3D Motion Flow Estimation using Local All-Pass Filters Christopher Gilliam¹, Thomas Küstner^{2,3} and Thierry Blu^1

¹Department of Electronic Engineering, The Chinese University of Hong Kong ²Institute of Signal Processing and System Theory, University of Stuttgart ³Department of Radiology, University of Tübingen

Summary

The estimation of motion from a sequence of volumetric images is an important task that has many applications in biological and medical imaging, e.g: image registration, cardiac analysis in 3D cine CT images and cell dynamics in confocal microscopy. In this work, we present a novel algorithm to estimate a dense 3D motion using local all-pass filters. We demonstrate the effectiveness of this algorithm on both synthetic motion flows and *in-vivo* MRI data involving respiratory motion. In particular, the algorithm obtains greater accuracy for significantly reduced computation time when compared to competing approaches.

Motion Flow Estimation

Problem: Find a velocity field $\vec{u} = (u_x(\vec{x}), u_y(\vec{x}), u_z(\vec{x}))^T$ based on the variation of intensities within a volumetric image sequence [1], where $\vec{x} = (x, y, z)^T$ is the voxel coordinates.

3D Local All-Pass Algorithm

Assume motion is constant within a window \mathcal{W} and estimate a local all-pass filter. Thus, for (2R+1) cubic window \mathcal{W} , solve at every voxel:

UNIVERSITÄTS KLINIKUM

$$\min_{\{c_n\}} \sum_{\vec{\mathbf{k}} \in \mathcal{W}} \left| p_{\text{app}}[\vec{\mathbf{k}}] * I_1[\vec{\mathbf{k}}] - p_{\text{app}}[-\vec{\mathbf{k}}] * I_2[\vec{\mathbf{k}}] \right|^2$$

 $\rightarrow c_0 = 1 \implies$ Solve linear system of equations with N-1 unknowns

• Efficient implementation using convolutions and pointwise multiplication

• Extract motion estimate from filters

Moving Image, I_2

Fixed Image, I_1

Optical Flow Point of View

Assume a voxel's intensity remains constants as it flows from one image to another:

Brightness Constraint: $\underbrace{I_2(\vec{x} + \vec{u}(\vec{x})) = I_1(\vec{x})}_{\text{Non-Linear}}$

Standard algorithms [1,2,3] are based on linearising the constraint under the assumption that the displacement of the motion is small:

Optical Flow Equation: $\underbrace{I_2(\vec{x}) - I_1(\vec{x}) - \vec{u}^{T} \nabla I_1(\vec{x}) = 0}_{1 \text{ Constraint for 3 Unknowns} \Rightarrow \text{III-posed}}$

 \hookrightarrow Solve using regularisation [1] or assume motion is constant over a local window [2]

Our Approach

Instead of assuming small displacement and using the optical flow equation:

Poly-Filter Framework

Estimate the motion in a slow-to-fast varying manner by changing the filter parameter R; large values of R allow the estimation of large flow whilst small values allow faster variations.

Post-Processing:

- Remove erroneous flow estimates using inpainting
- Smooth estimate using Gaussian filtering

 \hookrightarrow Pre-process images using high-pass filter

Results

Synthetic Evaluation: Image I_1 is generated by warping image I_2 using a known ground truth motion - brightness constraint exactly satisfied.

No	Noise Images ($128 \times 128 \times 64$ voxels)						MR Images ($256 \times 256 \times 72$ voxels)					
Constant Flow		Smoothly Varying Flow			Constant Flow			Smoo	Smoothly Varying Flow			
AEE	AAE	Time	AEE	AAE	Time	AEE	E AAE	Time	AEE	AAE	Time	
0.014	0.065	9.320	0.019	0.319	9.290	0.00	7 0.038	34.77	0.048	3 0.771	40.82	
0.174	0.558	47.20	0.223	4.400	49.80	0.19	6 0.914	69.42	0.494	7.809	76.00	
0.173	0.784	66.14	0.253	4.853	134.5	0.24	0 1.070	246.7	0.230	3.070	235.5	
	No Cor AEE 0.014 0.174 0.173	Noise Image Constant F AEE AEE 0.014 0.174 0.173 0.784	Noise Images (128 Constant Flow AEE AAE Time 0.014 0.065 9.320 0.174 0.558 47.20 0.173 0.784 66.14	Noise Images (128 × 128	Noise Images (128 × 128 × 64 vox Constant Flow Smoothly Varyi AEE AAE Time AEE AAE 0.014 0.065 9.320 0.019 0.319 0.174 0.558 47.20 0.223 4.400 0.173 0.784 66.14 0.253 4.853	Noise Images ($128 \times 128 \times 64$ voxels)Constant FlowSmoothly Varying FlowAEEAAETimeAEEAAETime0.0140.0659.3200.0190.3199.2900.1740.55847.200.2234.40049.800.1730.78466.140.2534.853134.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Assume the motion is slowly varying \Rightarrow Treat as locally constant

Under this assumption:

- Relate local changes between two images via a filter that is **All-Pass** in nature
- Extract local estimate of motion flow from this all-pass filter

