
g(t) f (t)

×2α′
= f1,k

×22α′
= f2,k

×2iα′
= fi,k

G̃ ↓

H̃ ↓
G̃ ↓

H̃ ↓
G̃ ↓

H̃ ↓
. . . . . .

↑ Gα
τ

↑ Hα
τ

↑ Gα
τ

↑ Hα
τ

↑ Gα
τ

↑ Hα
τ

Resolution of the differential equation ∂α′
τ ′ f = g using a dyadic analysis-synthesis filterbank.

Application: solving ∂α′
τ ′f (t) = g(t)

Example: g(t) = white noise � f(t) = fractional Brownian motion.
Let fi,k be the unknown coefficients of the (α, τ )- fractional spline wavelet decomposition
of f(t); then

g(t) =
∑
i,k

fi,k2
−iα′

∂α′

τ ′ ψα
τ (2−it − k)

which points out that the coefficients fi,k are given by the wavelet decomposition of
g(t) using the wavelet ∂α′

τ ′ ψα
τ . For this decomposition, the associated scaling function is

βα−α′

τ−τ ′ (t) of scaling filter H(z) = Hα−α′

τ−τ ′ (z); the wavelet filter corresponding to ∂α′
τ ′ ψα

τ is
thus G(z) = 22α′−1Hα′−1

τ ′ (−z)Gα
τ (z). This implies that the coefficients of the decom-

position are obtained via the analysis filters:

H̃(z) = Hα+α′

τ ′−τ (z)
Aα(z)

Aα(z2)
and G̃(z) = −2−2α′+1zHα−α′

τ−τ ′ (−z)

Aα(z2)

f(t) is finally obtained by multiplying these coefficients by 2iα′
and performing an (α, τ )-

fractional spline wavelet synthesis.

Wavelets

•Fractional B-spline wavelets: we first define the wavelet filter Gα
τ (z) by

Gα
τ (z) = −z−1Hα

τ (−z−1)Aα(−z) =
∑
k

gα
τ [k]z−k

where Aα(−z) is the autocorrelation filter of the (α, τ )-fractional B-spline

Aα(z) =
∑
k

z−k
∫

βα
τ (u + k)βα

τ (u) du =
∑
k

z−kβ2α+1
0 (k).

Then, the fractional B-spline wavelet is obtained through the scaling relation

ψα
τ (t) =

∑
k

gα
τ [k] βα

τ (2t − k)

This function is biorthogonal to βα
τ (t − k)—and is the one that has the smallest

support, when βα
τ (t) has bounded support—i.e., when α is integer and τ = α+1

2 .

•Discrete wavelet transform: exact (for periodic boundary conditions), fast imple-
mentation via the FFT (cf. Blu/Unser ICASSP’00). Java demo available online at
http://bigwww.epfl.ch/demo/jfractsplinewavelet/index.html.

Besides, the wavelet transform coefficient

〈
f, ψα

τ (2−it − k)
〉
≈ −2i(α+3/2)A

α(π)

4α+1
∂α+1

τ f(k2i)

behaves like a generalized fractional derivative ∂α+1
τ of order α + 1, evaluated at the

point k2i � whitening of 1/|ω|α+1
2 -type noise.

-4 -2 0 2 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α = 0.5 α = 1 α = π

Plots of βα
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Interpretation of the parameters

•α is a polynomial degree. It is also related to the effective support of the B-spline
(∝

√
α + 1). α is its (Hölder) regularity order and α + 1 is its approximation order;

• τ is the center of the B-spline for higher degrees—hence behaves as a “shift”

βα
τ (t) ≈ βα

0 (t − τ ) when α ≥ 3;

τ is a dissymmetry coefficient for smaller degrees. Note: it is essentially a phase term
in Fourier since |β̂α

τ (ω)| = β̂α
0 (ω)—independent of τ .

Properties

•Two-scale difference equation:

βα
τ (t) =

∑
k

2−α

∣∣∣∣∣α + 1

k − τ

∣∣∣∣∣︸ ︷︷ ︸
hα

τ [n]

βα
τ (2t − k)

which allows to build wavelet bases. Note: the scaling filter contains a non integer
number of “regularity” factors

Hα
τ (z) = 2−α(1 + z)

α+1
2 −τ(1 + z−1)

α+1
2 +τ .

•Fractional differentiation: We first define the fractional derivative of a function
f(t) by

∂α
τ f(t) =

∫ ∞

−∞
(−jω)

α
2−τ(jω)

α
2+τ f̂(ω)

dω

2π

Then, the fractional derivative of order (α′, τ ′) of the (α, τ )-fractional B-spline is a
digitally-filtered version of the (α − α′, τ − τ ′)-fractional B-spline

∂α′

τ ′ βα
τ (t) =

∑
k

(−1)k
∣∣∣∣∣ α′

k − τ ′

∣∣∣∣∣ βα−α′

τ−τ ′ (t − k).

•Hilbert transform: remarking that the Hilbert transform operator is a fractional
derivative of order 0

� f = −∂0
1/2
f

we get that the Hilbert transform of the (α, τ )-fractional B-spline is in the resolution
space of the (α, τ − 1/2)-fractional B-spline

� βα
τ (t) =

∑
k

1

π(k − 1
2)

βα
τ−1/2(t − k)

Expression of the Fractional Splines
Let α > −1 and τ be some real parameters.

•Fourier:

β̂α
τ (ω) =

(
ejω − 1

jω

)α+1
2 −τ (

1 − e−jω

jω

)α+1
2 +τ
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•Time-domain:

βα
τ (t) =

∑
k

(−1)k
∣∣∣∣∣α + 1

k − τ

∣∣∣∣∣ ρα
τ (t − k)

where (if α is not integer)

ρα
τ (t) = Const × |t|α + Const × |t|α sign(t)∣∣∣∣∣pq

∣∣∣∣∣ =
Γ(p + 1)

Γ
(

p
2 + q + 1

)
Γ

(
p
2 − q + 1

)
If α is integer then, either |t|α degenerates into |t|α log |t| (α even); or |t|α sign(t)
degenerates into |t|α log |t| sign(t) (α odd).

•Asymptotics: For large α, a fractional B-spline is a Gaussian

βα
τ (t) ≈

α→∞

√
6

π(α+1) e
− 6

α+1
(t−τ )2

of width
√

α+1
12 centered at τ .

Summary
We describe a new family of scaling functions, the (α, τ )-fractional splines, which gen-
erate valid multiresolution analyses. These functions are characterized by two real pa-
rameters: α, which controls the width of the scaling functions; and τ , which specifies
their position with respect to the grid (shift parameter). This new family is complete
in the sense that it is closed under convolutions and correlations.
We give the explicit time and Fourier domain expressions of these fractional splines.
We prove that the family is closed under generalized fractional differentiations, and, in

particular, under the Hilbert transformation. We also show that the associated wavelets
are able to whiten 1/fλ-type noise, by an adequate tuning of the spline parameters.
A fast (and exact) FFT-based implementation of the fractional spline wavelet transform

is already available. We show that fractional integration operators can be expressed as
the composition of an analysis and a synthesis iterated filterbank.
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