using these bases, we can determine the optimal orientation and scale through the calculation of
the argmax, expressed as follows:

[Λf (x),Γf (x)] = argmax
(λ,γ)

K∑
k1,k2=−K

fk1,k2
(x) · ck1,k2

(λ, γ) = argmax
γ,λ

cγ,λF (13)

Where ck1,k2(λ, γ) = exp(−ik1γ − ik2 2π lnλ
ln b/a )λ

−m is a coefficient that only relys on λ and γ. cγ,λ
and F are vectors of all possible fk1,k2 and ck1,k2 Λf (x),Γf (x) can be understood as the projection
of signal f for the orientation and scale aspect. These two indicators meet the following properties,
Lemma 4.1. Let T = AsYtRα as a similarity transformation. Then for a input image f and its
distorted version LT[f ](x), for any position x, we can have a relationship of this pair of images by
following property,

ΛLT[f ](x) = Λf (T
−1x) · s

ΓLT[f ](x) = Γf (T
−1x) + α

(14)

This is the condition we achieved and applied in Section 4.2. The proof can be found in Appendix B.

4.2 SIMILARITY CONVOLUTION

We propose SimConv, a new convolution-like operation that serves as an alternative to traditional
convolution. Our design aims to meet the following criteria: 1). It should exhibit equivariance
properties for rotation, scale, and translation theoretically. 2). It should incorporate learnable
parameters and extract image features by “blending” one function with another. 3). It should have
a computational complexity similar to that of traditional convolution, avoiding the computational
disaster problem faced by group convolution when extending the group size. These criteria drive us
design the SimConv as follows,
Definition 4.2 (Similarity convolution). The similarity convolution between the input signal f and
the filter φ is defined as

[f ⊛ φ](x) :=

∫
R

f(x+Mf (x)t)φ(t)dt = Φ[f ](x) (15)

where Mf (x) is a pixel-wise matrix defined as:

Mf (x) = A(Λf (x))R(Γf (x)) ∈ Sim(2) (16)

The SimConv operator exhibits a convolution-like structure between the feature map f and the
learnable filter φ. This becomes apparent when we substitute the variable with t = M−1

f (x)̃t.
Moreover, it can be degenerate to traditional convolution when replace Mf (x) to the identity matrix
for all x. Furthermore, we define the SimConv as an operator Φ[ · ] = [ ·⊛ φ] : RN → RM , where
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we set M = N = 1 for readability. This operator is, in fact, equivariant for rotation, scaling, and
translation, which we can verify below when considering Mf (x) in Equation (16) and combining it
with the condition in Equation (35).

MLT[f ](x)T
−1 = A(ΛLT[f](x))R(ΓLT[f](x))T

−1

= A(Λf (T−1x))AsR(Γf (T−1x))RαT
−1

= A(Λf (T−1x))R(Γf (T−1x)) = Mf (T
−1x)

(17)

This leads to the following condition: T−1 = M−1
LT[f ](x) ·Mf (T

−1x) ,∀x ∈ R2 × 1. If we apply a
similarity transformation LT, which rotates the signal by α degrees centered at t and scales it by s, to
the signal f following Equation (2), we obtain the following transformation of the SimConv output:

Φ[LT[f ]](x) = [LT[f ]⊛ φ](x) =

∫
R

LT[f ](x+MLT[f ](x)t)φ(t)dt

=

∫
R

f(T−1(x+MLT[f ](x)t))φ(t)dt =

∫
R

f(T−1x+T−1MLT[f ](x)t)φ(t)dt

(18)
Furthermore, we can deduce the commutator operator of the above as

LT[Φ[f ]](x) = LT[[f ⊛ φ]](x) = LT[

∫
R

f(x+Mf (x)t)φ(t)dt]

=

∫
R

f(T−1x+Mf (T
−1x)t)φ(t)dt =

∫
R

f(T−1x+T−1MLT[f ](x)t)φ(t)dt

(19)
By replacing the second T in Equation (19) and comparing it with Equation (18), we have,

Φ[LT[f ]](x) = LT[Φ[f ]](x) (20)

This implies that applying a similarity transform to the input signal f and then applying the SimConv
is equivalent to first applying the SimConv and then the transform, which means that the proposed
SimConv satisfies the equivalence property when using the scalable Fourier Argand representation.
Moreover, if each layer in the network satisfies this property, the transformation can be propagated
from the first layer to the last layer. This can be expressed using the following formula:

fn(x) = [LT[f0]⊛ φ0 ⊛ ...⊛ φn](x) = [LT[f0 ⊛ φ0 ⊛ ...⊛ φn]](x) (21)

