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 In photo/thermo-acoustic imaging, absorbed energy leads to thermoelastic expansion of the tissue that 
results in a measurable acoustic field on the boundary of the domain. Monitoring the generated acoustic 
source field yields information about the absorption properties of the tissue.

 Nonionizing laser or RF pulses are used to excite US waves at MHz range. Combining US resolution 
with high contrast due to EM absorption provides promising applications for soft tissue imaging.

 Recovering the generating source distribution from the boundary measurements is an ill-posed 
problem that necessitates additional assumptions on the solution. Here, we extend our recently proposed 
non-iterative reconstruction scheme for point source models with single frequency field measurements to 
source configurations that shows joint sparsity for different temporal frequency measurements.

 With specific choice of sensing functions, we first extract generalized samples of the innovative signal 
from the boundary measurements. Then, we jointly annihilate these samples to reconstruct the the 
projection of the source points in the complex plane. We provide a modified multi-source Dijkstra 
algorithm to recover the remaining Z-localization and a denoising scheme for model mismatch and noisy 
measurements.

 Experimental results demonstrate that jointly-sparse reconstruction achieves CRLBs for lower SNR 
levels than single frequency measurement.  
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Generalized Sensing Jointly Sparse Source Recovery

Magnitude and Z-Axis Estimation

Finite Rate of Innovation 
 An FRI signal has two parts: An innovative and a non-innovative.
 Knowing set of functions                              with arbitrary shifts 
and weights (innovations), an FRI signal can be written as

Acoustic field on the boundary Normal gradient on the boundary

{φr(x)}r=1,...,R

f(x) =
�

n∈Z

R�

r=0

cnrφr(x− xn)

Problem Statement
 Knowing the pressure field only on the boundary by          and 

              find the enclosed acoustic source distribution within    .
U |∂Ω

∇U |∂Ω Ω

Helmholtz Equation
 Observing the time harmonic solutions of the wave equation, we 
obtain,

∇2U + k2U = −P
Source Modeling

 Reconstructing the source distribution from the boundary 
measurements is an ill-posed problem.
 Point Source Model is valid under stress-confinement condition

P (r) =
M�

m=1

cmδ(r− rm)

 Having samples of such a signal twice the innovation rate provides 
exact reconstruction replacing the nonlinear parameter estimation 
problem with equivalent two linear system solutions.

Sensing From Boundary Measurements
 Link between the innovative signal and the measured boundary 
data through second Greenʼs Identity
 The generalized-samples of the source signal can be extracted 
from the boundary measurements as 

Sensing Function on The Boundary Normal Gradient of the Test Function

�Ψ, P � =
�

∂Ω
(Ψ∇U − U∇Ψ) .e∂ΩdS ∇2Ψ = −k2Ψ

Proposed Family of Test Functions

Ψl [n] =
eiklz

x+ iy − an
, an = aeinα, an �∈ Ω

Generalized Samples
 The samples of the innovative source signal satisfy 

µl[n] = �Ψl[n], P � =
M�

m=1

cmeiklzm

sm − an
=

�M−1
m=0 c�meimnα

�M
m=1(sm − an)

for the selected wave number where the poles of sensing function 
lie at equidistant angles on the complex plane.

Annihilation Filter 
 The exponential terms in the denominator can be annihilated by 

H(z) =
M−1�

r=0

(1− e
irα

z
−1) =

M�

r=0

hrz
−r

XY-Plane Projection 
 Defining a polynomial whose roots are the XY-plane projections 

X(an) =
M�

m=1

(sm − an) =
M�

q=0

xqa
q
n with xM = 1

the annihilation equation has the following form

boundary measurements of the generated wave field with the care-

fully selected sensing functions.

According to the second Green’s identity, the generalized sam-
ples of the unknown source distribution can be obtained by

�Ψ, P � =
�

∂Ω

(Ψ∇U − U∇Ψ) · ∂S, (3)

where ∂S is in the outward surface normal direction, provided that

the sensing function satisfies

∇2Ψ = −k
2Ψ within Ω. (4)

The proposed family of sensing functions satisfying (4) are charac-

terized by

Ψl [n] =
e
iklz

x+ iy − an
, an = ae

inα
, an �∈ Ω, (5)

where l represents the chosen frequency with the corresponding

wavenumber kl, and an’s are the poles of the sampling function lo-

cated on the XY-plane with equidistant radial angles, α, outside the

domain Ω. This choice of the sensing functions allows us to robustly

reconstruct the projections of the locations of the point sources on

the XY-plane by annihilating the generalized samples. For the joint-

sparse source model, we simply extract generalized samples using

the same family of test functions, but at different frequencies.