 \rightarrow No limit on the size of displacement of the motion

All-Pass Filtering Framework^[4]

1. Shifting is All-Pass Filtering

Under brightness constraint:

Constant motion
$$\implies$$
 Shifting by a displacement vector $\vec{u} = (u_x, u_y, u_z)^T$

Shifting in frequency domain:

$$\hat{I}_{2}(\vec{\omega}) = \underbrace{\hat{I}_{1}(\vec{\omega}) e^{-j\vec{u}^{\mathrm{T}}\vec{\omega}}}_{= \text{ Filtering Operation}} \xrightarrow{\text{Define Filter}} \underbrace{\hat{\mathrm{Define Filter}}}_{= \text{All-Pass}} \underbrace{\hat{h}(\vec{\omega}) = e^{-j\vec{u}^{\mathrm{T}}\vec{\omega}}}_{= \text{All-Pass}}$$

where $\vec{\omega} = (\omega_x, \omega_y, \omega_z)^{\mathrm{T}}$.

2. Linearising the All-Pass Filtering

Any all-pass filter can be expressed as $h[\vec{k}] = p[\vec{k}] * p^{-1}[-\vec{k}]$, where p is an arbitrary, real, digital filter and $\vec{k} = [k, l, m]^T$ is the discrete voxel coordinates:

* AEE - Average End-point Error, $\|\vec{u} - \vec{u}_{est}\|_2$, (in voxels), AAE - Average Angular Error (in degrees) [3] and Time - computation time in seconds. ** Maximum displacement for each motion flow is 8 voxels.

\rightarrow LAP computation times achieved using only a Matlab implementation (no C++ code)

Example estimating the smoothly varying motion flow

(b) xy-Slice of Ground Truth Motion (a) xy-Slice of Image 1, I_1

(c) xy-Slice of Image 2, I_2

(d) LAP Motion Estimate

Respiratory Motion Estimation on three *in-vivo* MRI: Noisy, real, conditions unlikely that the brightness constraint is satisfied.

	Lung Segmentation (Dice Coefficient [8])	Image Registration Accuracy (dB)	Computation Time (seconds)
3D LAP	0.90 (0.01)	39.93	36.28
Elastix [6]	0.87 (0.02)	37.30	61.55
Demons [7]	0.73 (0.05)	38.23	434.6

* Lung Segmentation - perform automatic lung segmentation on both I_1 and the registered version of I_2 and then measure the overlap using Dice Coefficients [8]

Example estimating respiratory motion in MR images

All-Pass Filtering Equation: $I_2[\vec{k}] = h[\vec{k}] * I_1[\vec{k}] \iff p[-\vec{k}] * I_2[\vec{k}] = p[\vec{k}] * I_1[\vec{k}]$

3. Filter Approximation - A Basis Representation

Approximate p using a linear combination of a few, known, real filters:

$$p_{\text{app}}[\vec{\mathbf{k}}] = \sum_{n=0}^{N-1} c_n p_n[\vec{\mathbf{k}}]$$

A good basis should span the derivatives of an isotropic filter [5]:

 $p_0[\vec{\mathbf{k}}] = e^{-\frac{k^2 + l^2 + m^2}{2\sigma^2}}, \qquad p_1[\vec{\mathbf{k}}] = k \, p_0[\vec{\mathbf{k}}], \qquad p_2[\vec{\mathbf{k}}] = l \, p_0[\vec{\mathbf{k}}], \qquad p_3[\vec{\mathbf{k}}] = m \, p_0[\vec{\mathbf{k}}]$

where $\sigma = (R+2)/4$ and R is the half-support of the filters.

 \hookrightarrow Extract estimate of displacement vector from all-pass filter h

References

[1] B. Horn and B. Schunck, "Determining optical flow," Artificial Intell., vol. 17, no. 1, pp. 185–203, 1981.

- [2] B. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in *Proc. Int. Joint Conf. Artificial* Intell., Vancouver, Canada, 1981, vol. 2, pp. 674–679.
- [3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Black, and R. Szeliski, "A database and evaluation methodology for optical flow," Int. Comput. Vision, vol. 92, no. 1, pp. 1-31, 2011.
- [4] C. Gilliam and T. Blu, "Local all-pass filters for optical flow estimation," in Proc. ICASSP, 2015, pp. 1533-1537.
- [5] T. Blu, P. Moulin and C. Gilliam, "Approximation order of the LAP optical flow algorithm," in *Proc. ICIP*, 2015, pp. 48-52.
- [6] S. Klein, M. Staring and K. Murphy et al, "Elastix: A toolbox for intensity-based medical image registration," IEEE Trans. Med. Imag., vo 29, no. 1, pp. 196-205, 2010.

[7] D.-J. Kroon and C. Slump, "MRI modality transformation in demon registration," in *Proc. ISBI*, 2009, pp. 963-966.

[8] L. Dice, "Measures of the amount of ecologic association between species," *Ecology*, vol. 26, no. 3, pp. 297302, 1945.