There are several ways to convert equivariant features into invariant features. One option is to add an
adaptive max pooling layer at the end of the network. Let P [ · ] = torch.nn.AdaptiveMaxPool2d(1) be
a function that takes the maximum response over the entire spatial domain. Since the maximum value
is not affected by the position distortion of the feature, the output is invariant. Using Equation (20),
we obtain:

P [Φ[LT[f ]]](x) = P [LT[Φ[f ]]](x) = P [Φ[f ]](x) (22)
We can see that the transformation matrix T has no influence on the output, which can be useful in
tasks such as classification.

4.3 DISCRETIZATION METHOD

Although the continuous formulation in the previous section is necessary to go, from the intuitive
approach (find scale + orientation, then filter accordingly), to the efficiently implementable formu-
lation (Equation (35)) through a change of variables in an integral, digital images or feature maps
are usually discrete data aligned on a mesh grid. Therefore, in this section, we provide a detailed
description of the discretization of the integral and its approximation implementation. We rewrite
Equation (15) in discrete form as follows:

Φ[f ](x) = [f ⊛ φ](x) =
V

n

∑
t∈R

f(x+Mf (x)t)φ(t) (23)

whereR is the support of φ and n is the number of elements in the setR. For example, in the case of
a 3× 3 convolution,R = {(tx, ty, 1)T |tx, ty ∈ {−1, 0, 1}}. We define yt = x+Mf (x)t, which is
generally a fractional location index. We approximate f(yt) using bilinear interpolation, written as
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f(yt) =
∑

mG(yt,m)f(m), where m = (m1,m2, 1)
T ∈ Z3 and G is the bilinear interpolation

kernel defined as G(m,n) = g(m1, n1)g(m2, n2), where g(a, b) = max(0, 1− |a− b|). Thus, the
similarity convolution becomes:

Φ[f ](x) = [f ⊛ φ](x) =
V

n

∑
t∈R

∑
m

G(yt,m)f(m)φ(t) (24)

With this implementation, we make the similarity convolution differentiable. The gradient of the
input is:

∂Φ[f ](x)

∂x
=
V

n

∑
t∈R

∑
m

∂G(yt,m)

∂x
f(m)φ(t) (25)

Since G is a differentiable function, and it is non-zero only when m aligns on the grid of yt, it does
not require too much computation.

5 EXPERIMENTS

5.1 CHARACTER RECOGNITION TASK

Dataset. The MNIST-ROT-12K DATASET (Larochelle et al., 2007) is commonly used to evaluate
rotation-equivariant algorithms. However, it is inadequate to test the algorithms’ equivariance on both
scaling and rotation. To facilitate fair model comparisons, we construct the SRT-MNIST DATASET
by modifying the original MNIST dataset in a similar way. Specifically, we pad the images to 56×56
pixels, keep the training set unchanged, and randomly apply rotations, scalings, and translations to
each test image within the ranges of θ = [0, 2π), s = [1, 2[, and t = ±10. This out-of-distribution
setting of the test images provides a sufficient evaluation of the model’s generalization ability.

Table 1: Generalization ability test on SRT-MNIST
Methods Type of the test set.

MNIST R-MNIST S-MNIST SRT-MNIST

CNNs 99.46 44.41 73.21 33.56
SO(2)-Conv 99.23 97.18 72.85 70.72
R∗-Conv 99.31 35.23 99.21 39.2
SREN 99.12 96.91 98.48 92.3
SREN+ 99.42 98.3 99.28 95.1

Experimental setup. We adopt
ResNet-18 He et al. (2016) as the
baseline architecture and replace ev-
ery convolutional layer with our pro-
posed SimConv while retaining the
same trainable parameters. The scal-
able Fourier-Argand filters are shared
across all layers. We use Adam op-
timizer (Kingma & Ba, 2015) with
a weight decay of 0.01, initialize the
weights with Xavier (Glorot & Ben-
gio, 2010), and set the learning rate to 0.01, which decays by a factor of 0.1 every 50 epochs. We set
the batch size to 128 and stop training after 200 epochs. The model has 11.68M parameters, and the
FLOPs for an input image of 56× 56 pixels is 0.12G.

