Local All-Pass Filters for Optical Flow Estimation Christopher Gilliam and Thierry Blu

Department of Electronic Engineering, The Chinese University of Hong Kong

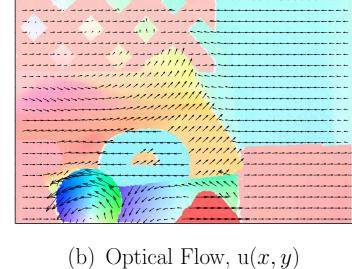
Summary

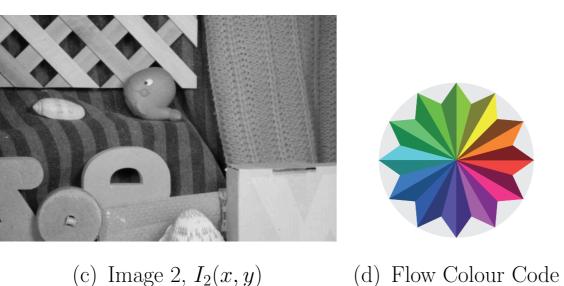
An important topic in image processing is the estimation of motion from a sequence of images. This motion is known as the **Optical Flow** and is utilised in a range of applications e.g. computer vision, biology and medical imaging. In this work, we present a novel algorithm to estimate the optical flow using local all-pass filters. We demonstrate that this algorithm is fast, consistent, and that it outperforms three stateof-the-art algorithms when estimating constant and smoothly varying flows. We also show initial competitive results for real images.

Optical Flow Estimation

Problem: Find a velocity field $u(x, y) = [u_1(x, y), u_2(x, y)]^T$ based on the variation of pixel intensities within an image sequence [1], where (x, y) is the pixel coordinates.

(a) Image 1, $I_1(x, y)$





(c) Image 2, $I_2(x, y)$

Standard Framework

Assume a pixel's intensity remains constants as it flows from one image to another:

Brightness Constraint: $I_2(x,y) = I_1(x - u_1(x,y), y - u_2(x,y))$

Linearise constraint by performing first order Taylor approximation under the assumption that the displacement of the optical flow is small [1,2]:

Optical Flow Equation: $I_2 - I_1 + u_1 \frac{\partial I_1}{\partial x} + u_2 \frac{\partial I_2}{\partial y} = 0$

1 Constraint for 2 Unknowns \rightarrow III-posed (Aperture Problem)

Overcoming the Aperture Problem:

- Global Approach: Minimise a global energy function that comprises the optical flow equation as a data term and a regularisation constraint on the flow as a prior term [1].
- Local Approach: Constrain the optical flow to be constant over a local region and solve the optical flow equation within the region [2].

Our Approach

Instead of assuming small displacement and using the optical flow equation:

Assume the optical flow is slowly varying \Rightarrow Treat as locally constant

Under this assumption:

- Relate local changes between two images via a filter that is **All-Pass** in nature
- Extract local estimate of optical flow from this all-pass filter

email: {cgilliam, tblu}@ee.cuhk.edu.hk

All-Pass Filtering Framework

1. Shifting is All-Pass Filtering

Under brightness constraint:

Constant optical flow \implies Shifting by a displacement vector $\mathbf{u} = [u_1, u_2]^{\mathrm{T}}$

Shifting in frequency domain:

 $\hat{I}_2(\omega_1, \omega_2) = \hat{I}_1(\omega_1, \omega_2) e^{-ju_1\omega_1 - ju_2\omega_2}$ = Filtering Operation

All-Pass Filter: $H(\omega_1, \omega_2) = e^{-ju_1\omega_1 - ju_2\omega_2}$

2. Rational Representation of All-Pass Filter

The $(2\pi, 2\pi)$ -periodic frequency response of any digital all-pass filter can be expressed

$$H(\omega_1, \omega_2) = \frac{P\left(e^{j\omega_1}, e^{j\omega_2}\right)}{P\left(e^{-j\omega_1}, e^{-j\omega_2}\right)} \quad \longleftrightarrow$$

Linearise filtering performed by h:

$$I_2[k,l] = h[k,l] * I_1[k,l] \iff p[-k,-l] * I_2[k,l] = p[k,l] * I_1[k,l]$$

3. Filter Approximation - A Basis Representation

Approximate p using a linear combination of a few, known, real filters:

$$p_{\rm app}[k, l] = \sum_{n=0}^{N-1} c_n p_n[k]$$

Opt for compact filter basis based on Gaussian filters

$p_0[k,l] = \mathrm{e}^{-rac{k^2+l^2}{2\sigma^2}}$	$p_3[k,l] = (k^2)$
$p_1[k,l] = k p_0[k,l]$	$p_4[k,l] = kl$
$p_2[k,l] = l p_0[k,l]$	$p_5[k,l] = (k^2$

where $\sigma = (R+2)/4$ and R is the half-support of the filters.