3.2. Joint Annihilation

The generalized samples extracted according to (3) satisfy the equal-

ity

µl[n] = �Ψl[n], P � =
M�

m=1

cme
iklzm
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m=0 c

�
me
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(6)

for the selected wavenumber kl, l ∈ �1, L� and n ∈ �1, N�, and

sm = xm + iym. Hence, it is clear that the exponential terms in

the numerator of (6) can be annihilated by an FIR digital filter, h,

characterized by

H(z) =
M−1�

r=0

(1− e
irα

z
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M�
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hrz
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. (7)

Defining a polynomial for the denominator of the (6) as X(an) =�M
m=1(sm − an) =

�M
q=0 xqa

q
n with xM = 1, the annihilation

equation has the following form

{µl[·]X(a·)} ∗ h = 0, for all l ∈ �1, L�. (8)

In terms of matrix representation, (8) can be formulated as:

Alx = HDlVx = 0, (9)

where H is an (N − M) × N Toeplitz matrix representing the an-

nihilating filter h, Dl is an N × N diagonal matrix of generalized
samples, V is an N × (M +1) Vandermonde matrix of poles of the

sensing function; i.e., an and x is the unknown vector of M+1 poly-

nomial coefficients with xM = 1. For the noiseless case, the system

Alx = 0 has (N − M) equations with M unknowns. Hence, we

conclude that for this setup we need at least N = 2M generalized
samples.

For joint reconstruction of the source locations, we extend the

above linear system of equations so as to incorporate multiple gener-
alized samples taken at different frequencies, i.e., from the following

set of linear subsystems

HDlVx = 0 (10)

.

.

.

HDLVx = 0,

we construct a large system of the form

Ax = BCVx = 0, (11)

where B is an L(N − M) × LN block diagonal matrix of H ma-

trices, C is an LN × N matrix formed by vertically concatenating

Dl matrices. From (11), we conclude that it is possible to jointly

reconstruct the point source locations.

3.3. Model Mismatch and Denoising

The linear system Ax = 0 is solved in the least-squares sense to

extract the source locations on XY-plane. For the noiseless case, the

method achieves exact solution, but in practice the measurements

are corrupted with noise. Hence, one needs to compensate for the

measurement noise model mismatches.

Assuming that the generalized samples are corrupted with com-

plex AWGN; i.e., µ̂l[n] = µl[n]+v[n] where v denotes the complex

noise, we propose to denoise the generalized samples with the fol-

lowing Cadzow-like denoising scheme [9].

As mentioned earlier, the subsystem matrix, Al = HDlV, is of

rank M in the noiseless case. In the proposed denoising scheme, we

exploit this fact to denoise generalized samples extracted for dif-

ferent frequencies separately. In order to allow noise and model

mismatch, we first assume higher number of sources M̃ > M to

construct H̃ and Ṽ. We then obtain the corresponding unitary ma-

trices, i.e., H̃0 and Ṽ0 to precondition the system matrix such that

Ãl0 = H̃0D̂lṼ0.

Algorithm 1: Cadzow-like Denoising

Data: D̂l,(Corrupted with cAWGN) and assume Higher

Number of Source, M̃ > M

Result: Denoised Generalized Samples Dl

begin
Ãl0 ←− H̃0D̂lṼ0;

while rank(Ãl0) > M do
Â ←− argmin

rank(Â)=M

||Â− Ãl0||F (1)

Dl ←− argmin
D

||H̃0DṼ0 − Â||F (2)

Ãl0 ←− H̃0DlṼ0;

We propose two-step iterations for the Cadzow-like denoising

scheme. First, we find the low-rank approximation of Ãl0 mini-

mizing an objective (1) in Algorithm 1 by forcing the last M̃ − M

singular values of it to be zero. Second, we extract the denoised

generalized samples as a minimization of the objective (2) in Al-

gorithm 1. We continue the iterations until the (M + 1)th largest

singular value of Ãl0 is smaller than a predefined threshold.