Generalization ability study. We ablate our method’s equivariance on rotation and scaling sep-
arately and concurrently using SRT-MNIST, where R-MNIST and S-MNIST are datasets with
only rotation or scaling applied to test images. We compare SREN with SO(2)-Conv and R∗-Conv,
which have the same structure but lack equivariance partially by setting all Γf or λf to unitary. Addi-
tionally, we include SREN+ with random image rotation and scaling by ±30 degrees and [0.8, 1.2],
respectively. From Table 1, our SREN algorithm achieves an accuracy rate of over 95% on every
dataset, whereas the CNNs overfit the original dataset with limited generalization ability.

Equivariance error analysis. We conduct numerical validation of the method’s equivariance using
the equivariant error. This helps us assess the stability of the equivariance property and identify the
key factor that affects its stability. The equivariant error is defined by measuring the normalized L− 2
distance as follows,

Error =
||LT[Φ[f ]]− Φ[LT[f ]] ||2F

||LT[Φ[f ]]||2F
(26)

where || · ||F is the Frobenius norm. The formula is the relative percentage error of the two obtained
features after the input is first convolved then transformed, and vice versa. We compare the k-th
layer feature with the convolutional network. The average error, shown in Figure 3, is below 0.01,
indicating that our network achieves high-quality equivariance. Furthermore, we tested a specific case
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where the image is rotated by 90 degrees, and the equivariance error is negligible, with a value of
1.73× 10−6. This result demonstrates that our method can achieve extremely accurate equivariance
when without discretization issues.

5.2 NATURAL IMAGE CLASSIFICATION

Table 2: Performance and equivariance comparison on the STL-10 dataset.
Methods R-Equi S-Equi Conti ID Accuracy (%) OOD Accuracy (%)

ResNet-16 ✗ ✗ ✗ 82.66± 0.53 37.63± 1.95
RDCF ✓ ✗ ✗ 83.66± 0.57 51.12± 4.21
SESN ✗ ✓ ✓ 83.79± 0.24 47.26± 0.63
SDCF ✗ ✓ ✗ 83.83± 0.41 43.60± 0.87
RST-CNN ✓ ✓ ✗ 84.08± 0.11 58.31± 3.62

SREN ✓ ✓ ✓ 85.25± 0.61 63.42± 2.57

experimental
setup. To evalu-
ate the generaliza-
tion ability of our
method, we con-
duct experiments
on the STL-10
dataset Coates
et al. (2011). The
labeled subset is
an excellent choice to evaluate how efficient the network can use these limited training samples
and how much the network’s generalization ability is when the training set is small. We evaluate
the methods using in-distribution testing (ID), which keeps the test dataset unchanged, and
out-of-distribution(OOD) testing, which randomly rotates and scales the dataset. The OOD test
measures the ability of a method to handle the never-seen inputs. We use a ResNet (He et al., 2016)
with 16 layers as the backbone and replace all convolutional layers with our SimConv layers. The
network is trained for 1000 epochs with a batch size of 128, using Adam as the optimizer. The initial
learning rate is set to 0.1 and adjusted using a cosine annealing schedule during training. Following
Zhu et al. (2019), data augmentation without scaling and rotation is also applied. We compare
our method with several other methods, including the Rotation Decomposed Convolutional Filters
network (RDCF) (Cheng et al., 2019), Scale-Equivariant Steerable Networks (SESN) (Sosnovik
et al., 2020), Scale Decomposed Convolutional Filters network (SDCF) (Zhu et al., 2019), and
Roto-Scale-Translation Equivariant CNNs (Gao et al., 2022). We choose ResNet with 16 layers as the
backbone for all methods to make the model parameters comparable and ensure a fair comparison.

Figure 3: Our method exhibits high equiv-
ariant quality in a multi-layer network, and
achieving an error level of 10−6 when there
is no discretization approximation.

Results & Discussion. Table 2 presents our main
results compared to recent baselines. The columnsR-
Equi and S-Equi indicate whether a method achieves
equivariance in rotation or scaling, respectively. The
column Conti indicates whether a method achieves
equivariance at a continuous scale or rotation. Our
method achieved the highest accuracy among all other
approaches, particularly for the out-of-distribution
test, demonstrating its superior generalization abil-
ity. It should be noted that we compare our method
with those that only“partially” achieve equivariance,
as there lacks like-for-like methods (achieving both
rotation and scaling equivariant in the continuous
group) to compare. While MacDonald et al. (2022)
guarantees equivariance to any finite-dimensional Lie
group, its memory efficiency limits its scalability to large networks and comparison with our method.
Achieving equivariance efficiently is challenging, being able to achieve this property itself is already
another state-of-the-art.

