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Summary
We propose a novel deconvolution algorithm based on the minimization of Stein’s
unbiased risk estimate (SURE). We linearly parametrize the deconvolution process
by using multiple Wiener filterings as elementary functions, followed by undec-
imated Haar-wavelet thresholding. The key contributions of our approach are:
1) the linear combination of several Wiener filters with different (but fixed) regu-
larization parameters, which avoids the manual adjustment of a single nonlinear
parameter; 2) the use of linear parameterization, which makes the SURE mini-
mization finally boil down to solving a linear system of equations, leading to a
very fast and exact optimization of the whole deconvolution process.

Problem statement
Linear observation model: y = Hx + n

where H is the convolution matrix, Gaussian noise n ∼ N (0, σ2I).

Problem: How to estimate x from the observations y, knowing h?
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Figure 1: Deconvolution — estimation of original signal x from the distorted data y.

SURE for deconvolution problems
Formulation — minimization of MSE
Denoting the processing of the measure data y by F, our objective is to minimize
the mean squared error (MSE):

MSE = 1
NE
{
‖ F(y)︸︷︷︸−x‖2

}
the estimated data — the outcome of the processing F

SURE — unbiased estimate of MSE
Theorem Given the linear model above, the following random variable:

ε = 1
N

{
‖F(y)‖2− 2yTH−TF(y) + 2σ2divy

(
H−TF(y)

) }
+

1
N
‖x‖2︸ ︷︷ ︸

neutral w.r.t. optimization
is an unbiased estimator of the MSE, i.e. E {ε} = 1

NE

{
‖F(y)− x‖2

}
, where the

divergence operator is divyu = ∑N
n=1

∂un
∂yn

for ∀u ∈ RN.

The SURE-LET approach
Regularized SURE — an approximation of SURE
Considering the possible ill-posedness of the matrix H, we approximate H−1 by a
Tikhonov regularized inverse H−1

β :

εβ =
1
N

{
‖F(y)‖2− 2yTH−T

β F(y) + 2σ2div
(
H−T

β F(y)
)}

+ 1
N‖x‖2

where Hβ
−1 =

(
HTH + βSTS

)−1 HT for some β and matrix S, to stabilize ε. In this
work, we choose β = 1× 10−5σ2 and S as Laplacian operator.

Linear parametrization of the processing F — LET
The processing F(y) is represented by a linear combination of a small number
(K � N) of known basic processings Fk(y) ∈ RN, weighted by unknown linear
coefficients ak for k = 1, 2, ..., K, i.e.

F(y) =
K

∑
k=1

akFk(y)

The SURE-LET optimization
•Combining SURE and LET, the minimization of εβ over the unknown linear

weights ak boils down to solving a linear system of equations of order K:
K

∑
k′=1

(
FT

k (y)Fk′(y)︸ ︷︷ ︸
Mk,k′

)
ak′ −

(
yTH−T

β Fk(y)− σ2div
(
H−T

β Fk(y)
)︸ ︷︷ ︸

ck

)
= 0

m
Ma = c

•Advantage of SURE-LET approach:
1. dramatically reduce the deconvolution problem size from pixel number N to the number of

basis functions K;
2. simplify the deconvolution problem to solving a linear system of equations.

Construction of the functions Fk(y)
Multi-Wiener deconvolutions
Each basic processing Fk is Wiener filtering with regularization parameter λk:
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Figure 2: Typical structure of processing: multi-Wiener filtering followed by transform-domain
thresholding, where the thresholding function is given as θl(w) = w

{
1− exp

(
−
(w

Tl

)4
)}

.

Experimental results
Parameter setting of the proposed SURE-LET algorithm

• λm: λ1 = 1× 10−4σ2, λ2 = 1× 10−3σ2, λ3 = 1× 10−2σ2 • D and R: Haar wavelet
• Tl: T1 = 4σm,j, T2 = 9σm,j • K = MJL + M

Image Mixture deconvolution performance (PSNR in dB)
Blur Separable filter 9× 9 uniform blur

σ 1 10 50 1 10 50
Input 18.38 17.94 12.76 14.58 14.40 11.35
BM3D 26.54 20.04 16.15 20.66 16.01 14.60
TVMM 27.17 20.64 15.25 20.70 15.64 13.66

C-SALSA 26.58 20.16 16.19 20.04 16.30 14.29
SURE-LET 28.08 21.18 16.94 21.70 16.65 15.01

? Separable filter: with weights [1, 4, 6, 4, 1]/16 along both horizontal and vertical directions.

Visual example
SURE-LET: 15.01dBBM3D: 14.60dBC-SALSA: 14.29dBBlurred noisy: 11.35dB

Figure 3: An example: Mixture degraded by 9× 9 uniform blur with noise std σ = 50.

Conclusion
•The framework of the proposed SURE-LET approach:

– extension of SURE to deconvolution problem as the objective functional;
– linear parametrization of the processing.
•The originality of the presented work:

– to use multiple Wiener filterings with different but fixed regularization parameters, to avoid
empirical adjustment.

•The potential of the presented work:
– great flexibility: take advantage of all the degrees of freedom in the design of the elementary

function Fk;
– limited computational cost: fast and exact to solve a linear system of equations;
– robustness: to all noise levels.
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