SURE-based Blind Gaussian Deconvolution Feng Xue and Thierry Blu

Department of Electronic Engineering, The Chinese University of Hong Kong (CUHK)

Summary

- **Problem**: blind deconvolution without the knowledge of the Point Spread Function;
- **Basic procedure**: PSF estimation + non-blind deconvolution with estimated PSF;
- Our scope: Gaussian PSF with unknown variance s_0^2 (to be estimated);
- **Originality**: novel objective functional blur SURE, a modified version of SURE (Stein's unbiased risk estimate);
- **Potential**: possibly extend SURE-based framework to other types of PSF with known parametric form.

Problem statement

Linear observation model

 $\mathbf{y} = \mathbf{H}_0 \mathbf{x} + \mathbf{n}$

where

- \mathbf{H}_0 the latent true convolution matrix associated with true PSF \mathbf{h}_0
- Gaussian noise $\mathbf{n} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Problem: $\mathbf{x} = ?$ and $\mathbf{h}_0 = ?$, knowing \mathbf{y} only. Solution — separate estimation of PSF, and then signal: Step 1 — PSF estimation; Step 2 — deconvolution^{*}. \star We use our recently proposed SURE-LET approach to perform (non-blind) deconvolution [1,2].

Gaussian kernel

• Parametric form with standard deviation s

$$\mathbf{h}(i, j; \mathbf{s}) = C \cdot \exp\left(-\frac{i^2 + j^2}{2\mathbf{s}^2}\right)$$

$$\mathbf{s} - \text{blur size, width of the Gaussian shape;}$$

$$C - \text{normalization coefficient, s.t. } \sum_{i,j} \mathbf{h}(i, j) = 1.$$

- \mathbf{h}_0 latent true Gaussian kernel with unknown width s_0
- Question: how to estimate s_0 , from observed y?

[1]. F. Xue, F. Luisier, and T. Blu, SURE-LET image deconvolution using multiple Wiener filters, *ICIP 2012*. [2]. F. Xue, F. Luisier, and T. Blu, Multi-Wiener SURE-LET Deconvolution, *submitted to IEEE TIP*.

Blur SURE as a new criterion

• blur MSE (mean squared error) is defined as (with unknown H_0x):

blur MSE = $\frac{1}{N} \mathscr{E} \left\{ \| \mathbf{HF}(\mathbf{y}) \right\}$

• blur SURE — unbiased estimate of the blur MSE:

Remarks:

-the blur SURE depends on the observed data only (NOT on \mathbf{H}_0 and \mathbf{x}); -divergence operator: $\operatorname{div}_{\mathbf{y}}\mathbf{u} = \sum_{n=1}^{N} \frac{\partial u_n}{\partial u_n}$ for $\forall \mathbf{u} \in \mathbb{R}^N$; - Minimizing the blur-SURE yields results that are very close to minimizing the blur-MSE.

Blur-SURE minimization for Wiener processing

Theorem: Consider the approximate Wiener filtering:

$$\mathbf{Y}(\mathbf{y}) = (\mathbf{H}^{\mathrm{T}}\mathbf{H} + \lambda \mathbf{I})^{\mathrm{T}}$$

 $\mathbf{W}_{\mathbf{H},\lambda}$ Then, the minimization of the blur MSE over both H and λ : blur MSE

$$\min_{\mathbf{H},\lambda} \frac{1}{N} \| \mathbf{H} \mathbf{W}_{\mathbf{H},\lambda} \mathbf{y} - \mathbf{w} \|$$

yields $\mathbf{H} pprox \mathbf{H}_0$.

Explanation (Fourier representation)

Consider the exact Wiener processing with known $H_0(\omega)$:

$$W(\omega) = rac{H_0^*(\omega)}{|H_0(\omega)|^2 + \sigma^2/\omega}$$

where $S(\omega)$ is the power spectrum density of image x. Then, $U_0(\omega) = H_0(\omega)W(\omega)$ behaves like a band indicator.

The blur-SURE minimization results in another band indicator $U = HW_{H,\lambda}$, which is as close as possible to \mathbf{U}_0 :

Approximation of the band indicator $U_0(\omega)$

$$)-\mathbf{H}_{0}\mathbf{x}\left\Vert ^{2}
ight
angle$$

 $\epsilon = \frac{1}{N} \left\| \mathbf{HF}(\mathbf{y}) - \mathbf{y} \right\|^2 + \frac{2\sigma^2}{N} \operatorname{div}_{\mathbf{y}} \left(\mathbf{HF}(\mathbf{y}) \right) - \sigma^2$

 $|\mathbf{H}_0\mathbf{x}|$

-150 -100 -50 0 50 100 150 A typical example for $U_0(\omega)$

Results and discussions

SURE-based framework to estimate s_0 and λ $\mathbf{W}_{\mathbf{H}}$ tentative $\stackrel{s}{,} \longrightarrow$

<u> </u>	/	$\mathbf{\Lambda}$	\cdots II , \wedge
			Wiener filterir
			Stage 1: PSF es
~			-

 \star One possibility is to use alternating minimizations between s and λ .

Estimation of s_0 , followed by deconvolution

Table 1: Blind deconvolution (Cameraman)												
BSNR (in dB)	40	30	20	10	40	30	20	10	40	30	20	10
true s_0	$s_0 = 1.0$			$s_0 = 2.0$				$s_0 = 3.0$				
estimated s_0	1.12	1.19	1.24	1.33	2.15	2.18	2.25	2.48	3.28	3.34	3.37	3.52
PSNR difference•	0.26	0.18	0.12	0.09	0.11	0.07	0.07	0.10	0.13	0.11	0.08	0.10
PSNR difference after deconvolution with eracle												

PSINK difference after deconvolution with oracle

ble 2: S	SNR improvement (in dB) of deconvolution performance for										
	Method	SAR1 [3] SAR2 [3] TV1 [4] TV2 [4] SURI									
	BSNR	40dB									
	Cameraman	1.03	1.01	1.82	1.73	3.15					
	Lena	1.35	1.43	2.53	2.59	4.54					
	BSNR			20dB							
	Cameraman	1.16	-8.83	1.70	-40.89	2.15					
	Lena	1.62	-11.32	2.62	-32.50	3.13					

A visual example

blurred with $s_0 = 1.50$ BSNR = 20dBPSNR = 23.23dB

Real data

Restoration of *Jupiter*: • The estimated noise std is $\sigma = 4.68$ by using MAD (median absolute deviation); • Estimated $s_0 = 2.41$

[3]. R. Molina, J. Mateors, and A. Katsaggelos, *IEEE TIP*, vol.15, no.12, pp.3715–3727, 2006. [4]. S. Babacan, R. Molina, and A. Katsaggelos, *IEEE TIP*, vol.18, no.1, pp.12–26, 2009

香港中文大學 The Chinese University of Hong Kong

Note that the PSNR loss due to the inexactness of the estimation is kept within 0.2dB. Comparisons with the state-of-the-art in blind deconvolution

$s_0^2 = 9$	nce for	rma	perfo	b) of deconvolution p				dB	in
	SURE	[4]	TV2	[4]	TV1	[3]	SAR2	[3]	1

blind deconvolution with estimated $s_0 = 1.79$ PSNR = 25.65 dB

non-blind deconvolution with known $s_0 = 1.50$ PSNR = 25.75dB

Observed image