6 CONCLUSION

Although there have been numerous studies on how to achieve rotation and scale equivariant, achieving
continuous equivariant in rotation and scaling simultaneously is novel, to our knowledge. In this
paper, we propose to develop scalable steerable filters based on the Fourier-Argand representation and
to use the local scale and orientation provided by these filters to empower the convolution operator
with local scale and rotation equivariant: SimConv. Mathematical and experimental analyses are
detailed to explain why it works and to what extent it can achieve the desired property.
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A PROOF OF SCALABLE FOURIER ARGAND REPRESENTATION

Definition A.1 (Scalable Fourier-Argand representation). Let h be a square-integrable function
expressed as h(r, θ) in polar coordinates. Its scalable Fourier-Argand representation is defined as
the following series form:

h(r, θ) =
∑

k1,k2∈Z

(
hk1,k2

rmk1 exp

(
i(k1θ + k2

2π ln r

ln b/a
)

))
=

∑
k1,k2∈Z

Hk1,k2
(r, θ) (27)

where Z denotes the set of all integers, and mk can be chosen as a constant value. The function has
limited support, i.e., (r, θ) ∈ [0, 2π[×[a, b[, and k1, k2 can be truncated for a subset of integers to
approximate h. Let hk1,k2 : Z2 → C as the coefficient of each item. We can compute it as follows,

hk1,k2 =
1

ln b
a

∫ ln b

ln a

1

2π

∫ 2π

0

h(eρ, θ) exp

(
−ik1θ − ik2

2πρ

ln b/a
− ρm

)
dθdρ (28)

Proof.

We begin by substituting the variable r in Equation (27) with an exponential term, r = eρ, where
ρ = ln r.

h(eρ, θ) =
∑

k1,k2∈Z

[
hk1,k2 exp(ρmk1) exp(i(k1θ + k2

2πρ

ln b− ln a
))

]
(29)

Additionally, we introduce the quantity gk1,k2
and define it accordingly,

gk1,k2
≡ 1

ln b/a

∫ ln b

ln a

1

2π

∫ 2π

0

h(eρ, θ) exp(−ik1θ − ik2
2πρ

ln b/a
− ρm)dθdρ (30)

We then substitute h(eρ, θ) in Equation (30) with the scalable Fourier-Argand representation in
Equation (29).

gk1,k2 =
1

ln b/a

∫ ln b

ln a

1

2π

∫ 2π

0

h(eρ, θ) exp(−ik1θ − ik2
2πρ

ln b/a
− ρm)dθdρ

=
1

ln b/a

∫ ln b

ln a

1

2π

∫ 2π

0

 ∑
t1,t2∈Z

ht1,t2 exp(ρmt1) exp(i(t1θ + t2
2πρ

ln b/a
))


exp(−ik1θ − ik2

2πρ

ln b/a
− ρm)dθdρ

=
1

ln b/a

∫ ln b

ln a

1

2π

∫ 2π

0

∑
t2∈Z

(∑
t1∈Z

ht1,t2 exp(ρmt1) exp(it1θ)

)
exp(it2

2πρ

ln b/a
)

exp(−ik1θ)dθ exp(−ik2
2πρ

ln b/a
− ρm)dρ

=
1

ln b/a

∫ ln b

ln a

∑
t2∈Z

(∑
t1∈Z

ht1,t2
1

2π

∫ 2π

0

exp(ρmt2) exp(i(t1 − k1)θ)dθ

)
exp(it2

2πρ

ln b/a
)

exp(−ik2
2πρ

ln b/a
− ρm)dρ

=
1

ln b/a

∫ ln b

ln a

∑
t2∈Z

∑
t1∈Z

ht1,t2

(
1

2π

∫ 2π

0

exp(i(t1 − k1)θ)dθ
)

exp(it2
2πρ

ln b/a
) exp(−ik2

2πρ

ln b/a
)dρ

(31)
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=
1

ln b/a

∫ ln b

ln a

∑
t2∈Z

∑
t1∈Z

ht1,t2δ[t1 − k1] exp(it2
2πρ

ln b/a
) exp(−ik2

2πρ

ln b/a
)dρ

=
1

ln b/a

∫ ln b

ln a

∑
t2∈Z

hk1,t2 exp(i(t2 − k2)
2πρ

ln b/a
)dρ

=
∑
t2∈Z

hk1,t2

1

ln b/a

∫ ln b

ln a

exp(i(t2 − k2)
2πρ

ln b/a
)dρ

=
∑
t2∈Z

hk1,t2δ[t2 − k2]

= hk1,k2

(32)

The validity of the last equation is demonstrated through two cases: first, when t2 = k2,

1

ln b/a

∫ ln b

ln a

exp(i(t2 − k2)
2πρ

ln b/a
)dρ =

1

ln b/a

∫ ln b

ln a

exp(i0)dr = 1 (33)

and second, when t2 ̸= k2.

