SURE-LET Image Deconvolution using Multiple Wiener Filters Feng Xue¹, Florian Luisier² and Thierry Blu¹

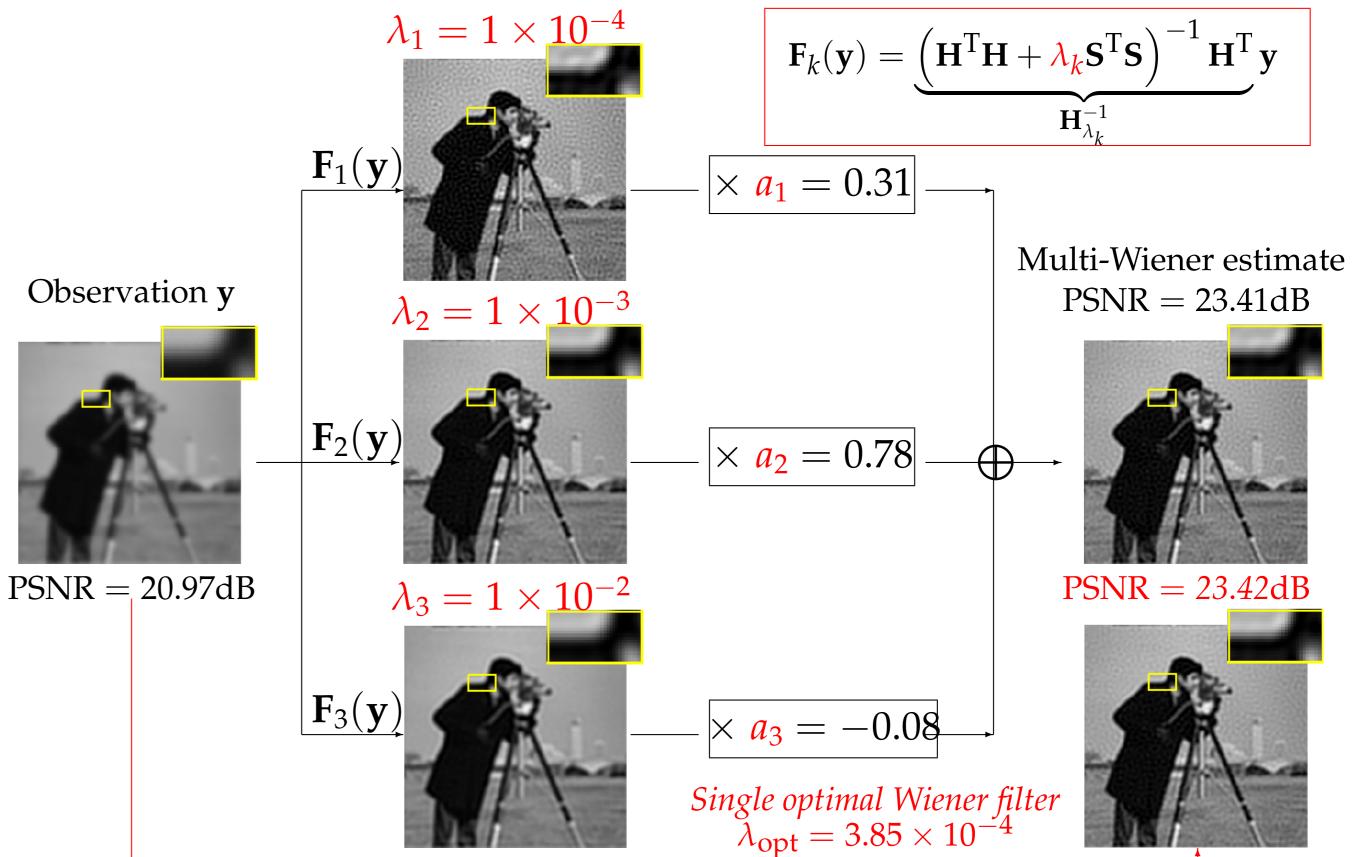
¹Department of Electronic Engineering, The Chinese University of Hong Kong (CUHK) ²School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

Summary

We propose a novel deconvolution algorithm based on the minimization of Stein's unbiased risk estimate (SURE). We linearly parametrize the deconvolution process by using **multiple Wiener filterings** as elementary functions, followed by **undec**imated Haar-wavelet thresholding. The key contributions of our approach are: 1) the **linear combination** of several Wiener filters with different (but fixed) regularization parameters, which avoids the manual adjustment of a single nonlinear parameter; 2) the use of linear parameterization, which makes the SURE minimization finally boil down to **solving a linear system of equations**, leading to a very fast and exact optimization of the whole deconvolution process.