Alx = HDlVx = 0

which can be formulated in matrix representation as
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Number of Minimum Generalized Samples
 For the noiseless case, the linear system has rank M with (N-M) 
equations and M unknowns.
 We need at least N=2M generalized samples of the signal which 
is twice the innovation rate for complex plane projection. 

Joint Annihilation
 We Extend the above system to incorporate multiple 
generalized samples taken at different frequencies
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gorithm 1. We continue the iterations until the (M + 1)th largest

singular value of Ãl0 is smaller than a predefined threshold.

Model Mismatch and Denoising
 Assuming the generalized samples are corrupted with cAWGN

Magnitude Recovery
 With the same set of generalized samples and estimated XY-
locations, we solve for the the magnitudes for each frequency
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trices, C is an LN × N matrix formed by vertically concatenating
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are corrupted with noise. Hence, one needs to compensate for the
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Assuming that the generalized samples are corrupted with com-

plex AWGN; i.e., µ̂l[n] = µl[n]+v[n] where v denotes the complex

noise, we propose to denoise the generalized samples with the fol-

lowing Cadzow-like denoising scheme [9].

As mentioned earlier, the subsystem matrix, Al = HDlV, is of
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Algorithm 1: Cadzow-like Denoising
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begin
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µ̂l[n] = µl[n] + v[n]
which changes the rank of the linear system, 

 Preconditioning: Use the unitary matrices
 Find low-rank approximation (1)
Extract the denoised samples minimizing (2)

Periodicity of the Z Locations inherent the sensing function
 Due to exponential term in the sensing function, we have a set of 
periodic solutions for each source point.

4. MAGNITUDE AND Z-AXIS ESTIMATION

4.1. Magnitude Recovery

In order to completely describe the source distribution, one still has
to determine the z-positions of the source locations and the magni-
tudes. The estimation of these parameters are done with the same
set of generalized samples. Considering (6) with the XY-locations
estimated in the previous step we obtain another linear system

µl[n] =
M�

m=1

cmeiklzm

sm − an
, n ∈ �1, N�, (12)

where µl[n] are the denoised generalized samples and sm = xm +
i + ym are the estimated XY-plane positions. In matrix notation,
(12) can be represented as Efl = µT

l with the following explicit
representations:
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µl(N)





=µT
l

.

The solution to this system is given by fl = E†µT
l , where † rep-

resents the pseudoinverse of a matrix. Here, it is possible to find a
frequency-variant magnitude solution depending on the problem for-
mulation. Assuming that the magnitudes are also jointly sparse the
joint reconstruction of the magnitude of L set of generalized samples
will be the mean of the magnitude solution sets:

C =




c1
...

cM



 =
1
L

L�

l=1

|fl| . (13)

4.2. Periodicity Cancellation for the Z-Solutions

For the Z component of the source locations, the problem is harder
than that of the magnitude. The main difficulty is that the phase of
Pl is periodic. Therefore, for each zm, we have a set of periodic
solutions within the domain of Ω as follows:

Z(l) =




z1(l)

...
zM (l)



 =
arg(fl) + 2πnl

kl
, ∀






nl ∈ Z
zm(l) ∈ Ω

l = 1 : L

. (14)

We note that if the common period of L solutions lies outside of
the domain Ω, then there is a unique solution which has the same
value among all possible solution sets from Z(1) to Z(L) for the
noiseless case. Therefore, we propose a solution for the z-location
as a modified multi-source Dijkstra’s algorithm for closed paths as
the minimization of the following objective:

n̂l = argmin
l

L�

l=2

����
arg(f1(m)) + 2πn1

k1
− arg(fl(m)) + 2πnl

kl

����

Z =
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(15)

We assume that the selected frequencies are sorted in increasing
order such that the set zm(1) is the smallest set among other L − 1

possible solution sets and set as the initial reference set R. At each
iteration, we compare the reference set (R) with a search set (S),
which is the solution to the next higher frequency. We chose a set
N⊂S and N≡R such that each element in R has its closest equivalent
in set N. Then the set D keeps the distance between the two closest
sets and set T keeps the corresponding solutions. Once we select
the solutions sets among all frequencies we choose mean of the set
having the shortest path as our solution. The proposed method is
summarized in Algorithm 2.