1

ln b/a

∫ ln b

ln a

exp(i(t2 − k2)
2πρ

ln b/a
)dρ =

1

ln b/a

∫ ln b

ln a

exp(in
2πρ

ln b/a
)dρ = 0 (34)

Finally, the assertion in Equation (31) is proven by the aforementioned arguments.

B PROOF OF DISTORTION PROPERTY

Lemma B.1. Let T = AsYtRα as a similarity transformation. Then for a input image f and its
distorted version LT[f ](x), for any position x, we can have a relationship of this pair of images by
following property,

ΛLT[f ](x) = Λf (T
−1x) · s

ΓLT[f ](x) = Γf (T
−1x) + α

(35)

Proof. Consider the original and distorted image f(x) and LT [f ](x), respectively, and use the
scalable Fourier Argand basis. We obtain:

[
ΛLT[f ](x),ΓLT[f ](x)

]
= argmax

(λ,γ)

K∑
k1,k2=−K

LT[f ]k1,k2
(x) · ck1,k2

(λ, γ)

= argmax
(λ,γ)

K∑
k1,k2=−K

[LT[f ] ∗Hk1,k2
](x) · exp(−ik1γ − ik2

2π lnλ

ln b/a
)λ−m

(36)
Substituting x with T−1x, we have:[

ΛLT[f ](T
−1x),ΓLT[f ](T

−1x)
]

=argmax
(λ,γ)

K∑
k1,k2=−K

[f ∗ LT−1 [Hk1,k2
]](T−1x) · exp(−ik1γ − ik2

2π lnλ

ln b/a
)λ−m (37)

Besides, from Equation (10), we have:

LT[Hk1,k2
](r, θ) = Hk1,k2

(r, θ) ·
(
exp(−ik1α− ik2

2π ln s

ln b/a
)s−mk1

)
(38)
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Hence, we can rewrite the previous equation as:[
ΛLT[f ](T

−1x),ΓLT[f ](T
−1x)

]
=argmax

(λ,γ)

K∑
k1,k2=−K

[f ∗ LT−1 [Hk1,k2
]](T−1x) · exp(−ik1γ − ik2

2π lnλ

ln b/a
)λ−m

=argmax
(λ,γ)

K∑
k1,k2=−K

[f ∗Hk1,k2 ·
(
exp(ik1α+ ik2

2π ln s

ln b/a
)smk1

)
](T−1x)

· exp(−ik1γ − ik2
2π lnλ

ln b/a
)λ−m

=argmax
(λ,γ)

K∑
k1,k2=−K

[f ∗Hk1,k2
](T−1x) · exp(−ik1(γ − α)− ik2

2π ln(λ/s)

ln b/a
)(λ/s)−m

=arg max
(λs,γ+α)

K∑
k1,k2=−K

[f ∗Hk1,k2
](T−1x) · exp(−ik1(γ)− ik2

2π ln(λ)

ln b/a
)(λ)−m

(39)

Finally, we can conclude that,
ΛLT[f ](x) = Λf (T

−1x) · s
ΓLT[f ](x) = Γf (T

−1x) + α
(40)

C DETAILS, ANALYSIS, AND VISUALIZATION

C.1 ADDITIONAL STUDIES

Stability We first quantify the deformation stability, and seek to answer in what degree of distortion
can the method persist the equivariant (or the generalization ability) compared with original convolu-
tion. To achieve this, we evalue our method on the test dataset that rotated and scaled entirely by a
certain amount. The MNIST dataset is used in this experiment. The results of this experiment are
presented in Figure 4, which shows the accuracy decay with different settings. From the figure, we
observe that when the image is rotated significantly beyond what was seen during training, CNNs ex-
perience a large drop in accuracy, whereas our method maintains consistently excellent performance.
For scale changing tests, our method retains relatively good capability over a wide range of scale
changes. However, for extremely large scale changes, our method experiences performance drop due
to the limited filter spot and sampling approximation.