Construction of the functions $F_k(y)$ **Multi-Wiener deconvolutions**

Each basic processing \mathbf{F}_k is Wiener filtering with regularization parameter λ_k :

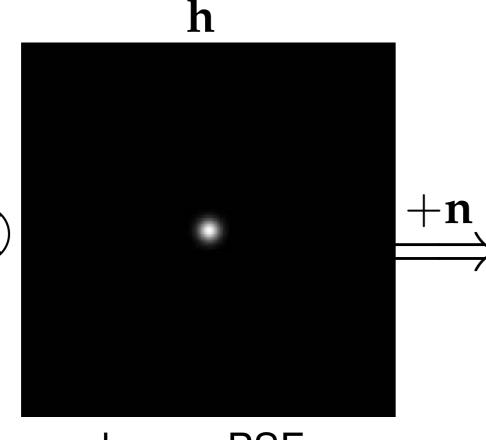


Linear observation model: $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$

Problem statement

where **H** is the convolution matrix, Gaussian noise $\mathbf{n} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$.

Problem: How to estimate **x** *from the observations* **y***, knowing* **h***?*



original unknown data non-blind deconvolution

known PSF blurring kernel

Observed data blurred & noisy

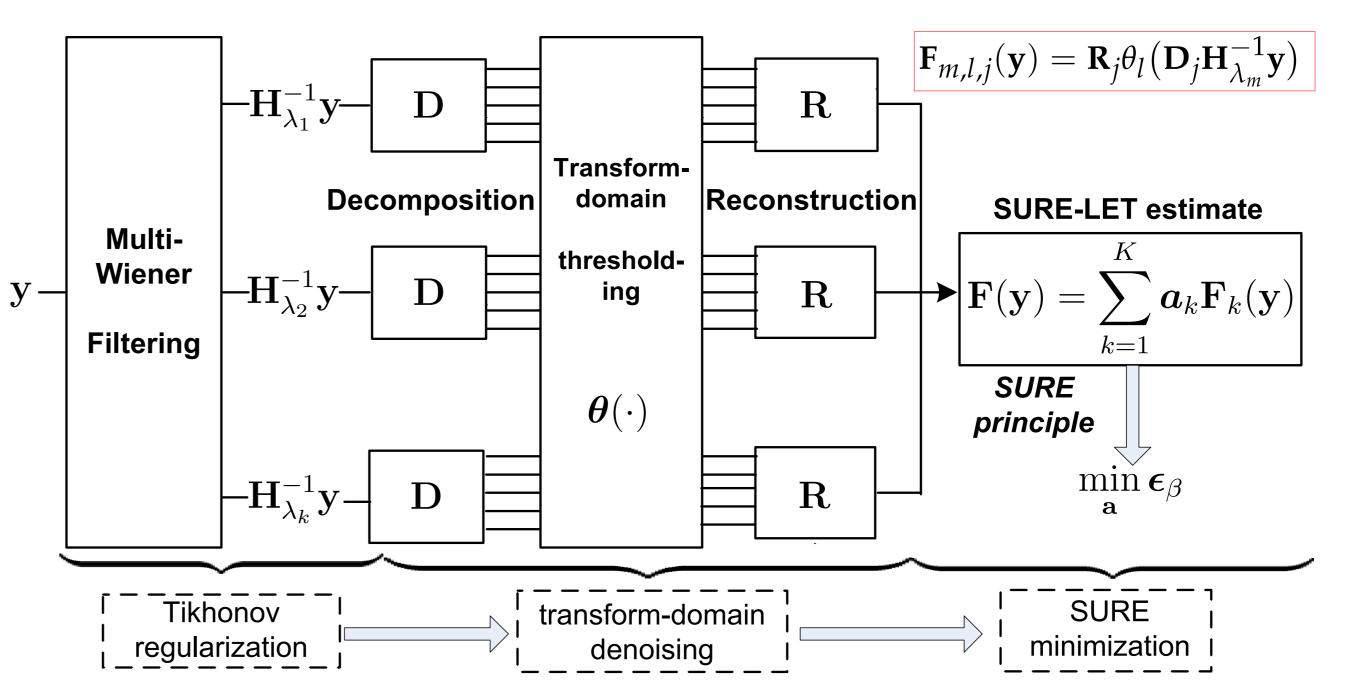
Figure 1: Deconvolution — estimation of original signal x from the distorted data y.