Algorithm 2: Modified Dijkstra’s Shortest Path
Data: Phase Solution, arg(Pl) of Eq.12 for l = 1 : L
Result: Z-location of the source, Z = [z1, · · · , zM ]T

begin

for m ∈ �1,M� do

R0 ←− zm(1)
T ←− R0

R ←− R0

for l ∈ �1, L− 1� do

S ←− zm(l + 1)
N ←− ExtractMin(R,S)
D ←− |R-N|
T ←− T+N
R ←− N

D ←− D + |D-R0|
zm = 1

LT(min(D))

5. EXPERIMENTAL RESULTS

We perform numerical experiments to asses the performance of our
new reconstruction algorithm for a variety of source configuration
by observing the localization quality of joint reconstruction with re-
spect to varying number of frequencies. Our settings are inspired
by from photoacoustic imaging [10], which is an imaging modality
with promising biomedical applications including early detection of
breast cancer and small animal imaging.

For the experimental setup, we consider a spherical volume of
radius 1cm where the source points are generated randomly. More-
over, we assume that the generalized samples are available from the
field measurements on the boundary of the volume of interest with
a frequency range of 1MHz to 1.2MHz with a 50kHz separation
(f = f0 + (0 to L) × ∆f with f0 = 1MHz and ∆f is 50 kHz)
which is reasonable in the photoacoustic applications. Here the sep-
aration step-size is chosen such that the beating frequency between
the distinct frequencies guarantees a unique solution within the do-
main Ω. Once we have the generalized samples, we further degrade
them with cAWGN to evaluate the performance of the localization
and denoising algorithms.

In the first experiment, we compare the observed estimation
variance of the parameters with respect to the theoretical limits
given by CRLBs for a single acoustic source. In Fig. 1 (a),(b) and
(d), we compare the performance of the estimations along X and
Y axes and the magnitude for single and multiple frequency recon-
struction, respectively. As expected, the joint-reconstruction method
performs better as we have more frequency measurements. For the
Z-localization, as the joint-reconstruction algorithm needs at least
two different set of measurements to choose the proper period of
the solution, we only compare for multiple frequencies in Fig. 1
(c). Here, it is clear that by adding more jointly sparse generalized
samples, the algorithm can reach to CRLB for a lower SNR level.

which can be formulated in matrix representation as
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4.1. Magnitude Recovery

In order to completely describe the source distribution, one still has
to determine the z-positions of the source locations and the magni-
tudes. The estimation of these parameters are done with the same
set of generalized samples. Considering (6) with the XY-locations
estimated in the previous step we obtain another linear system

µl[n] =
M�

m=1

cmeiklzm

sm − an
, n ∈ �1, N�, (12)

where µl[n] are the denoised generalized samples and sm = xm +
i + ym are the estimated XY-plane positions. In matrix notation,
(12) can be represented as Efl = µT

l with the following explicit
representations:





1
s1−a1

· · · 1
sM−a1

...
...

...
1

s1−aN
· · · 1

sM−a1





E




c1e

iklz1

...
cMeiklzM





fl

=




µl(1)

...
µl(N)





=µT
l

.

The solution to this system is given by fl = E†µT
l , where † rep-

resents the pseudoinverse of a matrix. Here, it is possible to find a
frequency-variant magnitude solution depending on the problem for-
mulation. Assuming that the magnitudes are also jointly sparse the
joint reconstruction of the magnitude of L set of generalized samples
will be the mean of the magnitude solution sets:

C =




c1
...

cM



 =
1
L

L�

l=1

|fl| . (13)

4.2. Periodicity Cancellation for the Z-Solutions

For the Z component of the source locations, the problem is harder
than that of the magnitude. The main difficulty is that the phase of
Pl is periodic. Therefore, for each zm, we have a set of periodic
solutions within the domain of Ω as follows:

Z(l) =




z1(l)

...
zM (l)



 =
arg(fl) + 2πnl

kl
, ∀






nl ∈ Z
zm(l) ∈ Ω

l = 1 : L

. (14)