Figure 4: Equivariance Stability: Our network demonstrates high equivariance stability when the
entire test set undergoes translation and rotation by a certain scale or angle. In contrast, ConvNet’s
performance drops significantly under such transformations.

C.2 FEATURE VISUALIZATION

In addition to numerical experiments, we employ feature visualization to intuitively verify the
achieved equivariance of our network. The visualization results are presented in Figure 5. This
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Figure 5: Feature Visualization: We perform a feature visualization of both Convolutional Neu-
ral Networks (CNNs) and our Scale-equivariant Residual Equilibrium Network (SREN) using a
compensating view. The visualization allows us to observe how the features vary with different
transformations of the object. Our results indicate that the features extracted by our method remain
stable under transformations, whereas those of CNNs vary.

Table 3: Methods comparation on STL-10 dataset, all methods use the WideResNet as the backbone.
Method WRN SiCNN SI-ConvNet DSS SS-CNN SESN DISCO SREN
Error 11.48 11.62 12.48 11.28 25.47 8.51 8.07 8.23

approach examines whether the hidden features of the network exhibit visual equivariance with
respect to rotation and scaling. The parameters are randomly initialized for both the CNN and SREN
models. Through a compensation view, we can clearly observe that our network successfully achieves
equivariance in both rotation and scaling.

C.3 ARCHITECTURE AND PIPELINE

The algorithmic framework is illustrated in Figure 2. Our method can be extended to a multi-layer
network structure. Assuming that the network comprises K blocks (which we named as SimBlock),
each of which contains several convolutional layers. Let fi denote the input signal of the i-th block.
We first compute the scalable Fourier Argand feature, which is introduced in Section 4.1, to obtain
a spatial-wise matrix Mfi(x). Then, all the SimConv layers, proposed in Section 4.2, within a
SimBlock share the same scalable Fourier Argand features. Assuming there are N SimConv layers in
each SimBlock, according to the property of Equation (21), the output feature fi+1 of the block is
guaranteed to be an equivariant feature corresponding to the input image. In the classification task,
the invariance property is desired. Therefore, we perform pooling for each channel in the last layer,
followed by the MLP layer. Finally, the output is obtained and guaranteed to be invariant for any
similar transform. The whole process is presented in Algorithm 1.

C.4 STL-10 DATASET COMPARATION

This section presents a comparison of our method with other related approaches using the same
backbone, namely WideResNet with 16 layers and a widen factor of 8. Our network was trained
for 1000 epochs using SGD as the optimizer, with a batch size of 128. The initial learning rate was
set to 0.1 and decreased by a factor of 0.2 after 300 epochs, while the drop rate probability was
set to 0.3. We also utilized data augmentation techniques, as described in Sosnovik et al. (2021a).

15



Published as a conference paper at ICLR 2023

Algorithm 1: Pipeline of our SREN Algorithm

Input: Batch of data {fi}Ti=0
Output: predicted output value v
for i = 1 : K levels do

Initialize filter h, calculate its basis Hk1,k2 ;
Take fi as input;
Get fk1,k2

← f ⋆ Hk1,k2
;

Get Γfi , λfi ← argmaxγ,λ cγ,λF;
Calculate Mf ← Γfi , λfi ;
for m = 1 :M layers in specific level n do

Apply Mf to SimConv;
fi,m+1 ← fi ⊛ φi,m;

fi+1 ← fi,M

Get the output with a head layer: v ← MLP(f)

Table 3 presents our main results compared to recent baseline methods, such as SiCNN (Kanazawa
et al., 2014), DSS (Worrall & Welling, 2019), SESN (Sosnovik et al., 2020), and DISCO (Sosnovik
et al., 2021a). Our method achieved competitive results that are close to state-of-the-art performance.
Additionally, we would like to emphasize that our method’s computational cost and parameter count
are similar to those of the classic convolutional neural network with the same backbone. This is
because the two quantities Λ and Γ can be shared across different filters, resulting in a small cost
compared to the abundance of the convolutional (or our SimConv) layer. Moreover, the complexity
of our SimConv operator is similar to that of the convolutional layer. For comparison, as reported
in Sosnovik et al. (2021a), the computational cost of the DISCO method takes more than five times
longer and SESN takes more than 16.5 times longer than classic CNNs.
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