4. Extracting the Displacement Vector

Since
$$H_{app} \approx e^{-ju_1\omega_1 - ju_2\omega_2} \implies u_{1,2} = j \left. \frac{\partial \log \left(H_{app} \left(e^{j\omega_1}, e^{j\omega_2} \right) \right)}{\partial \omega_{1,2}} \right|_{\omega_1 = \omega_2 = 0}$$

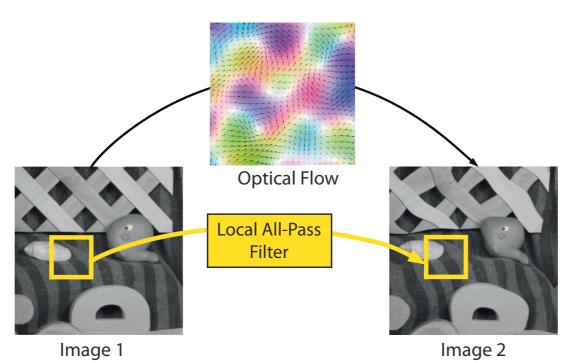
Local All-Pass Algorithm

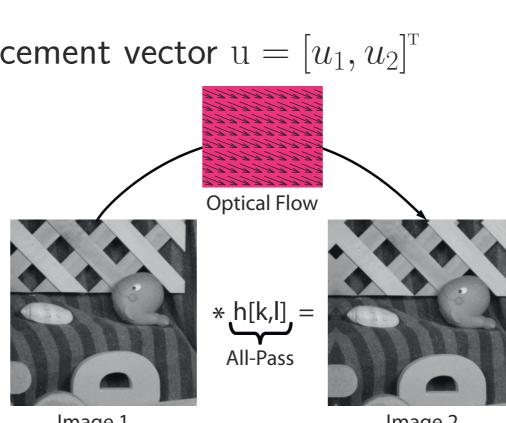
Assume flow is constant within a window \mathcal{R} and estimate a local all-pass filter. Thus, for (2R+1) square window \mathcal{R} , solve at every pixel:

 $\min_{\{c_n\}} \sum_{l \in \mathcal{D}} \left| p_{\text{app}}[-k, -l] * I_2[k, l] - p_{\text{app}}[k, l] * I_1[k, l] \right|^2$

 $\hookrightarrow c_0 = 1 \implies$ Solve linear system of equations with N-1 unknowns

- Efficient implementation using convolutions and pointwise multiplication
- Extract optical flow estimate from filters





- Forward Filter
- Backward Filter

Gaussian filters:

$$p_3[k, l] = (k^2 + l^2 - 2\sigma^2)p_0[k, l]$$

 $p_4[k, l] = kl p_0[k, l]$
 $p_5[k, l] = (k^2 - l^2) p_0[k, l]$

Multi-Scale Refinement

Estimate the flow in a slow-to-fast varying manner by changing the filter parameter R; large values of R allow the estimation of large flow whilst small values allow faster variations.

Post-Processing:

- Remove erroneous flow estimates using inpainting
- Smooth flow estimate using mean filtering

 \hookrightarrow Real Images \implies Pre-process images using high-pass filter and median filtering at small R

Results

Evaluation under two conditions:

Noiseless Conditions: Image I_2 is generated by directly warping image I_1 with a synthetic optical flow. Therefore, the images exactly satisfy brightness constraint. **Real Conditions:** Image I_2 is acquired independently of I_1 . Therefore, the images are unlikely to satisfy the brightness constraint exactly (i.e. noisy conditions).