We note that if the common period of L solutions lies outside of
the domain Ω, then there is a unique solution which has the same
value among all possible solution sets from Z(1) to Z(L) for the
noiseless case. Therefore, we propose a solution for the z-location
as a modified multi-source Dijkstra’s algorithm for closed paths as
the minimization of the following objective:

n̂l = argmin
l

L�

l=2

����
arg(f1(m)) + 2πn1

k1
− arg(fl(m)) + 2πnl

kl

����

Z =




z1
...

zM



 =
1
L

L�

l=1

arg(fl) + 2πn̂l

kl
(15)

We assume that the selected frequencies are sorted in increasing
order such that the set zm(1) is the smallest set among other L − 1

possible solution sets and set as the initial reference set R. At each
iteration, we compare the reference set (R) with a search set (S),
which is the solution to the next higher frequency. We chose a set
N⊂S and N≡R such that each element in R has its closest equivalent
in set N. Then the set D keeps the distance between the two closest
sets and set T keeps the corresponding solutions. Once we select
the solutions sets among all frequencies we choose mean of the set
having the shortest path as our solution. The proposed method is
summarized in Algorithm 2.

Algorithm 2: Modified Dijkstra’s Shortest Path
Data: Phase Solution, arg(Pl) of Eq.12 for l = 1 : L
Result: Z-location of the source, Z = [z1, · · · , zM ]T

begin

for m ∈ �1,M� do

R0 ←− zm(1)
T ←− R0

R ←− R0

for l ∈ �1, L− 1� do

S ←− zm(l + 1)
N ←− ExtractMin(R,S)
D ←− |R-N|
T ←− T+N
R ←− N

D ←− D + |D-R0|
zm = 1

LT(min(D))

5. EXPERIMENTAL RESULTS

We perform numerical experiments to asses the performance of our
new reconstruction algorithm for a variety of source configuration
by observing the localization quality of joint reconstruction with re-
spect to varying number of frequencies. Our settings are inspired
by from photoacoustic imaging [10], which is an imaging modality
with promising biomedical applications including early detection of
breast cancer and small animal imaging.

For the experimental setup, we consider a spherical volume of
radius 1cm where the source points are generated randomly. More-
over, we assume that the generalized samples are available from the
field measurements on the boundary of the volume of interest with
a frequency range of 1MHz to 1.2MHz with a 50kHz separation
(f = f0 + (0 to L) × ∆f with f0 = 1MHz and ∆f is 50 kHz)
which is reasonable in the photoacoustic applications. Here the sep-
aration step-size is chosen such that the beating frequency between
the distinct frequencies guarantees a unique solution within the do-
main Ω. Once we have the generalized samples, we further degrade
them with cAWGN to evaluate the performance of the localization
and denoising algorithms.

In the first experiment, we compare the observed estimation
variance of the parameters with respect to the theoretical limits
given by CRLBs for a single acoustic source. In Fig. 1 (a),(b) and
(d), we compare the performance of the estimations along X and
Y axes and the magnitude for single and multiple frequency recon-
struction, respectively. As expected, the joint-reconstruction method
performs better as we have more frequency measurements. For the
Z-localization, as the joint-reconstruction algorithm needs at least
two different set of measurements to choose the proper period of
the solution, we only compare for multiple frequencies in Fig. 1
(c). Here, it is clear that by adding more jointly sparse generalized
samples, the algorithm can reach to CRLB for a lower SNR level.

Hybrid Source Imaging Modality
 Novel hybrid imaging technique based 
on generation of acoustic waves by 
absorption of EM energy
 The motivation is to combine high US 
resolution with high contrast due to EM 
absorption 
 Localization of PA generated source 
points within a radius of 1cm at 20dB 
on the generalized samples

CRLBʼs on the variance of the Parameters for Joint-Estimation
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Modified Dijkstraʼs Algorithm
  Multi-source Dijkstraʼs algorithm 
for closed shortest path.

Z(l) =




z1(l)
...

zM (l)



 = arg(fl)+2πnl

kl
, ∀






nl ∈ Z
zm(l) ∈ Ω

l = 1 : L

n̂l = argmin
l

�L
l=2

���arg(f1(m))+2πn1

k1
− arg(fl(m))+2πnl

kl

���

Z =




z1
...

zM



 = 1
L

�L
l=1

arg(fl)+2πn̂l

kl

Illustrative Example for Dijkstra’s Method: Red is the minimum distance path
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