Construction of an Orthonormal Complex Multiresolution Analysis

Liying Wei and Thierry Blu

Multimedia \＆Signal Processing Group，The Chinese University of Hong Kong（CUHK）

Summary

We design two complex filters $\{h[n], g[n])\}$ for the filter bank structure as shown in Fig． 1 based on two atom functions $\left\{\rho_{0}^{\alpha}(t), \rho_{1 / 2}^{\alpha}(t)\right\}$ ，such that
－they generate an orthonormal multiwavelet basis；
－the two scaling functions $\left\{\phi_{0}(t), \phi_{1}(t)\right\}$ are real－valued
－the two complex conjugate wavelets $\left\{\psi(t), \psi^{*}(t)\right\}$ have their frequency responses supported either on the positive or negative frequencies；
－the resulting complex wavelet transform is non－redundant and able to distinguish $\pm 45^{\circ}$ diagonal features

Figure 1：The orthoconjugate filter bank structure for 1 D non－redundant complex wavelet transform （NRCWT）implementation．$u[n]=\left\{\frac{1}{\sqrt{2}}, \frac{j}{\sqrt{2}}\right\}$ ．

Complex multiresolution analysis

The Hilbert－pair atom functions

$$
\rho_{0}^{\alpha}(t)=|t|^{\alpha}, \quad \rho_{1 / 2}^{\alpha}(t)=|t|^{\alpha} \operatorname{sgn}(t)
$$

satisfy a scaling property of the form：$\rho^{\alpha}(t / 2)=2^{-\alpha} \rho^{\alpha}(t)$ ．The multiresolution scaling space V_{j} is generated by the shifts of these two functions，i．e．

$$
V_{j}=\operatorname{Span}_{n \in \mathbb{Z}}\left\{\rho_{0}^{\alpha}\left(2^{j} t-n\right), \rho_{1 / 2}^{\alpha}\left(2^{j} t-n\right)\right\} .
$$

The scaling space V_{j} ，wavelet spaces W_{j} and W_{j}^{*} satisfy
$V_{j} \subset \mathbf{L}^{2}(\mathbb{R}), \quad V_{j} \oplus W_{j} \oplus W_{j}^{*}=V_{j+1}, \quad f(t) \in V_{j} \Longleftrightarrow f\left(2^{-j} t\right) \in V_{0}$.

Figure 2：Geometrical structure of complex multiresolution analysis．

Conditions

－The frequency responses of the functions in W_{j} are supported in $[0,+\infty[$ ，which implies that the frequency responses of the functions in W_{i}^{*} are supported in $\left.]-\infty, 0\right]$ ， Orthogonality：$V_{j} \perp W_{j}$ and $V_{j} \perp W_{j}^{*}$ ，

Result
－There is a unique solution for W_{j} ．
－Decomposes $\mathbf{L}^{2}(\mathbb{R})$ as

$$
\begin{aligned}
\mathbf{L}^{2}(\mathbb{R})= & \overbrace{\ldots \oplus W_{j-1} \oplus W_{j} \oplus W_{j+1} \oplus \ldots}^{\text {positive frequencies }} \\
& \oplus \underbrace{\oplus \oplus W_{j-1}^{*} \oplus W_{j}^{*} \oplus W_{j+1}^{*} \oplus \ldots}_{\text {negative frequencies }}
\end{aligned}
$$

Problem formulation

Our problem is to find an orthonormal basis for the spaces V_{0} and W_{0} that satisfy our conditions；i．e．，solve for the coefficient matrices $C[n]$ and $D[n]$ ，

$$
\left[\begin{array}{l}
\phi_{0}(t) \\
\phi_{1}(t)
\end{array}\right]=\sum_{n} C[n]\left[\begin{array}{c}
\rho_{0}^{\alpha}(t-n) \\
\rho_{1 / 2}^{\alpha}(t-n)
\end{array}\right], \quad\left[\begin{array}{c}
\psi(t) \\
\psi^{*}(t)
\end{array}\right]=\sum_{n} D[n]\left[\begin{array}{c}
\rho_{0}^{\alpha}(2 t-n) \\
\rho_{1 / 2}^{\alpha}(2 t-n)
\end{array}\right]
$$

such that：
－$\phi_{0}(t)$ and $\phi_{1}(t)$ are real－valued；
－the associated（complex－valued）wavelets $\psi(t)$ and $\psi^{*}(t)$ have one－sided frequency support；
－$\phi_{0}(t), \phi_{1}(t), \psi(t)$ and $\psi^{*}(t)$ are jointly orthonormal．

Solution

The frequency responses of $C[n]$ and $D[n]$ are given by
where $a\left(e^{j \omega}\right)=\sum_{k} \frac{1+\operatorname{sgn}(\omega+2 \mathrm{k} \pi)}{|\omega+2 k \pi|^{2(\alpha+1)}}$ ．
The corresponding scaling functions and wavelets can be expressed as

$$
\begin{align*}
& \widehat{\phi}_{0}(\omega)=\frac{\sqrt{2}}{4}[b(\omega)+b(-\omega)] e^{j \frac{\omega}{2}}, \quad \widehat{\phi}_{1}(\omega)=\frac{\sqrt{2}}{4}[b(\omega)+b(-\omega)], \tag{1a}\\
& \widehat{\psi}(\omega)=\frac{\sqrt{2}}{2} \sqrt{b^{2}\left(\frac{\omega}{2}\right)-b^{2}(\omega)} e^{-j \frac{\omega_{2}}{2}}, \tag{1b}
\end{align*}
$$

Figure 3：Frequency（left）and time（right）representation of the scaling（top）and wavelet function （bottom）for $\alpha=2.5$ ．

The frequency responses of $\{h[n], g[n]\}$ are given by

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{\operatorname{sgn}[\cos (\omega)] \mathrm{e}^{\mathrm{j} \omega}-\mathrm{j}^{-\mathrm{j} \omega}}{2^{\alpha+1}} \sqrt{\frac{a\left(e^{j 2|\omega|}\right)}{a\left(\mathrm{e}^{j \mid(\omega)}\right)}}, \\
& G\left(e^{\mathrm{j} \omega}\right)=\{1+\operatorname{sgn}[\sin (\omega)]\} \mathrm{e}^{-\mathrm{j} 3 \omega} \sqrt{\left.1-2^{-2(\alpha+1)}\right) \frac{\mathrm{a}\left(\mathrm{e} \mathrm{e}^{\mathrm{j} 2 \omega}\right)}{\mathrm{a}\left(\mathrm{e}^{\mathrm{j} \omega}\right)}} .
\end{aligned}
$$

Figure 4：Magnitude of the complex filters $\left\{H\left(e^{j \omega}\right), G\left(e^{j \omega}\right)\right\}$ ．

Figure 5：Frequency－domain energy localization of the orthonormal multiwavelet basis．

Figure 6：Frequency－domain energy localization of the orthonormal multiwavelet basis．

Pemonstration directivities between proposed 2D NRCWT and traditional 2D DWT．The decomposition level is 1 ．The DWT used is the fractional（ $\alpha=4.5, \tau=0$ ）orthonormal B －spline．