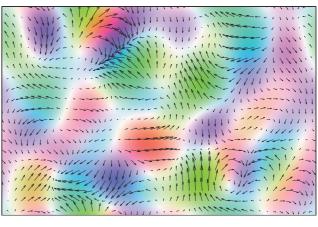
Accuracy:

Measures: $EE = ||u - u_{est}||_2^2$, and End-point Error (in pixels)

	Constant Flows			Smoothly Varying Flows			Real Flows						
Algorithms	D = 1 pixel $D =$		D=1	= 15 pixel D		D = 1 pixel		D=15 pixel		Dimetrodon		RubberWhale	
	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE	
LAP	4×10^{-6}	1×10^{-7}	0.001	0.001	0.107	0.002	0.746	0.102	1.782	0.096	3.870	0.116	
LDOF [3]	0.777	0.020	0.169	0.054	2.119	0.043	11.91	1.310	2.104	0.115	4.310	0.129	
MPOF [4]	1.833	0.046	0.094	0.044	2.103	0.041	7.201	0.964	2.976	0.150	2.662	0.087	
HS [1,6]	1.293	0.033	0.084	0.039	1.854	0.037	6.010	0.868	4.562	0.219	3.801	0.119	
* AAE - Average Angular Error and AEE - Average End-point Error													

** D is the maximum displacement of the optical flow

Estimating a smoothly varying optical flow with LAP algorithm (maximum displacement is 15 pixels)



(e) Image 1, I_1

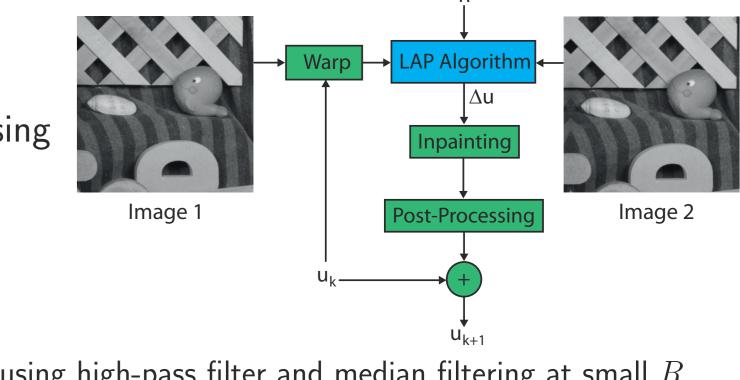
(f) Ground Truth Flow, u

Computation Time: Computation time for the five opti LAP LAP w. Time (seconds) 6.23

 \hookrightarrow Unlike the others, LAP computation times achieved using only a Matlab implementation

References

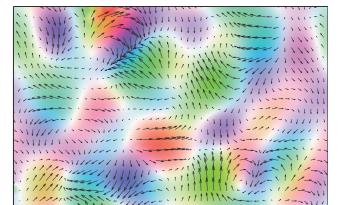
- [1] B. Horn and B. Schunck, "Determining optical flow," Artificial Intell., vol. 17, no. 1, pp. 185–203, 1981
- 1981, vol. 2, pp. 674–679. 3, pp. 500-513, 2011
- no. 1, pp. 1–31, 2011.
- [6] D. Sun, S. Roth, and M. Black, "A quantitative analysis of current practices in optical flow estimation and the principles behind them," Int. J. Comput. Vision, vol. 106, no. 2, pp. 115-137, 2014.



d
$$AE = \cos^{-1}\left(\frac{1 + u^{T}u_{est}}{\sqrt{1 + u^{T}u}\sqrt{1 + u^{T}_{est}u_{est}}}\right)$$

Angular Error (in degrees)

Comparison of the LAP algorithm against three state-of-the-art optical flow algorithms



(h) LAP Flow Estimate, ues

tical flow algorithms (images are 388 by 584 pixels)						
Median Filters	LDOF [3]	MPOF [4]	HS [1,6]			
7.76	29.87	279.00	47.05			
on times achieved using only a Matlah implementation						

[2] B. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. Int. Joint Conf. Artificial Intell., Vancouver, Canada, [3] T. Brox and J. Malik, "Large displacement optical flow: Descriptor matching in variational motion estimation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. [4] L. Xu, J. Jia, and Y. Matsushita, "Motion detail preserving optical flow estimation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1744–1757, 2012. [5] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Black, and R. Szeliski, "A database and evaluation methodology for optical flow," Int. J. Comput. Vision, vol. 92,