SURE for deconvolution problems

Formulation — **minimization of MSE**

Denoting the processing of the measure data y by **F**, our objective is to minimize the mean squared error (MSE):

Multi-Wiener wavelet-thresholding deconvolution



 $MSE = \frac{1}{N} \mathscr{E}\left\{ \left\| \mathbf{F}(\mathbf{y}) - \mathbf{x} \right\|^2 \right\}$

the estimated data — the outcome of the processing **F**

SURE — unbiased estimate of MSE

Given the linear model above, the following random variable: Theorem

 $\epsilon = \frac{1}{N} \left\{ \left\| \mathbf{F}(\mathbf{y}) \right\|^2 - 2\mathbf{y}^{\mathrm{T}} \mathbf{H}^{-\mathrm{T}} \mathbf{F}(\mathbf{y}) + 2\sigma^2 \mathrm{div}_{\mathbf{y}} \left(\mathbf{H}^{-\mathrm{T}} \mathbf{F}(\mathbf{y}) \right) \right\} + \frac{1}{N} \left\| \mathbf{x} \right\|_{\mathbf{x}}^2$

neutral w.r.t. optimization is an unbiased estimator of the MSE, i.e. $\mathscr{E}{\epsilon} = \frac{1}{N}\mathscr{E}{\left\{\|\mathbf{F}(\mathbf{y}) - \mathbf{x}\|^2\right\}}$, where the divergence operator is $\operatorname{div}_{\mathbf{y}}\mathbf{u} = \sum_{n=1}^{N} \frac{\partial u_n}{\partial u_n}$ for $\forall \mathbf{u} \in \mathbb{R}^N$.

The SURE-LET approach

Regularized SURE — an approximation of SURE

Considering the possible ill-posedness of the matrix **H**, we approximate \mathbf{H}^{-1} by a Tikhonov regularized inverse \mathbf{H}_{β}^{-1} :

 $\epsilon_{\beta} = \frac{1}{N} \Big\{ \|\mathbf{F}(\mathbf{y})\|^2 - 2\mathbf{y}^{\mathrm{T}} \mathbf{H}_{\beta}^{-\mathrm{T}} \mathbf{F}(\mathbf{y}) + 2\sigma^2 \mathrm{div} \big(\mathbf{H}_{\beta}^{-\mathrm{T}} \mathbf{F}(\mathbf{y})\big) \Big\} + \frac{1}{N} \|\mathbf{x}\|^2$

where $\mathbf{H}_{\boldsymbol{\beta}}^{-1} = (\mathbf{H}^{\mathrm{T}}\mathbf{H} + \boldsymbol{\beta}\mathbf{S}^{\mathrm{T}}\mathbf{S})^{-1}\mathbf{H}^{\mathrm{T}}$ for some $\boldsymbol{\beta}$ and matrix \mathbf{S} , to stabilize $\boldsymbol{\epsilon}$. In this work, we choose $\beta = 1 \times 10^{-5} \sigma^2$ and **S** as Laplacian operator.

Linear parametrization of the processing F — LET

The processing F(y) is represented by a linear combination of a small number $(K \ll N)$ of known basic processings $\mathbf{F}_k(\mathbf{y}) \in \mathbb{R}^N$, weighted by unknown linear coefficients a_k for k = 1, 2, ..., K, i.e.

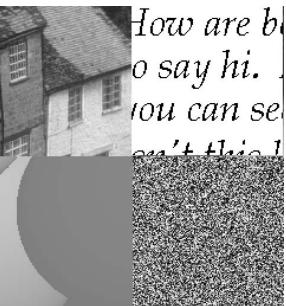
Figure 2: Typical structure of processing: multi-Wiener filtering followed by transform-domain thresholding, where the thresholding function is given as $\theta_l(w) = w \left\{ 1 - \exp\left(-\left(\frac{w}{T_l}\right)^4\right) \right\}$.

Experimental results

Parameter setting of the proposed SURI	E-LET algorithm
• λ_m : $\lambda_1 = 1 \times 10^{-4} \sigma^2$, $\lambda_2 = 1 \times 10^{-3} \sigma^2$, $\lambda_3 = 1 \times 10^{-3} \sigma^2$	$10^{-2}\sigma^2 \bullet \mathbf{D}$ and R : Haar wavelet
• $T_l: T_1 = 4\sigma_{m,j}, T_2 = 9\sigma_{m,j}$	• $K = MJL + M$

Image *Mixture* deconvolution performance (PSNR in dB)

Blur	Separable filter			9×9 uniform blur		
σ	1	10	50	1	10	50
Input	18.38	17.94	12.76	14.58	14.40	11.35
BM3D	26.54	20.04	16.15	20.66	16.01	14.60
TVMM	27.17	20.64	15.25	20.70	15.64	13.66
C-SALSA	26.58	20.16	16.19	20.04	16.30	14.29
SURE-LET	28.08	21.18	16.94	21.70	16.65	15.01

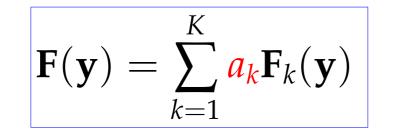


* Separable filter: with weights [1, 4, 6, 4, 1]/16 along both horizontal and vertical directions.

Visual example

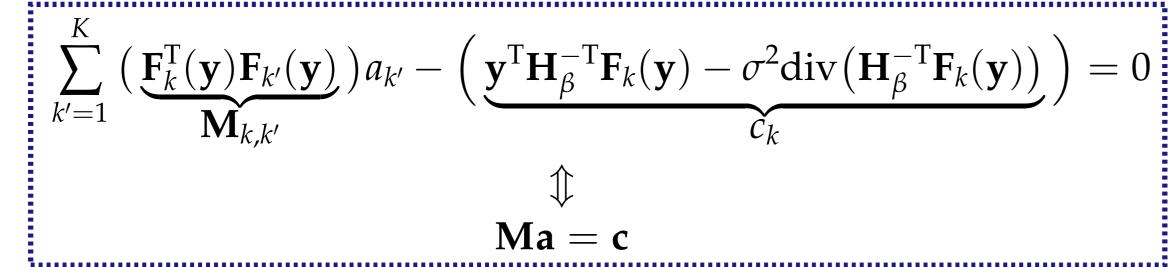


Figure 3: An example: *Mixture* degraded by 9×9 uniform blur with noise std $\sigma = 50$.



The SURE-LET optimization

• Combining SURE and LET, the minimization of ϵ_{β} over the unknown linear weights *a_k* boils down to **solving a linear system of equations of order** *K*:



• Advantage of SURE-LET approach:

- 1. dramatically reduce the deconvolution problem size from pixel number N to the number of basis functions *K*;
- 2. simplify the deconvolution problem to solving a linear system of equations.

Conclusion

- The framework of the proposed SURE-LET approach:
 - extension of **SURE** to deconvolution problem as the objective functional;
 - -linear parametrization of the processing.
- The originality of the presented work:
 - to use multiple Wiener filterings with different but fixed regularization parameters, to avoid empirical adjustment.
- The potential of the presented work:
 - -great flexibility: take advantage of all the degrees of freedom in the design of the elementary function \mathbf{F}_k ;
 - -limited computational cost: fast and exact to solve a linear system of equations;
 - robustness: to all noise levels.

Reference

• F. Xue, F. Luisier and T. Blu. "Multi-Wiener SURE-LET Deconvolution", IEEE Transactions on Image Processing, Vol. 22 (5), pp. 1954-1968, 2013.